1
|
Angera IJ, Wright MM, Del Valle JR. Beyond N-Alkylation: Synthesis, Structure, and Function of N-Amino Peptides. Acc Chem Res 2024; 57:1287-1297. [PMID: 38626119 DOI: 10.1021/acs.accounts.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The growing list of physiologically important protein-protein interactions (PPIs) has amplified the need for compounds to target topologically complex biomolecular surfaces. In contrast to small molecules, peptide and protein mimics can exhibit three-dimensional shape complementarity across a large area and thus have the potential to significantly expand the "druggable" proteome. Strategies to stabilize canonical protein secondary structures without sacrificing side-chain content are particularly useful in the design of peptide-based chemical probes and therapeutics.Substitution of the backbone amide in peptides represents a subtle chemical modification with profound effects on conformation and stability. Studies focused on N-alkylation have already led to broad-ranging applications in peptidomimetic design. Inspired by nonribosomal peptide natural products harboring amide N-oxidations, we envisioned that main-chain hydrazide and hydroxamate bonds would impose distinct conformational preferences and offer unique opportunities for backbone diversification. This Account describes our exploration of peptide N-amination as a strategy for stabilizing canonical protein folds and for the structure-based design of soluble amyloid mimics.We developed a general synthetic protocol to access N-amino peptides (NAPs) on solid support. In an effort to stabilize β-strand conformation, we designed stitched peptidomimetics featuring covalent tethering of the backbone N-amino substituent to the preceding residue side chain. Using a combination of NMR, X-ray crystallography, and molecular dynamics simulations, we discovered that backbone N-amination alone could significantly stabilize β-hairpin conformation in multiple models of folding. Our studies revealed that the amide NH2 substituent in NAPs participates in cooperative noncovalent interactions that promote β-sheet secondary structure. In contrast to Cα-substituted α-hydrazino acids, we found that N-aminoglycine and its N'-alkylated derivatives instead stabilize polyproline II (PPII) conformation. The reactivity of hydrazides also allows for late-stage peptide macrocyclization, affording novel covalent surrogates of side-chain-backbone H-bonds.The pronounced β-sheet propensity of Cα-substituted α-hydrazino acids prompted us to target amyloidogenic proteins using NAP-based β-strand mimics. Backbone N-amination was found to render aggregation-prone lead sequences soluble and resistant to proteolysis. Inhibitors of Aβ and tau identified through N-amino scanning blocked protein aggregation and the formation of mature fibrils in vitro. We further identified NAP-based single-strand and cross-β tau mimics capable of inhibiting the prion-like cellular seeding activity of recombinant and patient-derived tau fibrils.Our studies establish backbone N-amination as a valuable addition to the peptido- and proteomimetic tool kit. α-Hydrazino acids show particular promise as minimalist β-strand mimics that retain side-chain information. Late-stage derivatization of hydrazides also provides facile entry into libraries of backbone-edited peptides. We anticipate that NAPs will thus find applications in the development of optimally constrained folds and modulators of PPIs.
Collapse
Affiliation(s)
- Isaac J Angera
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Madison M Wright
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Hoyos P, Perona A, Juanes O, Rumbero Á, Hernáiz MJ. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chemistry 2021; 27:7593-7624. [PMID: 33533096 DOI: 10.1002/chem.202005065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate-protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate-protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.
Collapse
Affiliation(s)
- Pilar Hoyos
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Almudena Perona
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Olga Juanes
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Ángel Rumbero
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - María J Hernáiz
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
3
|
Hydroxamate siderophores: Natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. Eur J Med Chem 2020; 208:112791. [DOI: 10.1016/j.ejmech.2020.112791] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
|
4
|
Richaud AD, Roche SP. Structure-Property Relationship Study of N-(Hydroxy)Peptides for the Design of Self-Assembled Parallel β-Sheets. J Org Chem 2020; 85:12329-12342. [PMID: 32881524 DOI: 10.1021/acs.joc.0c01441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design of novel and functional biomimetic foldamers remains a major challenge in creating mimics of native protein structures. Herein, we report the stabilization of a remarkably short β-sheet by incorporating N-(hydroxy)glycine (Hyg) residues into the backbone of peptides. These peptide-peptoid hybrids form unique parallel β-sheet structures by self-assembly upon hydrogenation. Our spectroscopic and crystallographic data suggest that the local conformational perturbations induced by N-(hydroxy)amides are outweighed by a network of strong interstrand hydrogen bonds.
