1
|
Wang Z, Hsieh A, Rose P, Zhou G, Battle S, Raymond K, Haley M, Cote A, Bennun S, Ahuja S. Raman spectroscopy for monitoring free sulfhydryl formation during monoclonal antibody manufacturing. J Pharm Biomed Anal 2024; 252:116530. [PMID: 39447421 DOI: 10.1016/j.jpba.2024.116530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
During production, harvested cell culture fluid (HCCF) can degrade due to reductases breaking interchain disulfide bonds, forming low molecular weight (LMW) impurities that contain free sulfhydryl and high molecular weight (HMW) impurities through disulfide shuffling. Thus, detecting and quantifying the free sulfhydryl increase in HCCF is critical. Herein, Raman spectroscopy is implemented as a process analytical technology, and multivariate data analysis is applied to characterize and quantify sulfhydryl formation in HCCF with disulfide-containing indicator molecules. Raman spectra qualitatively probe the presence or absence of disulfide bond breakage in antibodies, consistent with offline non-reduced capillary electrophoresis sodium dodecyl sulfate results. Between two antibodies studied, mAb A was identified for a higher risk of antibody reduction where sulfhydryl formation was observed within 16 h, while mAb B did not show similar concerns even after 1 week. The offline measurement of redox potential is below -100 mV in HCCF for mAb A, while the stable mAb B HCCF shows redox potentials above +20 mV. A multivariate partial least squares (PLS) model for quantification is developed using an offline free sulfhydryl assay, applying Raman spectra to predict free sulfhydryl concentration with high accuracy (R2 > 0.98) and expected mean error of 0.677 mM from the offline Ellman's Assay. This work confirms the use of Raman PAT to monitor real-time disulfide reduction, enabling improvements to process understanding and product quality.
Collapse
Affiliation(s)
- Zhenshu Wang
- Biologics' Process Research & Development (BPR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA.
| | - Andrew Hsieh
- Biologics' Process Research & Development (BPR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Patricia Rose
- Biologics' Process Research & Development (BPR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - George Zhou
- Global Vaccines & Biologics Commercialization (GVBC), MMD, Merck & Co., Inc., Rahway, NJ, USA
| | - Sonja Battle
- Analytical Research & Development (AR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Kelly Raymond
- Analytical Research & Development (AR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Monica Haley
- Analytical Research & Development (AR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Aaron Cote
- Biologics' Process Research & Development (BPR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Sandra Bennun
- Biologics' Process Research & Development (BPR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Sanjeev Ahuja
- Biologics' Process Research & Development (BPR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
2
|
Ou J, Cui W, Zhao Y, Tang Y, Williams A, Wasalathanthri D, Xu J, Lee J, Borys MC, Khetan A. Use of spectroscopic process analytical technology for rapid quality evaluation during preparation of CHO cell culture media. Biotechnol Prog 2024; 40:e3477. [PMID: 38699906 DOI: 10.1002/btpr.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Media preparation parameters contribute significantly to media quality, cell culture performance, productivity, and product quality. Establishing proper media preparation procedures is critical for ensuring a robust CHO cell culture process. Process analytical technology (PAT) enables unique ways to quantify assessments and improve media quality. Here, cell culture media were prepared under a wide range of temperatures (40-80°C) and pH (7.6-10.0). Media quality profiles were compared using three real-time PATs: Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and excitation-emission matrix (EEM) spectroscopy. FTIR and Raman spectroscopies identified shifts in media quality under high preparation temperature (80°C) and at differing preparation pH which negatively impacted monoclonal antibody (mAb) production. In fed-batch processes for production of three different mAbs, viable cell density (VCD) and cell viability were mostly unaffected under all media preparation temperatures, while titer and cell specific productivity of mAb decreased when cultured in basal and feed media prepared at 80°C. High feed preparation pH alone was tolerated but cell growth and productivity profiles deviated from the control condition. Further, charge variants (main, acidic, basic species) and glycosylation (G0F, afucosylation, and high mannose) were examined. Statistically significant differences were observed for one or more of these quality attributes with any shifts in media preparation. In this study, we demonstrated strong associations between media preparation conditions and cell growth, productivity, and product quality. The rapid evaluation of media by PAT implementation enabled more comprehensive understanding of different parameters on media quality and consequential effects on CHO cell culture.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Wanyue Cui
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yuxiang Zhao
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Alexander Williams
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Dhanuka Wasalathanthri
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
3
|
Xu T, Tong L, Zhang Z, Zhou H, Zheng P. Glycosylation in Drosophila S2 cells. Biotechnol Bioeng 2024. [PMID: 39140464 DOI: 10.1002/bit.28827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
In recent years, there has been a remarkable surge in the approval of therapeutic protein drugs, particularly recombinant glycoproteins. Drosophila melanogaster S2 cells have become an appealing platform for the production of recombinant proteins due to their simplicity and low cost in cell culture. However, a significant limitation associated with using the S2 cell expression system is its propensity to introduce simple paucimannosidic glycosylation structures, which differs from that in the mammalian expression system. It is well established that the glycosylation patterns of glycoproteins have a profound impact on the physicochemical properties, bioactivity, and immunogenicity. Therefore, understanding the mechanisms behind these glycosylation modifications and implementing measures to address it has become a subject of considerable interest. This review aims to comprehensively summarize recent advancements in glycosylation modification in S2 cells, with a particular focus on comparing the glycosylation patterns among S2, other insect cells, and mammalian cells, as well as developing strategies for altering the glycosylation patterns of recombinant glycoproteins.
