1
|
Bernard A, Rossignol T, Park YK. Biotechnological approaches for producing natural pigments in yeasts. Trends Biotechnol 2024; 42:1644-1662. [PMID: 39019677 DOI: 10.1016/j.tibtech.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Pigments are widely used in the food, cosmetic, textile, pharmaceutical, and materials industries. Demand for natural pigments has been increasing due to concerns regarding potential health problems and environmental pollution from synthetic pigments. Microbial production of natural pigments is a promising alternative to chemical synthesis or extraction from natural sources. Here, we discuss yeasts as promising chassis for producing natural pigments with their advantageous traits such as genetic amenability, safety, rapid growth, metabolic diversity, and tolerance. Metabolic engineering strategies and optimizing strategies in downstream process to enhance production of natural pigments are thoroughly reviewed. We discuss the challenges, including expanding the range of natural pigments and improving their feasibility of industrial scale-up, as well as the potential strategies for future development.
Collapse
Affiliation(s)
- Armand Bernard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
2
|
Rainha J, Rodrigues JL, Rodrigues LR. De Novo Biosynthesis of Curcumin in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1727-1736. [PMID: 38787640 PMCID: PMC11197086 DOI: 10.1021/acssynbio.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Curcumin, a natural polyphenol derived from turmeric, has attracted immense interest due to its diverse pharmacological properties. Traditional extraction methods from Curcuma longa plants present limitations in meeting the growing demand for this bioactive compound, giving significance to its production by genetically modified microorganisms. Herein, we have developed an engineered Saccharomyces cerevisiae to produce curcumin from glucose. A pathway composed of the 4-hydroxyphenylacetate 3-monooxygenase oxygenase complex from Pseudomonas aeruginosa and Salmonella enterica, caffeic acid O-methyltransferase from Arabidopsis thaliana, feruloyl-CoA synthetase from Pseudomonas paucimobilis, and diketide-CoA synthase and curcumin synthase from C. longa was introduced in a p-coumaric acid overproducing S. cerevisiae strain. This strain produced 240.1 ± 15.1 μg/L of curcumin. Following optimization of phenylpropanoids conversion, a strain capable of producing 4.2 ± 0.6 mg/L was obtained. This study reports for the first time the successful de novo production of curcumin in S. cerevisiae.
Collapse
Affiliation(s)
- João Rainha
- Centre
of Biological Engineering, University of
Minho, Braga 4710-057, Portugal
| | - Joana L. Rodrigues
- Centre
of Biological Engineering, University of
Minho, Braga 4710-057, Portugal
- LABBELS—Associate
Laboratory, Braga 4710-057, Portugal
| | - Lígia R. Rodrigues
- Centre
of Biological Engineering, University of
Minho, Braga 4710-057, Portugal
- LABBELS—Associate
Laboratory, Braga 4710-057, Portugal
| |
Collapse
|
3
|
Beganovic S, Wittmann C. Medical properties, market potential, and microbial production of golden polyketide curcumin for food, biomedical, and cosmetic applications. Curr Opin Biotechnol 2024; 87:103112. [PMID: 38518404 DOI: 10.1016/j.copbio.2024.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Curcumin, a potent plant polyketide in turmeric, has gained recognition for its outstanding health benefits, including anti-inflammatory, antioxidant, and anticancer effects. Classical turmeric farming, which is widely used to produce curcumin, is linked to deforestation, soil degradation, excessive water use, and reduced biodiversity. In recent years, the microbial synthesis of curcumin has been achieved and optimized through novel strategies, offering increased safety, improved sustainability, and the potential to revolutionize production. Here, we discuss recent breakthroughs in microbial engineering and fermentation techniques, as well as their capacity to increase the yield, purity, and cost-effectiveness of curcumin production. The utilization of microbial systems not only addresses supply chain limitations but also helps meet the growing demand for curcumin in various industries, including pharmaceuticals, foods, and cosmetics.