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States.,Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
5
|
Sarnowski MP, Del Valle JR. N-Hydroxy peptides: solid-phase synthesis and β-sheet propensity. Org Biomol Chem 2020; 18:3690-3696. [DOI: 10.1039/d0ob00664e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Backbone amide hydroxylation of peptide strands enhances β-hairpin folding.
Collapse
Affiliation(s)
| | - Juan R. Del Valle
- Department of Chemistry & Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|
6
|
Zhang S, De Leon Rodriguez LM, Huang R, Leung IKH, Harris PWR, Brimble MA. Total synthesis of the proposed structure of talarolide A. Org Biomol Chem 2018; 16:5286-5293. [DOI: 10.1039/c8ob01230j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The proposed structure of talarolide A, a cycloheptapeptide featuring a hydroxamate moiety within the peptide backbone, was successfully synthesized.
Collapse
Affiliation(s)
- Shengping Zhang
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | | | - Renjie Huang
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | | | - Paul W. R. Harris
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
7
|
Milić S, Bogdanović Pristov J, Mutavdžić D, Savić A, Spasić M, Spasojević I. The relationship of physicochemical properties to the antioxidative activity of free amino acids in Fenton system. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4245-4254. [PMID: 25764263 DOI: 10.1021/es5053396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein we compared antioxidative activities (AA) of 25 free L-amino acids (FAA) against Fenton system-mediated hydroxyl radical (HO(•)) production in aqueous solution, and examined the relation between AA and a set of physicochemical properties. The rank order according to AA was: Trp > norleucine > Phe, Leu > Ile > His >3,4-dihydroxyphenylalanine, Arg > Val > Lys, Tyr, Pro > hydroxyproline > α-aminobutyric acid > Gln, Thr, Ser > Glu, Ala, Gly, Asn, Asp. Sulfur-containing FAA generated different secondary reactive products, which were discriminated by the means of electron paramagnetic resonance spin-trapping spectroscopy. AA showed a general positive correlation with hydrophobicity. However, when taken separately, uncharged FAA exhibited strong positive correlation of AA with hydrophobicity whereas charged FAA showed negative or no significant correlation depending on the scale applied. A general strong negative correlation was found between AA and polarity. Steric parameters and hydration numbers correlated positively with AA of nonpolar side-chain FAA. In addition, a decrease of temperature which promotes hydrophobic hydration resulted in increased AA. This implies that HO(•)-provoked oxidation of FAA is strongly affected by hydrophobic hydration. Our findings are important for the understanding of oxidation processes in natural and waste waters.