Collapse
Affiliation(s)
- Tingting Xu
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Lixiang Tong
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Zhifu Zhang
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Hairong Zhou
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Peilin Zheng
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
4
|
Harada M, Kato Y, Tsuji C, Higuchi T, Minami A, Furomitsu S, Arakawa A. Acidic Derivatization of Thiols Using Diethyl 2-Methylenemalonate: Thiol-Michael Addition Click Reaction for Simultaneous Analysis of Cysteine and Cystine in Culture Media Using LC-MS/MS. Anal Chem 2024; 96:6459-6466. [PMID: 38592893 DOI: 10.1021/acs.analchem.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cysteine (Cys) and its oxidized form, cystine (Cys2), play crucial roles in biological systems and have considerable applications in cell culture. However, Cys in cell culture media is easily oxidized to Cys2, leading to solubility issues. Traditional analytical methods struggle to maintain the oxidation states of Cys and Cys2 during analysis, posing a significant challenge to accurately measuring and controlling these compounds. To effectively control the Cys and Cys2 levels, a rapid and accurate analytical method is required. Here, we screened derivatizing reagents that can react with Cys even under acidic conditions to realize a novel analytical method for simultaneously determining Cys and Cys2 levels. Diethyl 2-methylenemalonate (EMM) was found to possess the desired traits. EMM, characterized by its dual electron-withdrawing attributes, allowed for a rapid reaction with Cys under acidic conditions, preserving intact information for understanding the functions of target compounds. Combined with LC-MS/MS and an internal standard, this method provided high analytical accuracy in a short analytical time of 9 min. Using the developed method, the rapid oxidation of Cys in cell culture media was observed with the headspace of the storage container considerably influencing Cys oxidation and Cys2 precipitation rates. The developed method enabled the direct and simplified analysis of Cys behavior in practical media samples and could be used in formulating new media compositions, ensuring quality assurance, and real-time analysis of Cys and Cys2 in cell culture supernatants. This novel approach holds the potential to further enhance the media performance by enabling the timely optimal addition of Cys.
Collapse
Affiliation(s)
- Masashi Harada
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Yumiko Kato
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Chihiro Tsuji
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Takuya Higuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Ayana Minami
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Shunpei Furomitsu
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Akihiro Arakawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| |
Collapse
|
5
|
Davenport M, Wang Y, Fedorov LM. Influence of the storage conditions of embryo culture media on mouse development. In Vitro Cell Dev Biol Anim 2024; 60:300-306. [PMID: 38506940 DOI: 10.1007/s11626-024-00884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
The culture of preimplantation embryos in vitro is an important method for human and mouse reproductive technology. This study aims to investigate the influence of different conditions of culture media on the preimplantation stage of mouse embryos cultured in vitro, and monitor the post-implantation development of new mice after embryo transfer to surrogate females. We demonstrated here that mouse embryos cultured in vitro in fresh M16, KSOM, Global, and HTF embryo culture media from one cell to the blastocyst stage and the subsequent embryo transfer to surrogate females are able to proceed through post-implantation development and, after birth, develop into healthy mice. However, culture of embryos in differently aged media shows various (often unpredictable) results. To find the optimal storage conditions of culture media, we suggest that the freezing and long-term storage of these media at - 80°C will not influence the quality of the media. To test this hypothesis, we grew embryos from one cell to blastocysts in vitro in the selected media after thawing and subsequently transferring them to surrogate females. Embryo culture in these four media after thawing does not affect preimplantation and postnatal mouse development. Thus, we have shown that storage of embryo culture media at low temperature (- 80°C) does not impact the quality of the media, and subsequently, it can be used for the culture of embryos for the full preimplantation period, the same as in fresh media.
