1
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Yu Z, Cowan JA. Design and applications of catalytic metallodrugs containing the ATCUN motif. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Yotmanee P, Rungrotmongkol T, Wichapong K, Choi SB, Wahab HA, Kungwan N, Hannongbua S. Binding specificity of polypeptide substrates in NS2B/NS3pro serine protease of dengue virus type 2: A molecular dynamics Study. J Mol Graph Model 2015; 60:24-33. [PMID: 26086900 DOI: 10.1016/j.jmgm.2015.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 02/05/2023]
Abstract
The pathogenic dengue virus (DV) is a growing global threat, particularly in South East Asia, for which there is no specific treatment available. The virus possesses a two-component (NS2B/NS3) serine protease that cleaves the viral precursor proteins. Here, we performed molecular dynamics simulations of the NS2B/NS3 protease complexes with six peptide substrates (capsid, intNS3, 2A/2B, 4B/5, 3/4A and 2B/3 containing the proteolytic site between P(1) and P(1)' subsites) of DV type 2 to compare the specificity of the protein-substrate binding recognition. Although all substrates were in the active conformation for cleavage reaction by NS2B/NS3 protease, their binding strength was somewhat different. The simulated results of intermolecular hydrogen bonds and decomposition energies suggested that among the ten substrate residues (P(5)-P(5)') the P(1) and P(2) subsites play a major role in the binding with the focused protease. The arginine residue at these two subsites was found to be specific preferential binding at the active site with a stabilization energy of <-10 kcal mol(-1). Besides, the P(3), P(1)', P(2)' and P(4)' subsites showed a less contribution in binding interaction (<-2 kcal mol(-1)). The catalytic water was detected nearby the carbonyl oxygen of the P(1) reacting center of the capsid, intNS3, 2A/2B and 4B/5 peptides. These results led to the order of absolute binding free energy (ΔGbind) between these substrates and the NS2B/NS3 protease ranked as capsid>intNS3>2A/2B>4B/5>3/4A>2B/3 in a relative correspondence with previous experimentally derived values.
Collapse
Affiliation(s)
- Pathumwadee Yotmanee
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand; Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanin Wichapong
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sy Bing Choi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; Natural Product and Drug Discovery Centre, Malaysian Institutes of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Block 5-A, Halaman Bukit Gambir, 11700, Penang, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; Natural Product and Drug Discovery Centre, Malaysian Institutes of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Block 5-A, Halaman Bukit Gambir, 11700, Penang, Malaysia.
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Macromolecular assembly-driven processing of the 2/3 cleavage site in the alphavirus replicase polyprotein. J Virol 2011; 86:553-65. [PMID: 22031949 DOI: 10.1128/jvi.05195-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semliki Forest virus (SFV) is a member of the Alphavirus genus, which produces its replicase proteins in the form of a nonstructural (ns) polyprotein precursor P1234. The maturation of the replicase occurs in a temporally controlled manner by protease activity of nsP2. The template preference and enzymatic capabilities of the alphaviral replication complex have a very important connection with its composition, which is irreversibly altered by proteolysis. The final cleavage of the 2/3 site in the ns polyprotein apparently leads to significant rearrangements within the replication complex and thus denotes the "point of no return" for viral replication progression. Numerous studies have devised rules for when and how ns protease acts, but how the alphaviral 2/3 site is recognized remained largely unexplained. In contrast to the other two cleavage sites within the ns polyprotein, the 2/3 site evidently lacks primary sequence elements in the vicinity of the scissile bond sufficient for specific protease recognition. In this study, we sought to investigate the molecular details of the regulation of the 2/3 site processing in the SFV ns polyprotein. We present evidence that correct macromolecular assembly, presumably strengthened by exosite interactions rather than the functionality of the individual nsP2 protease, is the driving force for specific substrate targeting. We conclude that structural elements within the macrodomain of nsP3 are used for precise positioning of a substrate recognition sequence at the catalytic center of the protease and that this process is coordinated by the exact N-terminal end of nsP2, thus representing a unique regulation mechanism used by alphaviruses.
