1
|
Kaplanskiy MV, Kruglov ML, Vanin AA, Tupikina EY. Dynamics of non-covalent interactions during the P-O bond cleavage reaction by ribonuclease A. Phys Chem Chem Phys 2024; 26:21061-21073. [PMID: 39054927 DOI: 10.1039/d4cp01888e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this work, an atomistic-scale investigation of the phosphodiester P-O bond cleavage reaction by the enzyme ribonuclease A was carried out using computer simulation techniques. It is shown that during the reaction the network of non-covalent interactions in the active center of the ribonuclease changes significantly, while the role of these non-covalent interactions is different: coordination of the corresponding groups, electron density transfer, and ligand holding in the active center. It is shown that the process of proton transfer from Asp121 to His119 is the first stage of this reaction; at the same time, the hydrogen bond between the phosphate ligand and the imino group of Arg39 is broken, which, although keeping the ligand in the active center, does not allow the ligand to orient itself more conveniently for subsequent proton transfers. Furthermore, the key step of this reaction occurs: proton transfer with the participation of imidazole rings His12 and His119, in which the guiding role is played by several hydrogen bonds with the participation of Phe120, and the role of an electron density carrier is played by the pnictogen bond between the oxygen of the phosphate ligand and the pyridine-like nitrogen of the imidazole ring His119, which was detected for the first time.
Collapse
Affiliation(s)
- Mark V Kaplanskiy
- Institute of Chemistry, St Petersburg State University, St Petersburg, Russia.
| | - Maxim L Kruglov
- Institute of Chemistry, St Petersburg State University, St Petersburg, Russia.
| | - Aleksandr A Vanin
- Institute of Chemistry, St Petersburg State University, St Petersburg, Russia.
| | - Elena Yu Tupikina
- Institute of Chemistry, St Petersburg State University, St Petersburg, Russia.
| |
Collapse
|
2
|
Dehghan Shasaltaneh M, Naghdi E, Moosavi-Nejad Z. Mechanistic studies on substrate inhibition and substrate activation of ribonuclease A: experimental and in silico investigation. J Biomol Struct Dyn 2024; 42:6628-6644. [PMID: 37539792 DOI: 10.1080/07391102.2023.2235618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Ribonuclease A (RNase A) is an endonuclease that plays a significant role in antimicrobial activity by the cleavage and hydrolysis of ssRNA. In this study, the interactions between RNase A and cCMP have been investigated, through molecular docking and a 200 ns molecular dynamics simulation. The enzyme kinetic properties were analyzed using saturation curve, Eadie-Hofstee, and Hill plots. The docking results indicate that the cCMP-RNase A complexes are stabilized through hydrophobic interaction, hydrogen bonding, and π-π stacking interaction. The most binding site is observed in the catalytic cleft, especially at residue His12 and His119. Enzyme-ligand docking study indicates that cCMP binds to residues located in the internal cavity of the catalytic site and shows three phases of binding modes. The analysis of MD simulations shows that RMSD, Rg, and RMSF reach equilibrium. The ΔGbinding of the cCMP-RNase A was negative (-619.673 kJ/mol), The comparison between the results pre and post MD simulation showed that ΔGbinding after MD simulation causes to more stable the structure than before simulation. Experimental methods such as saturation, Eadie-Hofstee, and Hill plots confirm theoretical data and show three phases of binding modes as well. Two significant events are demonstrated in the interaction between RNase A and cCMP: substrate activation and substrate inhibition are observed in concentrations below and above 0.8 mM, respectively, for cCMP. Choosing the appropriate concentration of cCMP is very important in investigation of ribonuclease A's catalytic behavour, especially for exploration of the effects of some drugs on biological behaviours related to ribonuclease A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Elmira Naghdi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
3
|
Yazhini A, Srinivasan N. How good are comparative models in the understanding of protein dynamics? Proteins 2020; 88:874-888. [PMID: 31999374 DOI: 10.1002/prot.25879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/04/2020] [Accepted: 01/25/2020] [Indexed: 12/27/2022]
Abstract
The 3D structure of a protein is essential to understand protein dynamics. If experimentally determined structure is unavailable, comparative models could be used to infer dynamics. However, the effectiveness of comparative models, compared to experimental structures, in inferring dynamics is not clear. To address this, we compared dynamics features of ~800 comparative models with their crystal structures using normal mode analysis. Average similarity in magnitude, direction, and correlation of residue motions is >0.8 (where value 1 is identical) indicating that the dynamics of models and crystal structures are highly similar. Accuracy of 3D structure and dynamics is significantly higher for models built on multiple and/or high sequence identity templates (>40%). Three-dimensional (3D) structure and residue fluctuations of models are closer to that of crystal structures than to templates (TM score 0.9 vs 0.7 and square inner product 0.92 vs 0.88). Furthermore, long-range molecular dynamics simulations on comparative models of RNase 1 and Angiogenin showed significant differences in the conformational sampling of conserved active-site residues that characterize differences in their activity levels. Similar analyses on two EGFR kinase variant models highlight the effect of mutations on the functional state-specific αC helix motions and these results corroborate with the previous experimental observations. Thus, our study adds confidence to the use of comparative models in understanding protein dynamics.
Collapse
Affiliation(s)
- Arangasamy Yazhini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
4
|
Prats-Ejarque G, Lu L, Salazar VA, Moussaoui M, Boix E. Evolutionary Trends in RNA Base Selectivity Within the RNase A Superfamily. Front Pharmacol 2019; 10:1170. [PMID: 31649540 PMCID: PMC6794472 DOI: 10.3389/fphar.2019.01170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in the pharmaceutical industry to design novel tailored drugs for RNA targeting. The vertebrate-specific RNase A superfamily is nowadays one of the best characterized family of enzymes and comprises proteins involved in host defense with specific cytotoxic and immune-modulatory properties. We observe within the family a structural variability at the substrate-binding site associated to a diversification of biological properties. In this work, we have analyzed the enzyme specificity at the secondary base binding site. Towards this end, we have performed a kinetic characterization of the canonical RNase types together with a molecular dynamic simulation of selected representative family members. The RNases' catalytic activity and binding interactions have been compared using UpA, UpG and UpI dinucleotides. Our results highlight an evolutionary trend from lower to higher order vertebrates towards an enhanced discrimination power of selectivity for adenine respect to guanine at the secondary base binding site (B2). Interestingly, the shift from guanine to adenine preference is achieved in all the studied family members by equivalent residues through distinct interaction modes. We can identify specific polar and charged side chains that selectively interact with donor or acceptor purine groups. Overall, we observe selective bidentate polar and electrostatic interactions: Asn to N1/N6 and N6/N7 adenine groups in mammals versus Glu/Asp and Arg to N1/N2, N1/O6 and O6/N7 guanine groups in non-mammals. In addition, kinetic and molecular dynamics comparative results on UpG versus UpI emphasize the main contribution of Glu/Asp interactions to N1/N2 group for guanine selectivity in lower order vertebrates. A close inspection at the B2 binding pocket also highlights the principal contribution of the protein ß6 and L4 loop regions. Significant differences in the orientation and extension of the L4 loop could explain how the same residues can participate in alternative binding modes. The analysis suggests that within the RNase A superfamily an evolution pressure has taken place at the B2 secondary binding site to provide novel substrate-recognition patterns. We are confident that a better knowledge of the enzymes' nucleotide recognition pattern would contribute to identify their physiological substrate and eventually design applied therapies to modulate their biological functions.