Collapse
Affiliation(s)
- Marten Davenport
- Transgenic Mouse Models Shared Resource, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Yingming Wang
- Transgenic Mouse Models Shared Resource, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Lev M Fedorov
- Transgenic Mouse Models Shared Resource, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Zeng YJ, Hsu MK, Cai JR, Wang HY. A strategy of novel molecular hydrogen-producing antioxidative auxiliary system improves virus production in cell bioreactor. Sci Rep 2024; 14:4092. [PMID: 38374429 PMCID: PMC10876984 DOI: 10.1038/s41598-024-54847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
In the increasing demand for virus vaccines, large-scale production of safe, efficient, and economical viral antigens has become a significant challenge. High-cell-density manufacturing processes are the most commonly used to produce vaccine antigens and protein drugs. However, the cellular stress response in large-scale cell culture may directly affect host cell growth and metabolism, reducing antigen production and increasing production costs. This study provided a novel strategy of the antioxidant auxiliary system (AAS) to supply molecular hydrogen (H2) into the cell culture media via proton exchange membrane (PEM) electrolysis. Integrated with a high-density cell bioreactor, the AAS aims to alleviate cellular stress response and increase viral vaccine production. In the results, the AAS stably maintained H2 concentration in media even in the high-air exposure tiding cell bioreactor. H2 treatment was shown safe to cell culture and effectively alleviated oxidative stress. In two established virus cultures models, bovine epidemic fever virus (BEFV) and porcine circovirus virus type 2 (PCV-2), were employed to verify the efficacy of AAS. The virus yield was increased by 3.7 and 2.5 folds in BEFV and PCV-2 respectively. In conclusion, the AAS-connected bioreactor effectively alleviated cellular oxidative stress and enhanced virus production in high-density cell culture.
Collapse
Affiliation(s)
- Yu-Jing Zeng
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Min-Kung Hsu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Animal Biologics Pilot Production Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Innovative Bioproducts Technical Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Jia-Rong Cai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsian-Yu Wang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
7
|
Shi Y, Wan Y, Sun Y, Yang J, Lu Y, Xie X, Pan J, Wang H, Qu H. Exploring metabolic responses and pathway changes in CHO-K1 cells under varied aeration conditions and copper supplementations using 1 H NMR-based metabolomics. Biotechnol J 2024; 19:e2300495. [PMID: 38403407 DOI: 10.1002/biot.202300495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
The optimization of bioprocess for CHO cell culture involves careful consideration of factors such as nutrient consumption, metabolic byproduct accumulation, cell growth, and monoclonal antibody (mAb) production. Valuable insights can be obtained by understanding cellular physiology to ensure robust and efficient bioprocess. This study aims to improve our understanding of the CHO-K1 cell metabolism using 1 H NMR-based metabolomics. Initially, the variations in culture performance and metabolic profiles under varied aeration conditions and copper supplementations were thoroughly examined. Furthermore, a comprehensive metabolic pathway analysis was performed to assess the impact of these conditions on the implicated pathways. The results revealed substantial alterations in the pyruvate metabolism, histidine metabolism, as well as phenylalanine, tyrosine and tryptophan biosynthesis, which were especially evident in cultures subjected to copper deficiency conditions. Conclusively, significant metabolites governing cell growth and mAb titer were identified through orthogonal partial least square-discriminant analysis (OPLS-DA). Metabolites, including glycerol, alanine, formate, glutamate, phenylalanine, and valine, exhibited strong associations with distinct cell growth phases. Additionally, glycerol, acetate, lactate, formate, glycine, histidine, and aspartate emerged as metabolites influencing cell productivity. This study demonstrates the potential of employing 1 H NMR-based metabolomics technology in bioprocess research. It provides valuable guidance for feed medium development, feeding strategy design, bioprocess parameter adjustments, and ultimately the enhancement of cell proliferation and mAb yield.