Collapse
|
5
|
Mukherjee P, Shah F, Desai P, Avery M. Inhibitors of SARS-3CLpro: virtual screening, biological evaluation, and molecular dynamics simulation studies. J Chem Inf Model 2011; 51:1376-92. [PMID: 21604711 PMCID: PMC3929308 DOI: 10.1021/ci1004916] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SARS-CoV from the coronaviridae family has been identified as the etiological agent of Severe Acute Respiratory Syndrome (SARS), a highly contagious upper respiratory disease that reached epidemic status in 2002. SARS-3CL(pro), a cysteine protease indispensible to the viral life cycle, has been identified as one of the key therapeutic targets against SARS. A combined ligand and structure-based virtual screening was carried out against the Asinex Platinum collection. Multiple low micromolar inhibitors of the enzyme were identified through this search, one of which also showed activity against SARS-CoV in a whole cell CPE assay. Furthermore, multinanosecond explicit solvent simulations were carried out using the docking poses of the identified hits to study the overall stability of the binding site interactions as well as identify important changes in the interaction profile that were not apparent from the docking study. Cumulative analysis of the evaluated compounds and the simulation studies led to the identification of certain protein-ligand interaction patterns which would be useful in further structure based design efforts.
Collapse
Affiliation(s)
| | - Falgun Shah
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS 38677
| | | | - Mitchell Avery
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS 38677
| |
Collapse
|
6
|
β-Amino acid substitutions and structure-based CoMFA modeling of hepatitis C virus NS3 protease inhibitors. Bioorg Med Chem 2008; 16:5590-605. [DOI: 10.1016/j.bmc.2008.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 11/19/2022]
|
7
|
Mittl PR, Grütter MG. Opportunities for structure-based design of protease-directed drugs. Curr Opin Struct Biol 2006; 16:769-75. [PMID: 17112720 DOI: 10.1016/j.sbi.2006.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/06/2006] [Accepted: 10/25/2006] [Indexed: 01/09/2023]
Abstract
As a result of the recent enormous technological progress, experimental structure determination has become an integral part of the development of drugs against disease-related target proteins. The post-translational modification of proteins is an important regulatory process in living organisms; one such example is lytic processing by peptidases. Many different peptidases represent disease targets and are being used in structure-based drug design approaches. The development of drugs such as aliskiren and tipranavir, which inhibit renin and HIV protease, respectively, testifies to the success of this approach.
Collapse
Affiliation(s)
- Peer Re Mittl
- Institute for Biochemistry, University of Zürich, Winterthurer Strasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
8
|
Exploiting Ligand and Receptor Adaptability in Rational Drug Design Using Dynamics and Structure-Based Strategies. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_2006_087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
9
|
Niyomrattanakit P, Yahorava S, Mutule I, Mutulis F, Petrovska R, Prusis P, Katzenmeier G, Wikberg J. Probing the substrate specificity of the dengue virus type 2 NS3 serine protease by using internally quenched fluorescent peptides. Biochem J 2006; 397:203-11. [PMID: 16489931 PMCID: PMC1479750 DOI: 10.1042/bj20051767] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NS3 (dengue virus non-structural protein 3) serine protease of dengue virus is an essential component for virus maturation, thus representing an attractive target for the development of antiviral drugs directed at the inhibition of polyprotein processing. In the present study, we have investigated determinants of substrate specificity of the dengue virus NS3 protease by using internally quenched fluorogenic peptides containing Abz (o-aminobenzoic acid; synonymous to anthranilic acid) and 3-nitrotyrosine (nY) representing both native and chimaeric polyprotein cleavage site sequences. By using this combinatorial approach, we were able to describe the substrate preferences and determinants of specificity for the dengue virus NS2B(H)-NS3pro protease. Kinetic parameters (kcat/K(m)) for the hydrolysis of peptide substrates with systematic truncations at the prime and non-prime side revealed a length preference for peptides spanning the P4-P3' residues, and the peptide Abz-RRRRSAGnY-amide based on the dengue virus capsid protein processing site was discovered as a novel and efficient substrate of the NS3 protease (kcat/K(m)=11087 M(-1) x s(-1)). Thus, while having confirmed the exclusive preference of the NS3 protease for basic residues at the P1 and P2 positions, we have also shown that the presence of basic amino acids at the P3 and P4 positions is a major specificity-determining feature of the dengue virus NS3 protease. Investigation of the substrate peptide Abz-KKQRAGVLnY-amide based on the NS2B/NS3 polyprotein cleavage site demonstrated an unexpected high degree of cleavage efficiency. Chimaeric peptides with combinations of prime and non-prime sequences spanning the P4-P4' positions of all five native polyprotein cleavage sites revealed a preponderant effect of non-prime side residues on the K(m) values, whereas variations at the prime side sequences had higher impact on kcat.