Collapse
Affiliation(s)
- Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Fagagnini A, Montioli R, Caloiu A, Ribó M, Laurents DV, Gotte G. Extensive deamidation of RNase A inhibits its oligomerization through 3D domain swapping. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:76-87. [PMID: 27783927 DOI: 10.1016/j.bbapap.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/27/2022]
Abstract
Bovine pancreatic ribonuclease A (RNase A) is the monomeric prototype of the so-called secretory 'pancreatic-type' RNase super-family. Like the naturally domain-swapped dimeric bovine seminal variant, BS-RNase, and its glycosylated RNase B isoform, RNase A forms N- and C-terminal 3D domain-swapped oligomers after lyophilization from acid solutions, or if subjected to thermal denaturation at high protein concentration. All mentioned RNases can undergo deamidation at Asn67, forming Asp or isoAsp derivatives that modify the protein net charge and consequently its enzymatic activity. In addition, deamidation slightly affects RNase B self-association through the 3D domain swapping (3D-DS) mechanism. We report here the influence of extensive deamidation on RNase A tendency to oligomerize through 3D-DS. In particular, deamidation of Asn67 alone slightly decreases the propensity of the protein to oligomerize, with the Asp derivative being less affected than the isoAsp one. Contrarily, the additional Asp and/or isoAsp conversion of residues other than N67 almost nullifies RNase A oligomerization capability. In addition, Gln deamidation, although less kinetically favorable, may affect RNase A self-association. Using 2D and 3D NMR we identified the Asn/Gln residues most prone to undergo deamidation. Together with CD spectroscopy, NMR also indicates that poly-deamidated RNase A generally maintains its native tertiary structure. Again, we investigated in silico the effect of the residues undergoing deamidation on RNase A dimers structures. Finally, the effect of deamidation on RNase A oligomerization is discussed in comparison with studies on deamidation-prone proteins involved in amyloid formation.
Collapse
Affiliation(s)
- Andrea Fagagnini
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Andra Caloiu
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, 17071, y Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Douglas V Laurents
- Instituto de Quimica Fisica "Rocasolano" (C.S.I.C.), Serrano 119, E-28006 Madrid, Spain
| | - Giovanni Gotte
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
6
|
Barone D, Balasco N, Autiero I, Vitagliano L. The dynamic properties of the Hepatitis C Virus E2 envelope protein unraveled by molecular dynamics. J Biomol Struct Dyn 2016; 35:805-816. [PMID: 26973093 DOI: 10.1080/07391102.2016.1162198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hepatitis C Virus (HCV) is one of the most persistent human viruses. Although effective therapeutic approaches have been recently discovered, their use is limited by the elevated costs. Therefore, the development of alternative/complementary strategies is an urgent need. The E2 glycoprotein, the most immunogenic HCV protein, and its variants represent natural candidates to achieve this goal. Here we report an extensive molecular dynamics (MD) analysis of the intrinsic properties of E2. Our data provide interesting clues on the global and local intrinsic dynamic features of the protein. Present MD data clearly indicate that E2 combines a flexible structure with a network of covalent bonds. Moreover, the analysis of the two most important antigenic regions of the protein provides some interesting insights into their intrinsic structural and dynamic properties. Our data indicate that a fluctuating β-hairpin represents a populated state by the region E2412-423. Interestingly, the analysis of the epitope E2427-446 conformation, that undergoes a remarkable rearrangement in the simulation, has significant similarities with the structure that the E2430-442 fragment adopts in complex with a neutralizing antibody. Present data also suggest that the strict conservation of Gly436 in E2 protein of different HCV genotypes is likely dictated by structural restraints. Moreover, the analysis of the E2412-423 flexibility provides insights into the mechanisms that some antibodies adopt to anchor Trp437 that is fully buried in E2. Finally, the present investigation suggests that MD simulations should systematically complement crystallographic studies on flexible proteins that are studied in combination with antibodies.
Collapse
Affiliation(s)
- Daniela Barone
- a Institute of Biostructures and Bioimaging, C.N.R. , Naples I-80134 , Italy.,b Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche , Seconda Università di Napoli , Caserta 81100 , Italy
| | - Nicole Balasco
- a Institute of Biostructures and Bioimaging, C.N.R. , Naples I-80134 , Italy.,b Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche , Seconda Università di Napoli , Caserta 81100 , Italy
| | - Ida Autiero
- a Institute of Biostructures and Bioimaging, C.N.R. , Naples I-80134 , Italy
| | - Luigi Vitagliano
- a Institute of Biostructures and Bioimaging, C.N.R. , Naples I-80134 , Italy
| |
Collapse
|
7
|
Gagné D, French RL, Narayanan C, Simonović M, Agarwal PK, Doucet N. Perturbation of the Conformational Dynamics of an Active-Site Loop Alters Enzyme Activity. Structure 2015; 23:2256-2266. [PMID: 26655472 DOI: 10.1016/j.str.2015.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 01/28/2023]
Abstract
The role of internal dynamics in enzyme function is highly debated. Specifically, how small changes in structure far away from the reaction site alter protein dynamics and overall enzyme mechanisms is of wide interest in protein engineering. Using RNase A as a model, we demonstrate that elimination of a single methyl group located >10 Å away from the reaction site significantly alters conformational integrity and binding properties of the enzyme. This A109G mutation does not perturb structure or thermodynamic stability, both in the apo and ligand-bound states. However, significant enhancement in conformational dynamics was observed for the bound variant, as probed over nano- to millisecond timescales, resulting in major ligand repositioning. These results illustrate the large effects caused by small changes in structure on long-range conformational dynamics and ligand specificities within proteins, further supporting the importance of preserving wild-type dynamics in enzyme systems that rely on flexibility for function.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Rachel L French
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland, Chicago, IL 60607, USA
| | - Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland, Chicago, IL 60607, USA
| | - Pratul K Agarwal
- Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA; Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, 1045 Avenue de la Médecine, Université Laval, QC G1V 0A6, Canada; GRASP, the Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
8
|
Cullin 3 Recognition Is Not a Universal Property among KCTD Proteins. PLoS One 2015; 10:e0126808. [PMID: 25974686 PMCID: PMC4431850 DOI: 10.1371/journal.pone.0126808] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Cullin 3 (Cul3) recognition by BTB domains is a key process in protein ubiquitination. Among Cul3 binders, a great attention is currently devoted to KCTD proteins, which are implicated in fundamental biological processes. On the basis of the high similarity of BTB domains of these proteins, it has been suggested that the ability to bind Cul3 could be a general property among all KCTDs. In order to gain new insights into KCTD functionality, we here evaluated and/or quantified the binding of Cul3 to the BTB of KCTD proteins, which are known to be involved either in cullin-independent (KCTD12 and KCTD15) or in cullin-mediated (KCTD6 and KCTD11) activities. Our data indicate that KCTD6BTB and KCTD11BTB bind Cul3 with high affinity forming stable complexes with 4:4 stoichiometries. Conversely, KCTD12BTB and KCTD15BTB do not interact with Cul3, despite the high level of sequence identity with the BTB domains of cullin binding KCTDs. Intriguingly, comparative sequence analyses indicate that the capability of KCTD proteins to recognize Cul3 has been lost more than once in distinct events along the evolution. Present findings also provide interesting clues on the structural determinants of Cul3-KCTD recognition. Indeed, the characterization of a chimeric variant of KCTD11 demonstrates that the swapping of α2β3 loop between KCTD11BTB and KCTD12BTB is sufficient to abolish the ability of KCTD11BTB to bind Cul3. Finally, present findings, along with previous literature data, provide a virtually complete coverage of Cul3 binding ability of the members of the entire KCTD family.