Collapse
Affiliation(s)
- Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Germany
| | | |
Collapse
|
4
|
Utomo JC, Barrell HB, Kumar R, Smith J, Brant MS, De la Hoz Siegler H, Ro DK. Reconstructing curcumin biosynthesis in yeast reveals the implication of caffeoyl-shikimate esterase in phenylpropanoid metabolic flux. Metab Eng 2024; 82:286-296. [PMID: 38387678 DOI: 10.1016/j.ymben.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Curcumin is a polyphenolic natural product from the roots of turmeric (Curcuma longa). It has been a popular coloring and flavoring agent in food industries with known health benefits. The conventional phenylpropanoid pathway is known to proceed from phenylalanine via p-coumaroyl-CoA intermediate. Although hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) plays a key catalysis in the biosynthesis of phenylpropanoid products at the downstream of p-coumaric acid, a recent discovery of caffeoyl-shikimate esterase (CSE) showed that an alternative pathway exists. Here, the biosynthetic efficiency of the conventional and the alternative pathway in producing feruloyl-CoA was examined using curcumin production in yeast. A novel modular multiplex genome-edit (MMG)-CRISPR platform was developed to facilitate rapid integrations of up to eight genes into the yeast genome in two steps. Using this MMG-CRISPR platform and metabolic engineering strategies, the alternative CSE phenylpropanoid pathway consistently showed higher titers (2-19 folds) of curcumin production than the conventional pathway in engineered yeast strains. In shake flask cultures using a synthetic minimal medium without phenylalanine, the curcumin production titer reached up to 1.5 mg/L, which is three orders of magnitude (∼4800-fold) improvement over non-engineered base strain. This is the first demonstration of de novo curcumin biosynthesis in yeast. Our work shows the critical role of CSE in improving the metabolic flux in yeast towards the phenylpropanoid biosynthetic pathway. In addition, we showcased the convenience and reliability of modular multiplex CRISPR/Cas9 genome editing in constructing complex synthetic pathways in yeast.
Collapse
Affiliation(s)
- Joseph Christian Utomo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hailey Brynn Barrell
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Rahul Kumar
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Jessica Smith
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Maximilian Simon Brant
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
5
|
Chen J, Wang W, Wang L, Wang H, Hu M, Zhou J, Du G, Zeng W. Efficient De Novo Biosynthesis of Curcumin in Escherichia coli by Optimizing Pathway Modules and Increasing the Malonyl-CoA Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:566-576. [PMID: 38154088 DOI: 10.1021/acs.jafc.3c07379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Curcumin is a natural phenylpropanoid compound with various biological activities and is widely used in food and pharmaceuticals. A de novo curcumin biosynthetic pathway was constructed in Escherichia coli BL21(DE3). Optimization of the curcumin biosynthesis module achieved a curcumin titer of 26.8 ± 0.6 mg/L. Regulating the metabolic fluxes of the β-oxidation pathway and fatty acid elongation cycle and blocking the endogenous malonyl-CoA consumption pathway increased the titer to 113.6 ± 7.1 mg/L. Knockout of endogenous curcumin reductase (curA) and intermediate product detoxification by heterologous expression of the solvent-resistant pump (srpB) increased the titer to 137.5 ± 3.0 mg/L. A 5 L pilot-scale fermentation, using a three-stage pH alternation strategy, increased the titer to 696.2 ± 20.9 mg/L, 178.5-fold higher than the highest curcumin titer from de novo biosynthesis previously reported, thereby laying the foundation for efficient biosynthesis of curcumin and its derivatives.