Collapse
Affiliation(s)
- Sonja Milić
- †Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade 11030, Serbia
| | - Jelena Bogdanović Pristov
- †Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade 11030, Serbia
| | - Dragosav Mutavdžić
- †Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade 11030, Serbia
| | - Aleksandar Savić
- †Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade 11030, Serbia
| | - Mihajlo Spasić
- ‡Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade 11060, Serbia
| | - Ivan Spasojević
- †Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade 11030, Serbia
| |
Collapse
|
8
|
Revilla-López G, Rodríguez-Ropero F, Curcó D, Torras J, Calaza MI, Zanuy D, Jiménez AI, Cativiela C, Nussinov R, Alemán C. Integrating the intrinsic conformational preferences of noncoded α-amino acids modified at the peptide bond into the noncoded amino acids database. Proteins 2011; 79:1841-52. [PMID: 21491493 PMCID: PMC3092812 DOI: 10.1002/prot.23009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/22/2011] [Accepted: 01/28/2011] [Indexed: 01/16/2023]
Abstract
Recently, we reported a database (Noncoded Amino acids Database; http://recerca.upc.edu/imem/index.htm) that was built to compile information about the intrinsic conformational preferences of nonproteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, the experimentally established conformational propensities, and applications (Revilla-López et al., J Phys Chem B 2010;114:7413-7422). The database initially contained the information available for α-tetrasubstituted α-amino acids. In this work, we extend NCAD to three families of compounds, which can be used to engineer peptides and proteins incorporating modifications at the--NHCO--peptide bond. Such families are: N-substituted α-amino acids, thio-α-amino acids, and diamines and diacids used to build retropeptides. The conformational preferences of these compounds have been analyzed and described based on the information captured in the database. In addition, we provide an example of the utility of the database and of the compounds it compiles in protein and peptide engineering. Specifically, the symmetry of a sequence engineered to stabilize the 3(10)-helix with respect to the α-helix has been broken without perturbing significantly the secondary structure through targeted replacements using the information contained in the database.
Collapse
Affiliation(s)
- Guillem Revilla-López
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Francisco Rodríguez-Ropero
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - David Curcó
- Departament d’Enginyeria Química, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08028, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEI, Universitat Politècnica de Catalunya, Pça Rei 15, Igualada 08700, Spain
| | - M. Isabel Calaza
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - David Zanuy
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Ana I. Jiménez
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program, NCI, Frederick, MD 21702, USA
- Department of Human Genetics Sackler, Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carlos Alemán
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
9
|
Obermajer N, Sattin S, Colombo C, Bruno M, Švajger U, Anderluh M, Bernardi A. Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists. Mol Divers 2011; 15:347-60. [PMID: 21076980 PMCID: PMC7089406 DOI: 10.1007/s11030-010-9285-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 10/18/2010] [Indexed: 01/12/2023]
Abstract
In this article, we describe the design, synthesis and activity evaluation of glycomimetic DC-SIGN antagonists, that use a mannose residue to anchor to the protein carbohydrate recognition domain (CRD). The molecules were designed from the structure of the known pseudo-mannobioside antagonist 1, by including additional hydrophobic groups, which were expected to engage lipophilic areas of DC-SIGN CRD. The results demonstrate that the synthesized compounds potently inhibit DC-SIGN-mediated adhesion to mannan coated plates. Additionally, in silico docking studies were performed to rationalize the results and to suggest further optimization.
Collapse
Affiliation(s)
- Nataša Obermajer
- Department of Biotechnology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Sara Sattin
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Cinzia Colombo
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Michela Bruno
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anna Bernardi
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
10
|
Sattin S, Daghetti A, Thépaut M, Berzi A, Sánchez-Navarro M, Tabarani G, Rojo J, Fieschi F, Clerici M, Bernardi A. Inhibition of DC-SIGN-mediated HIV infection by a linear trimannoside mimic in a tetravalent presentation. ACS Chem Biol 2010; 5:301-12. [PMID: 20085340 DOI: 10.1021/cb900216e] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV infection is pandemic in humans and is responsible for millions of deaths every year. The discovery of new cellular targets that can be used to prevent the infection process represents a new opportunity for developing more effective antiviral drugs. In this context, dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN), a lectin expressed at the surface of immature dendritic cells and involved in the initial stages of HIV infection, is a promising therapeutic target. Herein we show the ability of a new tetravalent dendron containing four copies of a linear trimannoside mimic to inhibit the trans HIV infection process of CD4+ T lymphocytes at low micromolar range. This compound presents a high solubility in physiological media, a neglectable cytotoxicity, and a long-lasting effect and is based on carbohydrate-mimic units. Notably, the HIV antiviral activity is independent of viral tropism (X4 or R5). The formulation of this compound as a gel could allow its use as topical microbicide.