Collapse
|
9
|
de Paola I, Pirone L, Palmieri M, Balasco N, Esposito L, Russo L, Mazzà D, Di Marcotullio L, Di Gaetano S, Malgieri G, Vitagliano L, Pedone E, Zaccaro L. Cullin3-BTB interface: a novel target for stapled peptides. PLoS One 2015; 10:e0121149. [PMID: 25848797 PMCID: PMC4388676 DOI: 10.1371/journal.pone.0121149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022] Open
Abstract
Cullin3 (Cul3), a key factor of protein ubiquitination, is able to interact with dozens of different proteins containing a BTB (Bric-a-brac, Tramtrack and Broad Complex) domain. We here targeted the Cul3–BTB interface by using the intriguing approach of stabilizing the α-helical conformation of Cul3-based peptides through the “stapling” with a hydrocarbon cross-linker. In particular, by combining theoretical and experimental techniques, we designed and characterized stapled Cul3-based peptides embedding the helix 2 of the protein (residues 49–68). Intriguingly, CD and NMR experiments demonstrate that these stapled peptides were able to adopt the helical structure that the fragment assumes in the parent protein. We also show that some of these peptides were able to bind to the BTB of the tetrameric KCTD11, a substrate adaptor involved in HDAC1 degradation, with high affinity (~ 300–600 nM). Cul3-derived staple peptides are also able to bind the BTB of the pentameric KCTD5. Interestingly, the affinity of these peptides is of the same order of magnitude of that reported for the interaction of full-length Cul3 with some BTB containing proteins. Moreover, present data indicate that stapling endows these peptides with an increased serum stability. Altogether, these findings indicate that the designed stapled peptides can efficiently mimic protein-protein interactions and are potentially able to modulate fundamental biological processes involving Cul3.
Collapse
Affiliation(s)
- Ivan de Paola
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
| | | | | | - Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Second University of Napoli, Caserta, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
| | | | - Daniela Mazzà
- Department of Molecular Medicine, La Sapienza University, Roma, Italy
| | | | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
| | | | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
- * E-mail: (EP); (LZ)
| | - Laura Zaccaro
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), Napoli, Italy
- * E-mail: (EP); (LZ)
| |
Collapse
|
10
|
Balasco N, Barone D, Vitagliano L. Structural conversion of the transformer protein RfaH: new insights derived from protein structure prediction and molecular dynamics simulations. J Biomol Struct Dyn 2015; 33:2173-9. [DOI: 10.1080/07391102.2014.994188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R. , Via Mezzocannone 16, Naples I 80134, Italy
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università di Napoli , Caserta 81100, Italy
| | - Daniela Barone
- Institute of Biostructures and Bioimaging, C.N.R. , Via Mezzocannone 16, Naples I 80134, Italy
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università di Napoli , Caserta 81100, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R. , Via Mezzocannone 16, Naples I 80134, Italy
| |
Collapse
|
11
|
Wang L, Zeng R, Pang X, Gu Q, Tan W. The mechanisms of flavonoids inhibiting conformational transition of amyloid-β42monomer: a comparative molecular dynamics simulation study. RSC Adv 2015. [DOI: 10.1039/c5ra12328c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Flavonoids can bind Aβ42to inhibit the aggregation of Aβ42monomer.
Collapse
Affiliation(s)
- Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Ranran Zeng
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Xiaoqian Pang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Qiong Gu
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Wen Tan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| |
Collapse
|
12
|
Liu J, Yu G, Zhou J. Ribonuclease A adsorption onto charged self-assembled monolayers: A multiscale simulation study. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Molecular recognition of Cullin3 by KCTDs: insights from experimental and computational investigations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1289-98. [PMID: 24747150 DOI: 10.1016/j.bbapap.2014.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/26/2014] [Accepted: 04/09/2014] [Indexed: 02/08/2023]
Abstract
Recent investigations have highlighted a key role of the proteins of the KCTD (K-potassium channel tetramerization domain containing proteins) family in several fundamental biological processes. Despite the growing importance of KCTDs, our current understanding of their biophysical and structural properties is very limited. Biochemical characterizations of these proteins have shown that most of them act as substrate adaptor in E3 ligases during protein ubiquitination. Here we present a characterization of the KCTD5-Cullin3 interactions which are mediated by the KCTD5 BTB domain. Isothermal titration calorimetry experiments reveal that KCTD5 avidly binds the Cullin3 (Cul3). The complex presents a 5:5 stoichiometry and a dissociation constant of 59 nM. Molecular modeling and molecular dynamics simulations clearly indicate that the two proteins form a stable (KCTD5-Cul3)(5) pinwheel-shaped heterodecamer in which two distinct KCTD5 subunits cooperate in the binding of each cullin chain. Molecular dynamics simulations indicate that different types of interactions contribute to the stability of the assembly. Interestingly, residues involved in Cul3 recognitions are conserved in the KCTD5 orthologs and paralogs implicated in important biological processes. These residues are also rather well preserved in most of the other KCTD proteins. By using molecular modeling techniques, the entire ubiquitination system including the E3 ligase, the E2 conjugating enzyme and ubiquitin was generated. The analysis of the molecular architecture of this complex machinery provides insights into the ubiquitination processes which involve E3 ligases with a high structural complexity.
Collapse
|
14
|
Messori L, Scaletti F, Massai L, Cinellu MA, Russo Krauss I, di Martino G, Vergara A, Paduano L, Merlino A. Interactions of gold-based drugs with proteins: crystal structure of the adduct formed between ribonuclease A and a cytotoxic gold(iii) compound. Metallomics 2014; 6:233-6. [DOI: 10.1039/c3mt00265a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Petruk AA, Varriale S, Coscia MR, Mazzarella L, Merlino A, Oreste U. The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer: a molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2637-45. [PMID: 23896554 DOI: 10.1016/j.bbamem.2013.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/05/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022]
Abstract
Plasma membrane lipids significantly affect assembly and activity of many signaling networks. The present work is aimed at analyzing, by molecular dynamics simulations, the structure and dynamics of the CD3 ζζ dimer in palmitoyl-oleoyl-phosphatidylcholine bilayer (POPC) and in POPC/cholesterol/sphingomyelin bilayer, which resembles the raft membrane microdomain supposed to be the site of the signal transducing machinery. Both POPC and raft-like environment produce significant alterations in structure and flexibility of the CD3 ζζ with respect to nuclear magnetic resonance (NMR) model: the dimer is more compact, its secondary structure is slightly less ordered, the arrangement of the Asp6 pair, which is important for binding to the Arg residue in the alpha chain of the T cell receptor (TCR), is stabilized by water molecules. Different interactions of charged residues with lipids at the lipid-cytoplasm boundary occur when the two environments are compared. Furthermore, in contrast to what is observed in POPC, in the raft-like environment correlated motions between transmembrane and cytoplasmic regions are observed. Altogether the data suggest that when the TCR complex resides in the raft domains, the CD3 ζζ dimer assumes a specific conformation probably necessary to the correct signal transduction.