Collapse
Affiliation(s)
- Pornwaratt Niyomrattanakit
- *Laboratory of Molecular Virology, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd., Nakornpathom 73170, Thailand
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Sviatlana Yahorava
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Ilze Mutule
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Felikss Mutulis
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Ramona Petrovska
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Peteris Prusis
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
| | - Gerd Katzenmeier
- *Laboratory of Molecular Virology, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd., Nakornpathom 73170, Thailand
| | - Jarl E. S. Wikberg
- †Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, SE751 24 Uppsala, Sweden
- To whom correspondence should be addressed (email )
| |
Collapse
|
10
|
Nishikawa F, Funaji K, Fukuda K, Nishikawa S. In vitro selection of RNA aptamers against the HCV NS3 helicase domain. Oligonucleotides 2005; 14:114-29. [PMID: 15294075 DOI: 10.1089/1545457041526335] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nonstructural protein 3 (NS3) of hepatitis C virus (HCV) has two distinct domains, protease and helicase, that are essential for HCV proliferation. Therefore, NS3 is considered a target for anti-HCV treatment. To study RNA aptamers of the NS3 helicase domain, we carried out in vitro selection against the HCV NS3 helicase domain. RNA aptamers obtained after eight generations possessed 5' extended single-stranded regions and the conserved sequence (5'-GGA(U/C)GGAGCC-3') at stem-loop regions. Aptamer 5 showed strong inhibition of helicase activity in vitro. Deletion and mutagenesis analysis clarified that the conserved stem-loop is important and that the whole structure is needed for helicase inhibition. We compared the inhibition of helicase activity between aptamer 5 and 3'+-UTR of HCV.
Collapse
Affiliation(s)
- Fumiko Nishikawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
11
|
Vallet S, Gouriou S, Nousbaum JB, Legrand-Quillien MC, Goudeau A, Picard B. Genetic heterogeneity of the NS3 protease gene in hepatitis C virus genotype 1 from untreated infected patients. J Med Virol 2005; 75:528-37. [PMID: 15714495 DOI: 10.1002/jmv.20302] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NS3 protease is essential for hepatitis C Virus (HCV) replication, and is one of the most promising targets for specific anti-HCV therapy. Its natural polymorphism has not been studied at the quasispecies level. In the present work, the genetic heterogeneity of the NS3 protease gene was analyzed in 17 HCV genotype 1 (5 subtypes 1a and 12 subtypes 1b) samples collected from infected patients before anti-viral therapy. A total of 294 clones were sequenced. Although the protease NS3 is considered to be one of the less variable genes in the HCV genome, variability of both nucleotide and amino acid sequences was found. In variants belonging to 1a and 1b subtypes, 224 and 267 of 543 positions showed one or more nucleotide substitutions, respectively. Forty and 74 of the 181 NS3 amino acid positions showed at least one mutation in HCV-1a and HCV-1b isolates, respectively. Most substitutions were conservative. This substantial polymorphism of the NS3 protease produced by HCV-1a and HCV-1b suggests that, despite the numerous functional and structural constraints, the enzyme is sufficiently flexible to tolerate substitutions.