Collapse
Affiliation(s)
- Sara Sattin
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Anna Daghetti
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Michel Thépaut
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- CNRS, UMR 5075, 38000 Grenoble, France
| | - Angela Berzi
- Dipartimento di Scienze Precliniche, Università degli Studi di Milano, via GB Grassi 74, 20157 Milano, Italy
| | - Macarena Sánchez-Navarro
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC−Universidad de Sevilla, Av. Americo Vespucio 49, 41092 Seville, Spain
| | - Georges Tabarani
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, 38000 Grenoble, France
| | - Javier Rojo
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC−Universidad de Sevilla, Av. Americo Vespucio 49, 41092 Seville, Spain
| | - Franck Fieschi
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, 38000 Grenoble, France
| | - Mario Clerici
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, via Flli Cervi 93, 20090 Segrate, Italy
- Don C. Gnocchi ONLUS Foundation IRCCS, Via Capecelatro 66, 20148 Milano, Italy
| | - Anna Bernardi
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
11
|
Medina SI, Wu J, Bode JW. Nitrone protecting groups for enantiopure N-hydroxyamino acids: synthesis of N-terminal peptide hydroxylamines for chemoselective ligations. Org Biomol Chem 2010; 8:3405-17. [DOI: 10.1039/c004490c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Abstract
During molecular recognition of proteins in biological systems, helices, reverse turns, and beta-sheets are dominant motifs. Often there are therapeutic reasons for blocking such recognition sites, and significant progress has been made by medicinal chemists in the design and synthesis of semirigid molecular scaffolds on which to display amino acid side chains. The basic premise is that preorganization of the competing ligand enhances the binding affinity and potential selectivity of the inhibitor. In this chapter, current progress in these efforts is reviewed.
Collapse
|
13
|
Gazal S, Masterson LR, Barany G. Facile solid-phase synthesis of C-terminal peptide aldehydes and hydroxamates from a common Backbone Amide-Linked (BAL) intermediate*†. ACTA ACUST UNITED AC 2008; 66:324-32. [PMID: 16316448 DOI: 10.1111/j.1399-3011.2005.00311.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
C-Terminal peptide aldehydes and hydroxamates comprise two separate classes of effective inhibitors of a number of serine, aspartate, cysteine, and metalloproteases. Presented here is a method for preparation of both classes of peptide derivatives from the same resin-bound Weinreb amide precursor. Thus, 5-[(2 or 4)-formyl-3,5-dimethoxyphenoxy]butyramido-polyethylene glycol-polystyrene (BAL-PEG-PS) was treated with methoxylamine hydrochloride in the presence of sodium cyanoborohydride to provide a resin-bound methoxylamine, which was efficiently acylated by different Fmoc-amino acids upon bromo-tris-pyrrolidone-phosphonium hexafluorophosphate (PyBrOP) activation. Solid-phase chain elongation gave backbone amide-linked (BAL) peptide Weinreb amides, which were cleaved either by trifluoroacetic acid (TFA) in the presence of scavengers to provide the corresponding peptide hydroxamates, or by lithium aluminum hydride in tetrahydrofuran (THF) to provide the corresponding C-terminal peptide aldehydes. With several model sequences, peptide hydroxamates were obtained in crude yields of 68-83% and initial purities of at least 85%, whereas peptide aldehydes were obtained in crude yields of 16-53% and initial purities in the range of 30-40%. Under the LiAlH4 cleavage conditions used, those model peptides containing t-Bu-protected aspartate residues underwent partial side chain reduction to the corresponding homoserine-containing peptides. Similar results were obtained when working with high-load aminomethyl-polystyrene, suggesting that this chemistry will be generally applicable to a range of supporting materials.