Collapse
Affiliation(s)
- Ariel Alcides Petruk
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET), Chacabuco 461, S. M. de Tucumán, Tucumán T4000ILI, Argentina
| | | | | | | | | | | |
Collapse
|
16
|
Gagné D, Doucet N. Structural and functional importance of local and global conformational fluctuations in the RNase A superfamily. FEBS J 2013; 280:5596-607. [PMID: 23763751 DOI: 10.1111/febs.12371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 12/11/2022]
Abstract
Understanding the relationship between protein structure and flexibility is of utmost importance for deciphering the tremendous rates of reactions catalyzed by enzyme biocatalysts. It has been postulated that protein homologs have evolved similar dynamic fluctuations to promote catalytic function, a property that would presumably be encoded in their structural fold. Using one of the best-characterized enzyme systems of the past century, we explore this hypothesis by comparing the numerous and diverse flexibility reports available for a number of structural and functional homologs of the pancreatic-like RNase A superfamily. Using examples from the literature and from our own work, we cover recent and historical evidence pertaining to the highly dynamic nature of this important structural fold, as well as the presumed importance of local and global concerted motions on the ribonucleolytic function. This minireview does not pretend to cover the overwhelming RNase A literature in a comprehensive manner; rather, efforts have been made to focus on the characterization of multiple timescale motions observed in the free and/or ligand-bound structural homologs as they proceed along the reaction coordinates. Although each characterized enzyme of this architectural fold shows unique motional features on a local scale, accumulating evidence from X-ray crystallography, NMR spectroscopy and molecular dynamics simulations suggests that global dynamic fluctuations, such as the functionally relevant hinge-bending motion observed in the prototypical RNase A, are shared between homologs of the pancreatic-like RNase superfamily. These observations support the hypothesis that analogous dynamic residue clusters are evolutionarily conserved among structural and functional homologs catalyzing similar enzymatic reactions.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | | |
Collapse
|
17
|
Gagné D, Charest LA, Morin S, Kovrigin EL, Doucet N. Conservation of flexible residue clusters among structural and functional enzyme homologues. J Biol Chem 2012; 287:44289-300. [PMID: 23135272 DOI: 10.1074/jbc.m112.394866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Conformational flexibility between structural ensembles is an essential component of enzyme function. Although the broad dynamical landscape of proteins is known to promote a number of functional events on multiple time scales, it is yet unknown whether structural and functional enzyme homologues rely on the same concerted residue motions to perform their catalytic function. It is hypothesized that networks of contiguous and flexible residue motions occurring on the biologically relevant millisecond time scale evolved to promote and/or preserve optimal enzyme catalysis. In this study, we use a combination of NMR relaxation dispersion, model-free analysis, and ligand titration experiments to successfully capture and compare the role of conformational flexibility between two structural homologues of the pancreatic ribonuclease family: RNase A and eosinophil cationic protein (or RNase 3). In addition to conserving the same catalytic residues and structural fold, both homologues show similar yet functionally distinct clusters of millisecond dynamics, suggesting that conformational flexibility can be conserved among analogous protein folds displaying low sequence identity. Our work shows that the reduced conformational flexibility of eosinophil cationic protein can be dynamically and functionally reproduced in the RNase A scaffold upon creation of a chimeric hybrid between the two proteins. These results support the hypothesis that conformational flexibility is partly required for catalytic function in homologous enzyme folds, further highlighting the importance of dynamic residue sectors in the structural organization of proteins.
Collapse
Affiliation(s)
- Donald Gagné
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | | | | | | | | |
Collapse
|
18
|
Mechanism of the Bell-Shaped Profile of Ribonuclease A activity: Molecular Dynamic Approach. Protein J 2012; 31:573-9. [DOI: 10.1007/s10930-012-9435-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Upadhyay SK, Sasidhar YU. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes. J Comput Aided Mol Des 2012; 26:847-64. [PMID: 22639079 DOI: 10.1007/s10822-012-9579-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The Gal4p mediated transcriptional activation of GAL genes requires the interaction between Gal3p bound with ATP and galactose and Gal80p. Though numerous studies suggest that galactose and ATP activate Gal3p/Gal1p interaction with Gal80p, neither the mechanism of activation nor the interacting surface that binds to Gal80p is well understood. In this study we investigated the dynamics of Gal3p and Gal1p in the presence and absence of ligands ATP and galactose to understand the role played by dynamics in the function of these proteins through molecular dynamics simulation and protein-protein docking studies. We performed simulations totaling to 510 ns on both Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose. We find that, while binding of ligands ATP and galactose to Gal3p/Gal1p do not affect the global conformation of proteins, some local conformational changes around upper-lip helix including insertion domain are observed. We observed that only in the presence of ATP and galactose, Gal3p displays opening and closing motion between the two domains. And because of this motion, a binding interface, which is largely hydrophobic, opens up on the surface of Gal3p and this surface can bind to Gal80p. From our simulation studies we infer probable docking sites for Gal80p on Gal3p/Gal1p, which were further ascertained by the docking of Gal80p on to ligand bound Gal1p and Gal3p proteins, and the residues at the interface between Gal3p and Gal80p are identified. Our results correlate quite well with the existing body of literature on functional and dynamical aspects of Gal1p and Gal3p proteins.
Collapse
Affiliation(s)
- Sanjay K Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
20
|
Balsamo A, Sannino F, Merlino A, Parrilli E, Tutino ML, Mazzarella L, Vergara A. Role of the tertiary and quaternary structure in the formation of bis-histidyl adducts in cold-adapted hemoglobins. Biochimie 2012; 94:953-60. [DOI: 10.1016/j.biochi.2011.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
|
21
|
Merlino A, Vitiello G, Grimaldi M, Sica F, Busi E, Basosi R, D’Ursi AM, Fragneto G, Paduano L, D’Errico G. Destabilization of Lipid Membranes by a Peptide Derived from Glycoprotein gp36 of Feline Immunodeficiency Virus: A Combined Molecular Dynamics/Experimental Study. J Phys Chem B 2011; 116:401-12. [DOI: 10.1021/jp204781a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Antonello Merlino
- Department of Chemistry, University of Naples ‘‘Federico II’’, Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy
| | - Giuseppe Vitiello
- Department of Chemistry, University of Naples ‘‘Federico II’’, Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence, Italy
| | - Manuela Grimaldi
- Department of Pharmaceutical Science, University of Salerno, Fisciano, Italy
| | - Filomena Sica
- Department of Chemistry, University of Naples ‘‘Federico II’’, Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy
| | - Elena Busi
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence, Italy
- Department of Chemistry, University of Siena, Siena, Italy
| | - Riccardo Basosi
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence, Italy
- Department of Chemistry, University of Siena, Siena, Italy
| | - Anna Maria D’Ursi
- Department of Pharmaceutical Science, University of Salerno, Fisciano, Italy
| | | | - Luigi Paduano
- Department of Chemistry, University of Naples ‘‘Federico II’’, Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence, Italy
| | - Gerardino D’Errico
- Department of Chemistry, University of Naples ‘‘Federico II’’, Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence, Italy
| |
Collapse
|
22
|
Ji CG, Zhang JZH. Understanding the molecular mechanism of enzyme dynamics of ribonuclease A through protonation/deprotonation of HIS48. J Am Chem Soc 2011; 133:17727-37. [PMID: 21942333 DOI: 10.1021/ja206212a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulation is carried out to investigate the enzyme dynamics of RNase A with the HIS48 in three different states (HIP48 (protonated), HID48 (deprotonated), and H48A mutant). Insights derived from the current theoretical study, combined with the available experimental observations, enabled us to provide a microscopic picture for the efficient enzyme dynamics. Specifically, in the "closed" state or HIP48, the N-terminal hinge loop is intact and the enzyme remains in a relatively stable conformation which is preferred for catalytic reaction. Deprotonation of HIS48 induces the denaturing of this hinge-loop into a 3(10)-helix, causing it to break the original interaction network around the loop-1 and drive the partial unfolding of the N-terminal. The enhanced dynamic motion of the N-terminal helix facilitates the release of the catalytic product (the rate limiting step) and speeds up the overall catalytic process. The current study established that HIS49 acts as a modulator for the transformation of conformational states through the perturbing of hydrogen bond networks across loop-1, the N-terminal helix, and other residues nearby. Our study suggests that HIS48 may also serve to transport loop-1's kinetic energy to the reaction center.