Collapse
Affiliation(s)
- Yingting Shi
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuxiang Wan
- Hisun BioPharmaceutical Co., Ltd., Hangzhou, China
| | - Yan Sun
- Hisun BioPharmaceutical Co., Ltd., Hangzhou, China
| | - Jiayu Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuting Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xinyuan Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Wang
- Hisun BioPharmaceutical Co., Ltd., Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Xiang S, Zhang J, Yu L, Tian J, Tang W, Tang H, Xu K, Wang X, Cui Y, Ren K, Cao W, Su Y, Zhou W. Developing an ultra-intensified fed-batch cell culture process with greatly improved performance and productivity. Biotechnol Bioeng 2024; 121:696-709. [PMID: 37994547 DOI: 10.1002/bit.28605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Intensified fed-batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed-batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult-to-sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent-perfusion fed-batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity. Unlike continuous perfusion or other semi-continuous processes such as hybrid perfusion fed-batch with only early-stage perfusion, IPFB applies limited times of intermittent perfusion in the mid-to-late stage of production and still inherits bolus feedings on nonperfusion days as in a fed-batch culture. Compared to IFB, an average titer increase of ~45% was obtained in eight recombinant CHO cell lines studied. Beyond IPFB, ultra-intensified IPFB (UI-IPFB) was designed with a markedly elevated seeding density of 20-80 × 106 cell/mL, achieved through the conventional alternating tangential flow filtration (ATF) perfusion expansion followed with a cell culture concentration step using the same ATF system. With UI-IPFB, up to ~6 folds of traditional fed-batch and ~3 folds of IFB productivity were achieved. Furthermore, the application grounded in these two novel processes showed broad-based feasibility in multiple cell lines and products of interest, and was proven to be effective in cost of goods reduction and readily scalable to a larger scale in existing facilities.
Collapse
Affiliation(s)
| | | | - Le Yu
- Process Development, WuXi Biologics, Wuxi, China
| | - Jun Tian
- Process Development, WuXi Biologics, Wuxi, China
| | - Wenxiu Tang
- Process Development, WuXi Biologics, Wuxi, China
| | - Hao Tang
- Process Development, WuXi Biologics, Wuxi, China
| | - Kecui Xu
- Process Development, WuXi Biologics, Wuxi, China
| | - Xin Wang
- Process Development, WuXi Biologics, Wuxi, China
| | - Yanyan Cui
- Process Development, WuXi Biologics, Wuxi, China
| | - Kaidi Ren
- Process Development, WuXi Biologics, Wuxi, China
| | - Weijia Cao
- Process Development, WuXi Biologics, Wuxi, China
| | - Yuning Su
- Process Development, WuXi Biologics, Wuxi, China
| | - Weichang Zhou
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| |
Collapse
|
9
|
Nguyen M, Le Mignon M, Schnellbächer A, Wehsling M, Braun J, Baumgaertner J, Grabner M, Zimmer A. Mechanistic insights into the biological activity of S-Sulfocysteine in CHO cells using a multi-omics approach. Front Bioeng Biotechnol 2023; 11:1230422. [PMID: 37680342 PMCID: PMC10482334 DOI: 10.3389/fbioe.2023.1230422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
S-Sulfocysteine (SSC), a bioavailable L-cysteine derivative (Cys), is known to be taken up and metabolized in Chinese hamster ovary (CHO) cells used to produce novel therapeutic biological entities. To gain a deeper mechanistic insight into the SSC biological activity and metabolization, a multi-omics study was performed on industrially relevant CHO-K1 GS cells throughout a fed-batch process, including metabolomic and proteomic profiling combined with multivariate data and pathway analyses. Multi-layered data and enzymatical assays revealed an intracellular SSC/glutathione mixed disulfide formation and glutaredoxin-mediated reduction, releasing Cys and sulfur species. Increased Cys availability was directed towards glutathione and taurine synthesis, while other Cys catabolic pathways were likewise affected, indicating that cells strive to maintain Cys homeostasis and cellular functions.