Collapse
Affiliation(s)
- S Gazal
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
14
|
Che Y, Marshall GR. Privileged scaffolds targeting reverse-turn and helix recognition. Expert Opin Ther Targets 2008; 12:101-14. [PMID: 18076374 DOI: 10.1517/14728222.12.1.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Protein-protein interactions dominate molecular recognition in biologic systems. One major challenge for drug discovery arises from the very large surfaces that are characteristic of many protein-protein interactions. OBJECTIVES To identify 'drug-like' small molecule leads capable of modulating protein-protein interactions based on common protein-recognition motifs, such as alpha-helices, beta-strands, reverse-turns and polyproline motifs for example. OVERVIEW Many proteins/peptides are unstructured under physiologic conditions and only fold into ordered structures on binding to their cellular targets. Therefore, preorganization of an inhibitor into its protein-bound conformation reduces the entropy of binding and enhances the relative affinity of the inhibitor. Accordingly, this review describes a general strategy to address the challenge based on the 'privileged structure hypothesis' [Che, PhD thesis, Washington University, 2003] that chemical templates capable of mimicking surfaces of protein-recognition motifs are potential privileged scaffolds as small-molecule inhibitors of protein-protein interactions. The authors highlight recent advances in the design of privileged scaffolds targeting reverse-turn and helical recognition. CONCLUSIONS Privileged scaffolds targeting common protein-recognition motifs are useful to help elucidate the receptor-bound conformation and to provide non-peptidic, bioavailable substructures suitable for optimization to modulate protein-protein interactions.
Collapse
Affiliation(s)
- Ye Che
- Washington University, Center for Computational Biology and Department of Biochemistry and Molecular Biophysics, St. Louis, MO 63110, USA
| | | |
Collapse
|
15
|
Ye Y, Liu M, Kao JLF, Marshall GR. Design, synthesis, and metal binding of novelPseudo- oligopeptides containing two phosphinic acid groups. Biopolymers 2008; 89:72-85. [PMID: 17910046 DOI: 10.1002/bip.20855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphinic compounds have potential as amide-bond mimetics in the development of novel peptidomimetics, enzyme inhibitors, and metal-binding ligands. Novel pseudo-oligopeptides with two phosphinic acid groups embedded in the peptide backbone serving as amide-bond surrogates, Psi[P(O,OH)--CH(2)], were targeted. A series of linear and cyclic pseudo-oligopeptides with two phosphinic acid groups arrayed at different positions in the peptide sequence were designed, including Ac--Phe--{(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly}(2)--NH(2) (P2), Ac--NH--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--Phe--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--NH(2) (P3), Ac--NH--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--Phe--Phe--(R,S) --AlaPsi[P(O,OH)--CH(2)]Gly--NH(2) (P4), cyclo{NH--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--Phe}(2) (P5), and cyclo[NH--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--Phe--Phe](2) (P6). They were synthesized via conventional Fmoc chemistry on solid support utilizing Fmoc-protected phosphinic acid-containing pseudo-dipeptide fragment, i.e. Fmoc--(R,S)--AlaPsi[P(O,OCH(3))--CH(2)]Gly--OH. The pseudo-peptides containing two phosphinic acid groups exhibited the highest binding affinity and selectivity for Fe(III) among the 10-metal ions screened by ESI-MS analysis--Cu(II), Zn(II), Co(II), Ni(II), Mn(II), Fe(II), Fe(III), Al(III), Ga(III), and Gd(III). P4 and P6 with 11-atom linkages between the two phosphinic acids preferred intramolecular metal binding to form 1:1 ligand/metal complexes. As revealed by competition experiments, P4 showed the highest relative binding affinity among the six compounds tested. Noteworthy, P4 also showed higher relative binding affinity than similar dihydroxamate-containing pseudo-peptides reported previously. The novel structural prototype and facile synthesis along with selective and potent Fe(III) binding strongly suggest that pseudo-peptides containing the two or more phosphinic groups as amide-bond surrogates deserve further exploration in medicinal chemistry.