Collapse
Affiliation(s)
- Chang G Ji
- State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China.
| | | |
Collapse
|
23
|
Holloway DE, Singh UP, Shogen K, Acharya KR. Crystal structure of Onconase at 1.1 Å resolution--insights into substrate binding and collective motion. FEBS J 2011; 278:4136-49. [PMID: 21895975 PMCID: PMC3397563 DOI: 10.1111/j.1742-4658.2011.08320.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Onconase® (ONC) is an amphibian member of the pancreatic ribonuclease superfamily that is selectively toxic to tumor cells. It is a much less efficient enzyme than the archetypal ribonuclease A and, in an attempt to gain further insight, we report the first atomic resolution crystal structure of ONC, determined in complex with sulfate ions at 100 K. The electron density map is of a quality sufficient to reveal significant nonplanarity in several peptide bonds. The majority of active site residues are very well defined, with the exceptions being Lys31 from the catalytic triad and Lys33 from the B1 subsite, which are relatively mobile but rigidify upon nucleotide binding. Cryocooling causes a compaction of the unit cell and the protein contained within. This is principally the result of an inward movement of one of the lobes of the enzyme (lobe 2), which also narrows the active site cleft. Binding a nucleotide in place of sulfate is associated with an approximately perpendicular movement of lobe 2 and has little further effect on the cleft width. Aspects of this deformation are present in the principal axes of anisotropy extracted from Cα atomic displacement parameters, indicating its intrinsic nature. The three lowest-frequency modes of ONC motion predicted by an anisotropic network model are compaction/expansion variations in which lobe 2 is the prime mover. Two of these have high similarity to the cryocooling response and imply that the essential ‘breathing’ motion of ribonuclease A is conserved in ONC. Instead, shifts in conformational equilibria may contribute to the reduced ribonucleolytic activity of ONC.
Collapse
Affiliation(s)
- Daniel E Holloway
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | | | | |
Collapse
|
24
|
Alakent B, Baskan S, Doruker P. Effect of ligand binding on the intraminimum dynamics of proteins. J Comput Chem 2010; 32:483-96. [PMID: 20730777 DOI: 10.1002/jcc.21636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 06/02/2010] [Accepted: 06/23/2010] [Indexed: 11/05/2022]
Abstract
Effects of ligand binding on protein dynamics are studied via molecular dynamics (MD) simulations on two different enzymes, dihydrofolate reductase (DHFR) and triosephosphate isomerase (TIM), in their unliganded (free) and liganded states. Domain motions in MD trajectories are analyzed by collectivities and rotation angles along the principal components (PCs). DHFR in the free state has well-defined domain rotations, whereas rotations are slightly damped in the binary complex with nicotinamide adenine dinucleotide phosphate (NADPH), and remarkably distorted in the presence of NADP(+) , showing that NADP(+) is solely responsible for the loss of correlation of the domains in DHFR. Although mean square fluctuations of MD simulations in the same PC subspaces are similar for different ligation states, linear stochastic time series models show that backbone flexibility along the first five PCs is decreased upon NADPH and NADP(+) binding in subpicosecond scale. This shows that mobility of the protein along the PCs is closely related with intraminimum dynamics, and alterations in ligation states may change the intraminimum dynamics significantly. Low vibrational frequencies of the alpha-carbon atoms of DHFR are determined from the time series models of a larger number of low indexed PCs, and it is found that number of modes in the lowest frequencies is reduced upon ligand binding. A similar result is obtained for TIM in the unliganded and dihydroxyacetone phosphate bound states. We suggest that stochastic time series modeling is a promising method to be used in determining subtle perturbations in protein dynamics.
Collapse
Affiliation(s)
- Burak Alakent
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | | | | |
Collapse
|
25
|
Merlino A, Vergara A, Sica F, Aschi M, Amadei A, Di Nola A, Mazzarella L. Free-Energy Profile for CO Binding to Separated Chains of Human and Trematomus newnesi Hemoglobin: Insights from Molecular Dynamics Simulations and Perturbed Matrix Method. J Phys Chem B 2010; 114:7002-8. [DOI: 10.1021/jp908525s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Alessandro Vergara
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Filomena Sica
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Massimiliano Aschi
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Andrea Amadei
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Alfredo Di Nola
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| | - Lelio Mazzarella
- Dipartimento di Chimica, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy, Dipartimento di Chimica, Ingegneria Chimica e Materiali, University of L’Aquila, Via Vetoio, I-67010, L’Aquila, Italy, Dipartimento di Scienze e Tecnologie Chimiche, University of Rome “Tor Vergata”, Via della Ricerca scientifica 1, I-00133 Roma, Italy, and Dipartimento di Chimica,
| |
Collapse
|
26
|
Moritsugu K, Njunda BM, Smith JC. Theory and Normal-Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding. J Phys Chem B 2009; 114:1479-85. [DOI: 10.1021/jp909677p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kei Moritsugu
- Center for Molecular Biophysics, University of Tennessee/Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, Research Program for Computational Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan, and Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, Heidelberg 69120, Germany
| | - Brigitte M. Njunda
- Center for Molecular Biophysics, University of Tennessee/Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, Research Program for Computational Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan, and Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, Heidelberg 69120, Germany
| | - Jeremy C. Smith
- Center for Molecular Biophysics, University of Tennessee/Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, Research Program for Computational Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan, and Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, Heidelberg 69120, Germany
| |
Collapse
|
27
|
Patel S, Sasidhar YU. A shorter peptide model from staphylococcal nuclease for the folding-unfolding equilibrium of a beta-hairpin shows that unfolded state has significant contribution from compact conformational states. J Struct Biol 2008; 164:60-74. [PMID: 18602478 DOI: 10.1016/j.jsb.2008.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
It is important to understand the conformational features of the unfolded state in equilibrium with folded state under physiological conditions. In this paper, we consider a short peptide model LMYKGQPM from staphylococcal nuclease to model the conformational equilibrium between a hairpin conformation and its unfolded state using molecular dynamics simulation under NVT conditions at 300K using GROMOS96 force field. The free energy landscape has overall funnel-like shape with hairpin conformations sampling the minima. The "unfolded" state has a higher free energy of approximately 12kJ/mol with respect to native hairpin minimum and occupies a plateau region. We find that the unfolded state has significant contributions from compact conformations. Many of these conformations have hairpin-like topology. Further, these compact conformational forms are stabilized by hydrophobic interactions. Conversion between native and non-native hairpins occurs via unfolded states. Frequent conversions between folded and unfolded hairpins are observed with single exponential kinetics. We compare our results with the emerging picture of unfolded state from both experimental and theoretical studies.