Collapse
Affiliation(s)
- Sophie Vallet
- Département de Microbiologie, CHU Morvan, 2 avenue Foch, 19609 Brest cedex, France.
| | | | | | | | | | | |
Collapse
|
12
|
Niyomrattanakit P, Winoyanuwattikun P, Chanprapaph S, Angsuthanasombat C, Panyim S, Katzenmeier G. Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J Virol 2004; 78:13708-16. [PMID: 15564480 PMCID: PMC533897 DOI: 10.1128/jvi.78.24.13708-13716.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteolytic processing of the dengue virus polyprotein is mediated by host cell proteases and the virus-encoded NS2B-NS3 two-component protease. The NS3 protease represents an attractive target for the development of antiviral inhibitors. The three-dimensional structure of the NS3 protease domain has been determined, but the structural determinants necessary for activation of the enzyme by the NS2B cofactor have been characterized only to a limited extent. To test a possible functional role of the recently proposed Phix(3)Phi motif in NS3 protease activation, we targeted six residues within the NS2B cofactor by site-specific mutagenesis. Residues Trp62, Ser71, Leu75, Ile77, Thr78, and Ile79 in NS2B were replaced with alanine, and in addition, an L75A/I79A double mutant was generated. The effects of these mutations on the activity of the NS2B(H)-NS3pro protease were analyzed in vitro by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of autoproteolytic cleavage at the NS2B/NS3 site and by assay of the enzyme with the fluorogenic peptide substrate GRR-AMC. Compared to the wild type, the L75A, I77A, and I79A mutants demonstrated inefficient autoproteolysis, whereas in the W62A and the L75A/I79A mutants self-cleavage appeared to be almost completely abolished. With exception of the S71A mutant, which had a k(cat)/K(m) value for the GRR-AMC peptide similar to that of the wild type, all other mutants exhibited drastically reduced k(cat) values. These results indicate a pivotal function of conserved residues Trp62, Leu75, and Ile79 in the NS2B cofactor in the structural activation of the dengue virus NS3 serine protease.
Collapse
Affiliation(s)
- Pornwaratt Niyomrattanakit
- Laboratory of Molecular Virology, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Phutthamonthon 4 Rd., Nakornpathom 73170, Thailand
| | | | | | | | | | | |
Collapse
|
13
|
Poliakov A, Johansson A, Akerblom E, Oscarsson K, Samuelsson B, Hallberg A, Danielson UH. Structure–activity relationships for the selectivity of hepatitis C virus NS3 protease inhibitors. Biochim Biophys Acta Gen Subj 2004; 1672:51-9. [PMID: 15056493 DOI: 10.1016/j.bbagen.2004.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 02/05/2004] [Accepted: 02/17/2004] [Indexed: 11/27/2022]
Abstract
The selectivity of hepatitis C virus (HCV) non-structural protein 3 (NS3) protease inhibitors was determined by evaluating their inhibitory effect on other serine proteases (human leukocyte elastase (HLE), porcine pancreatic elastase (PPE), bovine pancreatic chymotrypsin (BPC)) and a cysteine protease (cathepsin B). For these peptide inhibitors, the P1-side chain and the C-terminal group were the major determinants of selectivity. Inhibitors with electrophilic C-terminal residues were generally non-selective while compounds with non-electrophilic C-terminal residues were more selective. Furthermore, compounds with P1 aminobutyric acid residues were non-selective, while 1-aminocyclopropane-1-carboxylic acid (ACPC) and norvaline-based inhibitors were generally selective. The most potent and selective inhibitors of NS3 protease tested contained a non-electrophilic phenyl acyl sulfonamide C-terminal residue. HLE was most likely to be inhibited by the HCV protease inhibitors, in agreement with similar substrate specificities for these enzymes. The identified structure-activity relationships for selectivity are of significance for design of selective HCV NS3 protease inhibitors.