Collapse
Affiliation(s)
- Yunpeng Ye
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
16
|
Blat D, Weiner L, Youdim MBH, Fridkin M. A Novel Iron-Chelating Derivative of the Neuroprotective Peptide NAPVSIPQ Shows Superior Antioxidant and Antineurodegenerative Capabilities. J Med Chem 2007; 51:126-34. [DOI: 10.1021/jm070800l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dan Blat
- Department of Organic Chemistry and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, and Eve Topf and U.S.A. National Parkinson Foundation Centers for Neurodegenerative Diseases and Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| | - Lev Weiner
- Department of Organic Chemistry and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, and Eve Topf and U.S.A. National Parkinson Foundation Centers for Neurodegenerative Diseases and Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| | - Moussa B. H. Youdim
- Department of Organic Chemistry and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, and Eve Topf and U.S.A. National Parkinson Foundation Centers for Neurodegenerative Diseases and Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| | - Mati Fridkin
- Department of Organic Chemistry and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, and Eve Topf and U.S.A. National Parkinson Foundation Centers for Neurodegenerative Diseases and Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
17
|
Ye Y, Bloch S, Xu B, Achilefu S. Novel near-infrared fluorescent integrin-targeted DFO analogue. Bioconjug Chem 2007; 19:225-34. [PMID: 18038965 DOI: 10.1021/bc7003022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Desferrioxamine (DFO), a siderophore initially isolated from Streptomyces pilosus, possesses extraordinary metal binding properties with wide biomedical applications that include chelation therapy, nuclear imaging, and antiproliferation. In this work, we prepared a novel multifunctional agent consisting of (i) a near-infrared (NIR) fluorescent probe-cypate; (ii) an integrin alpha vbeta3 receptor (ABIR)-avid cyclic RGD peptide, and (iii) a DFO moiety, DFO-cypate-cyclo[RGDfK(approximately)] (1, with approximately representing the cypate conjugation site at the side chain of lysine; f is d-phenylalanine). Compound 1 and two control compounds, cypate-cyclo[RGDfK(approximately)] ( 2) and cypate-DFO ( 3), were synthesized by modular assembly of the corresponding protected RGD peptide cyclo[R(Pbf)GD(OBut)fK] and DFO on the dicarboxylic acid-containing cypate scaffold in solution. The three compounds exhibited similar UV-vis and emission spectral properties. Metal binding analysis shows that DFO as well as 1 and 3 exhibited relatively high binding affinity with Fe(III), Al(III), and Ga(III). In contrast to Ga(III), the binding of Fe to 1 and 3 quenched the fluorescence emission of cypate significantly, suggesting an efficient metal-mediated approach to perturb the spectral properties of NIR fluorescent carbocyanine probes. In vitro, 1 showed a high ABIR binding affinity (10 (-7) M) comparable to that of 2 and the reference peptide cyclo(RGDfV), indicating that both DFO and cypate motifs did not interfere significantly with the molecular recognition of the cyclic RGD motif with ABIR. Fluorescence microscopy showed that internalization of 1 and 2 in ABIR-positive A549 cells at 1 h postincubation was higher than 3 and cypate alone, demonstrating that incorporating ABIR-targeting RGD motif could improve cellular internalization of DFO analogues. The ensemble of these findings demonstrate the use of multifunctional NIR fluorescent ABIR-targeting DFO analogues to modulate the spectral properties of the NIR fluorescent probe by the chelating properties of DFO and visualize intracellular delivery of DFO by receptor-specific peptides. These features provide a strategy to explore the potential of 1 in tumor imaging and treatment as well as some molecular recognition processes mediated by metal ions.