Collapse
Affiliation(s)
- Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - MingLong Hu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Yang YH, Song HW, Lai JY, Li RF, Wang ZC, Jia HC, Yang Y. A Rehmannia glutinosa caffeic acid O-methyltransferase functional identification: Reconstitution of the ferulic acid biosynthetic pathway in Saccharomyces cerevisiae using Rehmannia glutinosa enzymes. Biotechnol J 2023; 18:e2300064. [PMID: 37522376 DOI: 10.1002/biot.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Rehmannia glutinosa produces many pharmacological natural components, including ferulic acid (FA) which is also an important precursor of some medicinal ingredients, so it is very significant to explore FA biosynthesis for enhancing the production of FA and its derivations. This study aimed to determine and reconstitute the R. glutinosa FA biosynthetic pathway from phenylalanine (Phe) metabolism in Saccharomyces cerevisiae as a safe host for the biosynthesis of plant-derived products. Although plant caffeic acid O-methyltransferases (COMTs) are thought to be a vital catalytic enzyme in FA biosynthesis pathways, to date, none of the RgCOMTs in R. glutinosa has been characterized. This study identified an RgCOMT and revealed its protein enzymatic activity for FA production in vitro. The RgCOMT overexpression in R. glutinosa significantly increased FA yield, suggesting that its molecular function is involved in FA biosynthesis. Heterologous expression of the RgCOMT and reported R. glutinosa genes, RgPAL2 (encoding phenylalanine ammonia-lyase [PAL] protein), RgC4H (cinnamate 4-hydroxylase [C4H]), and RgC3H (p-coumarate-3-hydroxylase [C3H]), in S. cerevisiae confirmed their catalytic abilities in the reaction steps for the FA biosynthesis. Importantly, in this study, these genes were introduced into S. cerevisiae and coexpressed to reconstitute the R. glutinosa FA biosynthetic pathway from Phe metabolism, thus obtaining an engineered strain that produced an FA titer of 148.34 mg L-1 . This study identified the functional activity of RgCOMT and clarified the R. glutinosa FA biosynthesis pathway in S. cerevisiae, paving the way for the efficient production of FA and its derivatives.
Collapse
Affiliation(s)
- Yan Hui Yang
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Hao Wei Song
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Jun Yi Lai
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Rui Fang Li
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Zi Chao Wang
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Hui Cong Jia
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Yong Yang
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| |
Collapse
|
7
|
Zhu L, Xue Y, Feng J, Wang Y, Lu Y, Chen X. Tetrahydrocurcumin as a stable and highly active curcumin derivative: A review of synthesis, bioconversion, detection and application. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Rodrigues JL, Gomes D, Rodrigues LR. Challenges in the Heterologous Production of Furanocoumarins in Escherichia coli. Molecules 2022; 27:molecules27217230. [PMID: 36364054 PMCID: PMC9656933 DOI: 10.3390/molecules27217230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Coumarins and furanocoumarins are plant secondary metabolites with known biological activities. As they are present in low amounts in plants, their heterologous production emerged as a more sustainable and efficient approach to plant extraction. Although coumarins biosynthesis has been positively established, furanocoumarin biosynthesis has been far more challenging. This study aims to evaluate if Escherichia coli could be a suitable host for furanocoumarin biosynthesis. The biosynthetic pathway for coumarins biosynthesis in E. coli was effectively constructed, leading to the production of umbelliferone, esculetin and scopoletin (128.7, 17.6, and 15.7 µM, respectively, from tyrosine). However, it was not possible to complete the pathway with the enzymes that ultimately lead to furanocoumarins production. Prenyltransferase, psoralen synthase, and marmesin synthase did not show any activity when expressed in E. coli. Several strategies were tested to improve the enzymes solubility and activity with no success, including removing potential N-terminal transit peptides and expression of cytochrome P450 reductases, chaperones and/or enzymes to increase dimethylallylpyrophosphate availability. Considering the results herein obtained, E. coli does not seem to be an appropriate host to express these enzymes. However, new alternative microbial enzymes may be a suitable option for reconstituting the furanocoumarins pathway in E. coli. Nevertheless, until further microbial enzymes are identified, Saccharomyces cerevisiae may be considered a preferred host as it has already been proven to successfully express some of these plant enzymes.
Collapse
Affiliation(s)
- Joana L. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +35-125-360-4423
| | - Daniela Gomes
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Lígia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|