Collapse
Affiliation(s)
- Anton Poliakov
- Department of Biochemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Pawlotsky JM, McHutchison JG. Hepatitis C. Development of new drugs and clinical trials: promises and pitfalls. Summary of an AASLD hepatitis single topic conference, Chicago, IL, February 27-March 1, 2003. Hepatology 2004; 39:554-67. [PMID: 14768012 DOI: 10.1002/hep.20065] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jean-Michel Pawlotsky
- Department of Virology (EA 3489), Henri Mondor Hospital, University of Paris XII, Créteil, France
| | | |
Collapse
|
15
|
Richer MJ, Juliano L, Hashimoto C, Jean F. Serpin mechanism of hepatitis C virus nonstructural 3 (NS3) protease inhibition: induced fit as a mechanism for narrow specificity. J Biol Chem 2003; 279:10222-7. [PMID: 14701815 DOI: 10.1074/jbc.m313852200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus (HCV) nonstructural 3 (NS3) serine protease disrupts important cellular antiviral signaling pathways and plays a pivotal role in the proteolytic maturation of the HCV polyprotein precursor. This recent discovery has fostered the search for NS3 protease inhibitors. However, the enzyme's unusual induced fit behavior and peculiar molecular architecture have imposed considerable obstacles to the development of small molecule inhibitors. In this article, we demonstrate that such unique induced fit behavior and the chymotrypsin-like catalytic domain can provide the structural plasticity necessary to generate protein-based inhibitors of the NS3 protease. We took advantage of the macromolecular scaffold of a Drosophila serpin, SP6, which intrinsically supports chymotrypsin-like enzyme inhibition, to design a novel class of potent and selective inhibitors. We show that altering the SP6 reactive site loop (RSL) resulted in the development of the first effective (K(i) of 34 nm) and selective serpin, SP6(EVC/S), directed at the NS3 protease. SP6(EVC/S) operates as a suicide substrate inhibitor, and its partitioning between the complex-forming and proteolytic pathways for the NS3 protease is HCV NS4A cofactor-dependent and -specific. Once bound to the protease active site, SP6(EVC/S) partitions with equal probability to undergo proteolysis by NS3 at the C-terminal site of the engineered RSL, (P(6))Glu-Ile-(P(4))Val-Met-Thr-(P(1))Cys- downward arrow -(P(1)')Ser, or to form a covalent acyl-enzyme complex characteristic of cognate protease-serpin pairs. Our results also reveal a novel cofactor-induced serpin mechanism of enzyme inhibition that could be explored for developing effective and selective inhibitors of other important induced fit viral proteases of the Flaviviridae family such as the West Nile virus NS3 endoprotease.
Collapse
Affiliation(s)
- Martin J Richer
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
16
|
Johansson A, Poliakov A, Akerblom E, Wiklund K, Lindeberg G, Winiwarter S, Danielson UH, Samuelsson B, Hallberg A. Acyl sulfonamides as potent protease inhibitors of the hepatitis C virus full-Length NS3 (protease-helicase/NTPase): a comparative study of different C-terminals. Bioorg Med Chem 2003; 11:2551-68. [PMID: 12757723 DOI: 10.1016/s0968-0896(03)00179-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Synthesis and inhibitory potencies of three types of protease inhibitors of the hepatitis C virus (HCV) full-length NS3 (protease-helicase/NTPase) are reported: (i) inhibitors comprising electrophilic serine traps (pentafluoroethyl ketones, alpha-keto acids, and alpha-ketotetrazoles), (ii) product-based inhibitors comprising a C-terminal carboxylate group, and (iii) previously unexplored inhibitors comprising C-terminal carboxylic acid bioisosteres (tetrazoles and acyl sulfonamides). Bioisosteric replacement with the tetrazole group provided inhibitors equally potent to the corresponding carboxylates, and substitution with the phenyl acyl sulfonamide group yielded more potent inhibitors. The hexapeptide inhibitors Suc-Asp-D-Glu-Leu-Ile-Cha-Nva-NHSO(2)Ph and Suc-Asp-D-Glu-Leu-Ile-Cha-ACPC-NHSO(2)Ph with K(i) values of 13.6 and 3.8 nM, respectively, were approximately 20 times more potent than the corresponding inhibitors with a C-terminal carboxylate and were comparable to the carboxylate-based inhibitor containing the native cysteine, Suc-Asp-D-Glu-Leu-Ile-Cha-Cys-OH (K(i)=28 nM). The acyl sulfonamide group constitutes a very promising C-terminal functionality that allows for prime site optimization.