Collapse
Affiliation(s)
- Sunita Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | | |
Collapse
|
28
|
Merkley ED, Bernard B, Daggett V. Conformational changes below the Tm: molecular dynamics studies of the thermal pretransition of ribonuclease A. Biochemistry 2007; 47:880-92. [PMID: 18161991 DOI: 10.1021/bi701565b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent work suggests that some native conformations of proteins can vary with temperature. To obtain an atomic-level description of this structural and conformational variation, we have performed all-atom, explicit-solvent molecular dynamics simulations of bovine pancreatic ribonuclease A (RNase A) up to its melting temperature (Tm approximately 337 K). RNase A has a thermal pretransition near 320 K [Stelea, S. D., Pancoska, P., Benight, A. S., and Keiderling, T. A. (2001) Protein Sci. 10, 970-978]. Our simulations identify a conformational change that coincides with this pretransition. Between 310 and 320 K, there is a small but significant decrease in the number of native contacts, beta-sheet hydrogen bonding, and deviation of backbone conformation from the starting structure, and an increase in the number of nonnative contacts. Native contacts are lost in beta-sheet regions and in alpha1, partially due to movement of alpha1 away from the beta-sheet core. At 330 and 340 K, a nonnative helical segment of residues 15-20 forms, corresponding to a helix observed in the N-terminal domain-swapped dimer [Liu, Y. S., Hart, P. J., Schulnegger, M. P., and Eisenberg, D. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 3437-3432]. The conformations observed at the higher temperatures possess nativelike topology and overall conformation, with many native contacts, but they have a disrupted active site. We propose that these conformations may represent the native state at elevated temperature, or the N' state. These simulations show that subtle, functionally important changes in protein conformation can occur below the Tm.
Collapse
Affiliation(s)
- Eric D Merkley
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-5061, USA
| | | | | |
Collapse
|
29
|
Patel S, Sasidhar YU. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease. J Pept Sci 2007; 13:679-92. [PMID: 17787022 DOI: 10.1002/psc.907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease.
Collapse
Affiliation(s)
- Sunita Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
30
|
Merlino A, Sica F, Mazzarella L. Approximate Values for Force Constant and Wave Number Associated with a Low-Frequency Concerted Motion in Proteins Can Be Evaluated by a Comparison of X-ray Structures. J Phys Chem B 2007; 111:5483-6. [PMID: 17429995 DOI: 10.1021/jp071399h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Low-frequency internal motions in protein molecules play a key role in biological functions. A direct relationship between low-frequency motions and enzymatic activity has been suggested for bovine pancreatic ribonuclease (RNase A). The flexibility-function relationship in this enzyme has been attributed to a subtle and concerted breathing motion of the beta-sheet regions occurring upon substrate binding and release. Here, we calculate an approximate value for the force constant and the wave number of the low-frequency beta-sheet breathing motion of RNase A, by using the Boltzmann hypothesis on a set of data derived from a simple conventional structural superimposition of an unusual large number of X-ray structures available for the protein. The results agree with previous observations and with theoretical predictions on the basis of normal-mode analysis. To the best of our knowledge, this is the first example in which the wave number and the force constant of a low-frequency concerted motion in a protein are directly derived from X-ray structures.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico I", Via Cynthia, 80126 Napoli, Italy
| | | | | |
Collapse
|
31
|
Merlino A, Mazzarella L, Carannante A, Di Fiore A, Di Donato A, Notomista E, Sica F. The Importance of Dynamic Effects on the Enzyme Activity. J Biol Chem 2005; 280:17953-60. [PMID: 15728177 DOI: 10.1074/jbc.m501339200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Onconase (ONC), a member of the RNase A superfamily extracted from oocytes of Rana pipiens, is an effective cancer killer. It is currently used in treatment of various forms of cancer. ONC antitumor properties depend on its ribonucleolytic activity that is low in comparison with other members of the superfamily. The most damaging side effect from Onconase treatment is renal toxicity, which seems to be caused by the unusual stability of the enzyme. Therefore, mutants with reduced thermal stability and/or increased catalytic activity may have significant implications for human cancer chemotherapy. In this context, we have determined the crystal structures of two Onconase mutants (M23L-ONC and C87S,des103-104-ONC) and performed molecular dynamic simulations of ONC and C87S,des103-104-ONC with the aim of explaining on structural grounds the modifications of the activity and thermal stability of the mutants. The results also provide the molecular bases to explain the lower catalytic activity of Onconase compared with RNase A and the unusually high thermal stability of the amphibian enzyme.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli "Federico II," Via Cynthia, 80126 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Borovykh IV, Gast P, Dzuba SA. “Glass Transition” near 200 K in the Bacterial Photosynthetic Reaction Center Protein Detected by Studying the Distances in the Transient P+QA- Radical Pair. J Phys Chem B 2005; 109:7535-9. [PMID: 16851865 DOI: 10.1021/jp0451750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient radical pair P(+)Q(A)(-) in the photosynthetic reaction center from Rhodobacter sphaeroides R26 was studied over a wide temperature range using out-of-phase electron spin-echo envelope modulation (ESEEM) spectroscopy. This method is sensitive to the magnetic dipole-dipole interaction between the two electron spins of the pair and allows precise determination of the distance in the pair P(+)Q(A)(-). The out-of-phase data were complemented by normal in-phase ESEEM spectra from the two stable radicals of P(+) and Q(A)(-). The results seem to indicate that the radical pair undergoes a noticeable molecular motion around 200 K that may be characterized by a change in the distance in the pair by approximately 0.3 nm. As the two cofactors, P(+) and Q(A)(-), are held in a well-defined relative position by the reaction center protein, this means that the protein becomes flexible at 200 K. This effect may be ascribed to a dynamic glass transition around 200 K. The relation with the temperature dependence of the back reaction of P(+)Q(A)(-) is discussed.