Collapse
Affiliation(s)
- Melanie Nguyen
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | - Maria Wehsling
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | - Julian Braun
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | - Jens Baumgaertner
- Biomolecule Analytics and Proteomics, Merck KGaA, Darmstadt, Germany
| | | | - Aline Zimmer
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| |
Collapse
|
10
|
Pizzuti V, Paris F, Marrazzo P, Bonsi L, Alviano F. Mitigating Oxidative Stress in Perinatal Cells: A Critical Step toward an Optimal Therapeutic Use in Regenerative Medicine. Biomolecules 2023; 13:971. [PMID: 37371551 DOI: 10.3390/biom13060971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress (OS) occurs when the production of reactive oxygen species (ROS) is not balanced by the body's antioxidant defense system. OS can profoundly affect cellular health and function. ROS can have a profound negative impact on cells that undergo a predestined and time-regulated process of proliferation or differentiation, such as perinatal stem cells. Due to the large-scale employment of these immunotolerant stem cells in regenerative medicine, it is important to reduce OS to prevent them from losing function and increase their application in the regenerative medicine field. This goal can be achieved through a variety of strategies, such as the use of antioxidants and other compounds that can indirectly modulate the antioxidant defense system by enhancing cellular stress response pathways, including autophagy and mitochondrial function, thereby reducing ROS levels. This review aims to summarize information regarding OS mechanisms in perinatal stem cells and possible strategies for reducing their deleterious effects.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
11
|
Dai X, Liu M, Xu S, Zhao H, Li X, Bai Y, Zou Y, An Y, Fan F, Zhang J, Cai B. Metabolomics profile of plasma in acute diquat-poisoned patients using gas chromatography-mass spectrometry. Food Chem Toxicol 2023; 176:113765. [PMID: 37023971 DOI: 10.1016/j.fct.2023.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Diquat (DQ) has been confirmed to be toxic to humans and responsible for severe health impairment. While to date, very little is known about the toxicological mechanisms of DQ. Thus, investigations to discover the toxic targets and potential biomarkers of DQ poisoning are urgently needed. In this study, a metabolic profiling analysis was conducted to reveal the changes of metabolites of plasma and find out the potential biomarkers of DQ intoxication by GC-MS. First, multivariate statistical analysis demonstrated that acute DQ poisoning can lead to metabolomic changes in human plasma. Then, metabolomics studies showed that 31 of the identified metabolites were significantly altered by DQ. Pathway analysis indicated that three primarily metabolic pathways including phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and phenylalanine metabolism were affected by DQ, resulting in the perturbations of phenylalanine, tyrosine, taurine, and cysteine. Finally, the results of receiver operating characteristic analysis showed the above four metabolites could be used as reliable tools for the diagnosis and severity assessments of DQ intoxication. These data provided the theoretical basis for basic research to understand the potential mechanisms of DQ poisoning, and also identified the desirable biomarkers with great potential for clinical applications.
Collapse
Affiliation(s)
- Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Maozhu Liu
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuyun Xu
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Han Zhao
- West China Clinical Medical College, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuezhi Li
- West China Clinical Medical College, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangjuan Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuangao Zou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yunfei An
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Fan
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Xu WJ, Lin Y, Mi CL, Pang JY, Wang TY. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl Microbiol Biotechnol 2023; 107:1063-1075. [PMID: 36648523 PMCID: PMC9843118 DOI: 10.1007/s00253-022-12342-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023]
Abstract
Nearly 80% of the approved human therapeutic antibodies are produced by Chinese Hamster Ovary (CHO) cells. To achieve better cell growth and high-yield recombinant protein, fed-batch culture is typically used for recombinant protein production in CHO cells. According to the demand of nutrients consumption, feed medium containing multiple components in cell culture can affect the characteristics of cell growth and improve the yield and quality of recombinant protein. Fed-batch optimization should have a connection with comprehensive factors such as culture environmental parameters, feed composition, and feeding strategy. At present, process intensification (PI) is explored to maintain production flexible and meet forthcoming demands of biotherapeutics process. Here, CHO cell culture, feed composition in fed-batch culture, fed-batch culture environmental parameters, feeding strategies, metabolic byproducts in fed-batch culture, chemostat cultivation, and the intensified fed-batch are reviewed. KEY POINTS: • Fed-batch culture in CHO cells is reviewed. • Fed-batch has become a common technology for recombinant protein production. • Fed batch culture promotes recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Wen-Jing Xu
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Pharmacy, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Yan Lin
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Nursing, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Chun-Liu Mi
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Jing-Ying Pang
- grid.412990.70000 0004 1808 322XSchool of the First Clinical College, Xinxiang Medical University, Xinxiang, 453000 Henan China
| | - Tian-Yun Wang
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.495434.b0000 0004 1797 4346School of medicine, Xinxiang University, Xinxiang, 453003 Henan China
| |
Collapse
|