Collapse
Affiliation(s)
- Anja Johansson
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nishikawa F, Kakiuchi N, Funaji K, Fukuda K, Sekiya S, Nishikawa S. Inhibition of HCV NS3 protease by RNA aptamers in cells. Nucleic Acids Res 2003; 31:1935-43. [PMID: 12655010 PMCID: PMC152807 DOI: 10.1093/nar/gkg291] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-structural protein 3 (NS3) of hepatitis C virus (HCV) has two distinct activities, protease and helicase, which are essential for HCV proliferation. In previous work, we obtained RNA aptamers (G9-I, II and III) which specifically bound the NS3 protease domain (DeltaNS3), efficiently inhibiting protease activity in vitro. To utilize these aptamers in vivo, we constructed a G9 aptamer expression system in cultured cells, using the cytomegarovirus enhancer + chicken beta-actin globin (CAG) promoter. By conjugating the cis-acting genomic human hepatitis delta virus (HDV) ribozyme and G9-II aptamer, a chimeric HDV ribozyme-G9-II aptamer (HA) was constructed, which was used to produce stable RNA in vivo and to create tandem repeats of the functional unit. To target the transcribed RNA aptamers to the cytoplasm, the minimal mutant of constitutive transport element (CTE), derived from type D retroviruses, was conjugated at the 3' end of HA (HAC). Transcript RNAs from (HA)(n) and (HAC)(n) were processed into the G9-II aptamer unit by the cis-acting HDV ribozyme, both in vitro and in vivo. Efficient protease inhibition activity of HDV ribozyme-G9-II aptamer expression plasmid was demonstrated in HeLa cells. Protease inhibition activity level of tandem chimeric aptamers, (HA)(n) and (HAC)(n), rose with the increase of n from 1 to 4.
Collapse
Affiliation(s)
- Fumiko Nishikawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Sciences and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Narjes F, Koch U, Steinkühler C. Recent developments in the discovery of hepatitis C virus serine protease inhibitors--towards a new class of antiviral agents? Expert Opin Investig Drugs 2003; 12:153-63. [PMID: 12556211 DOI: 10.1517/13543784.12.2.153] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatitis C virus (HCV) infection is an epidemic disease and a significant worldwide health problem. Despite impressive improvements in the efficacy of the standard, interferon-based therapies, at present, the virus can not be eradicated in the majority of infected individuals. The last decade has witnessed a burst in our understanding of the molecular biology of HCV infection and lead to the identification of essential features of the viral genome that are being targeted for the development of specific antiviral agents. The non-structural protein 3 of the HCV genome harbours a serine protease domain that is essential for viral replication. This enzyme has been studied in great detail and the wealth of structural and functional data are presently nurturing drug development efforts. The peculiar active site structure of the enzyme imposes considerable obstacles to the development of small molecule inhibitors. However, the combination of creativity with the powerful tools of modern drug discovery has led to impressive progress in this field over the past few years and, as a result, the first compounds are now entering clinical trials.
Collapse
Affiliation(s)
- Frank Narjes
- Instituto di Ricerche di Biologia Molecolare-Merck Research Laboratories Rome,Via Pontina Km 30,600,00040 Pomezia, Italy
| | | | | |
Collapse
|
19
|
Rich DH, Bursavich MG, Estiarte MA. Discovery of nonpeptide, peptidomimetic peptidase inhibitors that target alternate enzyme active site conformations. Biopolymers 2002; 66:115-25. [PMID: 12325161 DOI: 10.1002/bip.10231] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Structure-generating programs provide rational methods to rapidly design novel scaffolds targeting the biologic receptor of choice. Recent research has demonstrated proteins equilibrate between families of conformations (ensembles) for which drug design may target. New methods are currently being developed utilizing structure-generating programs to target alternate enzyme conformations in an attempt to overcome the challenge of developing therapeutically useful molecules. These new methods provide the potential to overcome bioavailability problems encountered with peptide and peptide-like molecules by identifying novel small molecule scaffolds.
Collapse
Affiliation(s)
- Daniel H Rich
- School of Pharmacy, Center for Health Sciences, University of Wisconsin, 777 Highland Ave., Madison, WI 53705, USA.
| | | | | |
Collapse
|