Collapse
Affiliation(s)
- Igor V Borovykh
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
33
|
Merlino A, Ceruso MA, Vitagliano L, Mazzarella L. Open interface and large quaternary structure movements in 3D domain swapped proteins: insights from molecular dynamics simulations of the C-terminal swapped dimer of ribonuclease A. Biophys J 2004; 88:2003-12. [PMID: 15596505 PMCID: PMC1305252 DOI: 10.1529/biophysj.104.048611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine pancreatic ribonuclease (RNase A) forms two three-dimensional (3D) domain swapped dimers. Crystallographic investigations have revealed that these dimers display completely different quaternary structures: one dimer (N-dimer), which presents the swapping of the N-terminal helix, is characterized by a compact structure, whereas the other (C-dimer), which is stabilized by the exchange of the C-terminal end, shows a rather loose assembly of the two subunits. The dynamic properties of monomeric RNase A and of the N-dimer have been extensively characterized. Here, we report a molecular dynamics investigation carried out on the C-dimer. This computational experiment indicates that the quaternary structure of the C-dimer undergoes large fluctuations. These motions do not perturb the proper folding of the two subunits, which retain the dynamic properties of RNase A and the N-dimer. Indeed, the individual subunits of the C-dimer display the breathing motion of the beta-sheet structure, which is important for the enzymatic activity of pancreatic-like ribonucleases. In contrast to what has been observed for the N-dimer, the breathing motion of the two subunits of the C-dimer is not coupled. This finding suggests that the intersubunit communications in a 3D domain swapped dimer strongly rely on the extent of the interchain interface. Furthermore, the observation that the C-dimer is endowed with a high intrinsic flexibility holds interesting implications for the specific properties of 3D domain swapped dimers. Indeed, a survey of the quaternary structures of the other 3D domain swapped dimers shows that large variations are often observed when the structural determinations are conducted in different experimental conditions. The 3D domain swapping phenomenon coupled with the high flexibility of the quaternary structure may be relevant for protein-protein recognition, and in particular for the pathological aggregations.
Collapse
Affiliation(s)
- Antonello Merlino
- Centro Interdipartimentale Ricerca e Management, Complesso Ristrutturato S. Andrea delle Dame, 80138, Naples, Italy
| | | | | | | |
Collapse
|
34
|
Merlino A, Vitagliano L, Ceruso MA, Mazzarella L. Dynamic properties of the N-terminal swapped dimer of ribonuclease A. Biophys J 2004; 86:2383-91. [PMID: 15041676 PMCID: PMC1304087 DOI: 10.1016/s0006-3495(04)74295-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine pancreatic ribonuclease (RNase A) forms two 3-dimensional domain-swapped dimers with different quaternary structures. One dimer is characterized by the swapping of the C-terminal region (C-Dimer) and presents a rather loose structure. The other dimer (N-Dimer) exhibits a very compact structure with exchange of the N-terminal helix. Here we report the results of a molecular dynamics/essential dynamics (MD/ED) study carried out on the N-Dimer. This investigation, which represents the first MD/ED analysis on a three-dimensional domain-swapped enzyme, provides information on the dynamic properties of the active site residues as well as on the global motions of the dimer subunits. In particular, the analysis of the flexibility of the active site residues agrees well with recent crystallographic and site-directed mutagenesis studies on monomeric RNase A, thus indicating that domain swapping does not affect the dynamics of the active sites. A slight but significant rearrangement of N-Dimer quaternary structure, favored by the formation of additional hydrogen bonds at subunit interface, has been observed during the MD simulation. The analysis of collective movements reveals that each subunit of the dimer retains the functional breathing motion observed for RNase A. Interestingly, the breathing motion of the two subunits is dynamically coupled, as they open and close in phase. These correlated motions indicate the presence of active site intercommunications in this dimer. On these bases, we propose a speculative mechanism that may explain negative cooperativity in systems preserving structural symmetry during the allosteric transitions.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Fisciano, Italy
| | | | | | | |
Collapse
|
35
|
Teng CL, Bryant RG. Mapping oxygen accessibility to ribonuclease a using high-resolution NMR relaxation spectroscopy. Biophys J 2004; 86:1713-25. [PMID: 14990499 PMCID: PMC1304007 DOI: 10.1016/s0006-3495(04)74240-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Paramagnetic contributions to nuclear magnetic spin-lattice relaxation rate constant induced by freely diffusing molecular oxygen measured at hundreds of different protein proton sites provide a direct means for characterizing the exploration of the protein by oxygen. This report focuses on regions of ribonuclease A where the rate constant enhancements are either quite large or quite small. We find that there are several regions of enhanced oxygen affinity for the protein both on the surface and in interior pockets where sufficient free volume permits. Oxygen has weak associative interactions with a number of surface crevices that are generally between secondary structural elements of the protein fold. Several regions near the surface have higher than expected accessibility to oxygen indicating that structural fluctuations in the protein provide intermolecular access. Oxygen penetrates part of the hydrophobic interior, but affinity does not correlate simply with hydrophobicity indices. Oxygen is excluded from regions of high interior packing density and a few surface sites where x-ray diffraction data have indicated the presence of specific hydration with high occupancy.
Collapse
Affiliation(s)
- Ching-Ling Teng
- Biophysics Program and Chemistry Department, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | | |
Collapse
|
36
|
Treptow W, Maigret B, Chipot C, Tarek M. Coupled motions between pore and voltage-sensor domains: a model for Shaker B, a voltage-gated potassium channel. Biophys J 2004; 87:2365-79. [PMID: 15454436 PMCID: PMC1304659 DOI: 10.1529/biophysj.104.039628] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 06/23/2004] [Indexed: 11/18/2022] Open
Abstract
A high-resolution crystal structure of KvAP, an archeabacterial voltage-gated potassium (Kv) channel, complexed with a monoclonal Fab fragment has been recently determined. Based on this structure, a mechanism for the activation (opening) of Kv channels has been put forward. This mechanism has since been criticized, suggesting that the resolved structure is not representative of the family of voltage-gated potassium channels. Here, we propose a model of the transmembrane domain of Shaker B, a well-characterized Kv channel, built by homology modeling and docking calculations. In this model, the positively charged S4 helices are oriented perpendicular to the membrane and localized in the groove between segments S5 and S6 of adjacent subunits. The structure and the dynamics of the full atomistic model embedded in a hydrated lipid bilayer were investigated by means of two large-scale molecular dynamics simulations under transmembrane-voltage conditions known to induce, respectively, the resting state (closed) and the activation (opening) of voltage-gated channels. Upon activation, the model undergoes conformational changes that lead to an increase of the hydration of the charged S4 helices, correlated with an upward translation and a tilting of the latter, concurrently with movements of the S5 helices and the activation gate. Although small, these conformational changes ultimately result in an alteration of the ion-conduction pathway. Our findings support the transporter model devised by Bezanilla and collaborators, and further underline the crucial role played by internal hydration in the activation of the channel.
Collapse
Affiliation(s)
- Werner Treptow
- Equipe de Dynamique des Assemblages Membranaires, Unité Mixte de Recherche, Centre National de la Recherche Scientifique/Université Henri Poincaré 7565, Nancy, France
| | | | | | | |
Collapse
|
37
|
Sica F, Di Fiore A, Merlino A, Mazzarella L. Structure and Stability of the Non-covalent Swapped Dimer of Bovine Seminal Ribonuclease. J Biol Chem 2004; 279:36753-60. [PMID: 15192098 DOI: 10.1074/jbc.m405655200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growing number of pancreatic-type ribonucleases (RNases) present cytotoxic activity against malignant cells. The cytoxicity of these enzymes is related to their resistance to the ribonuclease protein inhibitor (RI). In particular, bovine seminal ribonuclease (BS-RNase) is toxic to tumor cells both in vitro and in vivo. BS-RNase is a covalent dimer with two intersubunit disulfide bridges between Cys(31) of one chain and Cys(32) of the second and vice versa. The native enzyme is an equilibrium mixture of two isomers, MxM and M=M. In the former the two subunits swap their N-terminal helices. The cytotoxic action is a peculiar property of MxM. In the reducing environment of cytosol, M=M dissociates into monomers, which are strongly inhibited by RI, whereas MxM remains as a non-covalent dimer (NCD), which evades RI. We have solved the crystal structure of NCD, carboxyamidomethylated at residues Cys(31) and Cys(32) (NCD-CAM), in a complex with 2'-deoxycitidylyl(3'-5')-2'-deoxyadenosine. The molecule reveals a quaternary structural organization much closer to MxM than to other N-terminal-swapped non-covalent dimeric forms of RNases. Model building of the complexes between these non-covalent dimers and RI reveals that NCD-CAM is the only dimer equipped with a quaternary organization capable of interfering seriously with the binding of the inhibitor. Moreover, a detailed comparative structural analysis of the dimers has highlighted the residues, which are mostly important in driving the quaternary structure toward that found in NCD-CAM.
Collapse
Affiliation(s)
- Filomena Sica
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cynthia, 80126 Naples, Italy
| | | | | | | |
Collapse
|
38
|
Oleinikova A, Sasisanker P, Weingärtner H. What Can Really Be Learned from Dielectric Spectroscopy of Protein Solutions? A Case Study of Ribonuclease A. J Phys Chem B 2004. [DOI: 10.1021/jp049618b] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Oleinikova
- Physical Chemistry 2, Ruhr-University, D-44780 Bochum, Germany
| | - P. Sasisanker
- Physical Chemistry 2, Ruhr-University, D-44780 Bochum, Germany
| | - H. Weingärtner
- Physical Chemistry 2, Ruhr-University, D-44780 Bochum, Germany
| |
Collapse
|
39
|
Crabbe MJC, Cooper LR, Corne DW. Use of essential and molecular dynamics to study gammaB-crystallin unfolding after non-enzymic post-translational modifications. Comput Biol Chem 2004; 27:507-10. [PMID: 14642758 DOI: 10.1016/s1476-9271(03)00048-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Essential and Molecular Dynamics (ED/MD) have been used to model the conformational changes of a protein implicated in a conformational disease--cataract, the largest cause of blindness in the world-after non-enzymic post-translational modification. Cyanate modification did not significantly alter flexibility, while the Schiff's base adduct produced a more flexible N-terminal domain, and intra-secondary structure regions, than either the cyanate adduct or the native structure. Glycation also increased linker flexibility and disrupted the charge network. A number of post-translational adducts showed structural disruption around Cys15 and increased linker flexibility; this may be important in subsequent protein aggregation. Our modelling results are in accord with experimental evidence, and show that ED/MD is a useful tool in modelling conformational changes in proteins implicated in disease processes.
Collapse
Affiliation(s)
- M James C Crabbe
- School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, Whiteknights, UK
| | | | | |
Collapse
|
40
|
Merlino A, Vitagliano L, Sica F, Zagari A, Mazzarella L. Population shift vs induced fit: The case of bovine seminal ribonuclease swapping dimer. Biopolymers 2004; 73:689-95. [PMID: 15048772 DOI: 10.1002/bip.20016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. This enzyme exists as two conformational isomers with distinctive biological properties. The structure of the major isomer is characterized by the swapping of the N-terminal segment (MxM BS-RNase). In this article, the crystal structures of the ligand-free MxM BS-RNase and its complex with 2'-deoxycitidylyl(3',5')-2'-deoxyadenosine derived from isomorphous crystals have been refined. Interestingly, the comparison between this novel ligand-free form and the previously published sulfate-bound structure reveals significant differences. In particular, the ligand-free MxM BS-RNase is closer to the structure of MxM BS-RNase productive complexes than to the sulfate-bound form. These results reveal that MxM BS-RNase presents a remarkable flexibility, despite the structural constraints of the interchain disulfide bridges and the swapping of the N-terminal helices. These findings have important implications to the ligand binding mechanism of MxM BS-RNase. Indeed, a population shift rather than a substrate-induced conformational transition may occur in the MxM BS-RNase ligand binding process.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cynthia, 80126 Napoli, Italy
| | | | | | | | | |
Collapse
|
41
|
Merlino A, Graziano G, Mazzarella L. Structural and dynamic effects of α-Helix deletion in Sso7d: Implications for protein thermal stability. Proteins 2004; 57:692-701. [PMID: 15317021 DOI: 10.1002/prot.20270] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sso7d is a 62-residue protein from the hyperthemophilic archaeon Sulfolobus solfataricus with a denaturation temperature close to 100 degrees C around neutral pH. An engineered form of Sso7d truncated at leucine 54 (L54Delta) is significantly less stable, with a denaturation temperature of 53 degrees C. Molecular dynamics (MD) studies of Sso7d and its truncated form at two different temperatures have been performed. The results of the MD simulations at 300 K indicate that: (1) the flexibility of Sso7d chain at 300 K agrees with that detected from X-ray and NMR structural studies; (2) L54Delta remains stable in the native folded conformation and possesses an overall dynamic behavior similar to that of the parent protein. MD simulations performed at 500 K, 10 ns long, indicate that, while Sso7d is in-silico resistant to high temperature, the truncated variant partially unfolds, revealing the early phases of the thermal unfolding pathway of the protein. Analysis of the trajectories of L54Delta suggests that the unzipping of the N-terminal and C-terminal beta-strands should be the first event of the unfolding pathway, and points out the regions more resistant to thermal unfolding. These findings allow one to understand the role played by specific interactions connecting the two ends of the chain for the high thermal stability of Sso7d, and support recent hypotheses on its folding mechanism emerged from site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
42
|
Merlino A, Vitagliano L, Ceruso MA, Mazzarella L. Subtle functional collective motions in pancreatic-like ribonucleases: from ribonuclease A to angiogenin. Proteins 2003; 53:101-10. [PMID: 12945053 DOI: 10.1002/prot.10466] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The analysis of the dynamic behavior of enzymes is fundamental to structural biology. A direct relationship between protein flexibility and biological function has been shown for bovine pancreatic ribonuclease (RNase A) (Rasmussen et al., Nature 1992;357:423-424). More recently, crystallographic studies have shown that functional motions in RNase A involve the enzyme beta-sheet regions that move concertedly on substrate binding and release (Vitagliano et al., Proteins 2002;46:97-104). These motions have been shown to correspond to intrinsic dynamic properties of the native enzyme by molecular dynamics (MD) simulations. To unveil the occurrence of these collective motions in other members of pancreatic-like superfamily, we carried out MD simulations on human angiogenin (Ang). Essential dynamics (ED) analyses performed on the trajectories reveal that Ang exhibits collective motions similar to RNase A, despite the limited sequence identity (33%) of the two proteins. Furthermore, we show that these collective motions are also present in ensembles of experimentally determined structures of both Ang and RNase A. Finally, these subtle concerted beta-sheet motions were also observed for other two members of the pancreatic-like superfamily by comparing the ligand-bound and ligand-free structures of these enzymes. Taken together, these findings suggest that pancreatic-like ribonucleases share an evolutionary conserved dynamic behavior consisting of subtle beta-sheet motions, which are essential for substrate binding and release.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | |
Collapse
|