Collapse
Affiliation(s)
- Yunpeng Ye
- Department of Radiology, Washington University, 4525 Scott Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
18
|
Ye Y, Liu M, Kao JLF, Marshall GR. Novel trihydroxamate-containing peptides: design, synthesis, and metal coordination. Biopolymers 2006; 84:472-89. [PMID: 16705688 DOI: 10.1002/bip.20532] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Novel trihydroxamate-containing peptides were designed to mimic desferrioxamine (Desferal(R), DFO, a naturally occurring siderophore) but possess distinct conformational restrictions and varied lipophilicity to probe structure vs. metal coordination. The synthesis was performed via fragment condensation of hydroxamate-containing oligopeptides such as Fmoc-Leu- Psi[CON(OBz)]-Phe-Ala-Pro-OH and H-Leu-Psi[CON(OBz)]-Phe-Ala-Pro-OBu(t) (Fmoc: 9-fluor enylmethoxycarbonyl; OBz: benzyl; OBu(t): tert-butyl) either in solution or on a solid support. The metal-binding properties were studied by electrospray ionization-mass spectroscopy (ESI-MS), ultraviolet (UV)-visible spectroscopy, and (1)H nuclear magnetic resonance (NMR). Similar to the dihydroxamate analogs previously explored [Biopolymers (Peptide Science), 2003, Vol. 71, pp. 489-515], the compounds with three hydroxamates arrayed at 10-atom intervals, i.e., H-[Leu-Psi[CON(OH)]-Phe-Ala-Pro](3)-OH (P1), cyclo[Leu-Psi[CON(OH)]-Phe-Ala-Pro](3) (P2), and H-[Leu-Psi(CONOH)-Phe-Ala-Pro](2)-Leu-NHOH (P7), exhibited high affinities for intramolecular coordination with Fe(III) and Ga(III). As expected, both P1 and P2 showed higher relative Fe(III)-binding affinities than the corresponding dihydroxamate-containing peptide analogs (P11 and P12). Even though both P1 and P2 did not compete with DFO in the relative metal-binding affinity in both solution and gas phases, P1, P2, and DFO exhibited similar relative binding selectivities to 11 different metal ions including Fe(III), Fe(II), Al(III), Ga(III), In(III), Zn(II), Cu(II), Co(II), Ni(II), Gd(III), and Mn(II). Compared to the other metal ions, they had higher relative binding affinities with Fe(III), Fe(II), Al(III), Ga(III), and In(III). The decreased metal-binding affinities of P1 and P2 in comparison with DFO suggested the conformational restrictions of their backbones perturb their three hydroxamate groups from optimal hexadentate orientations for metal coordination. As detected by ESI-MS, P2 was distinguished from both P1 and DFO by solvation of its Ga(III) and Fe(III) complexes (such as acetonitrile or water), thereby stabilizing the resulting complexes in the gas phase. Noteworthy, P2 led to 69% death rate in Hela cells at a concentration of 50 microM, exhibiting higher cytotoxicity than DFO in vitro despite its much lower affinity for iron. This enhanced toxicity may simply reflect the increased lipophilicity of the cyclic trihydroxamate (P2) together with the improvements in its cell penetration, and/or subsequent intracellular molecular recognition of both side chains and hydroxamate groups. The cytotoxicity was significantly suppressed by precoordination with Ga(III) or Fe(III), suggesting a mechanism of toxicity via sequestration of essential metal ions as well as the importance of curbing the metal coordination before targeting. The potential of such siderophore-mimicking peptides in oncology needs further exploration.
Collapse
Affiliation(s)
- Yunpeng Ye
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
19
|
Di Marco VB, Bombi GG. Electrospray mass spectrometry (ESI-MS) in the study of metal-ligand solution equilibria. MASS SPECTROMETRY REVIEWS 2006; 25:347-79. [PMID: 16369936 DOI: 10.1002/mas.20070] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the 20 years, since the introduction of electrospray mass spectrometry (ESI-MS), the use of this technique in various fields of inorganic, organometallic, and analytical chemistry has been steadily increasing. In this study, the application of ESI-MS to the study of metal-ligand solution equilibria is reviewed (till 2004 included). In a first section, advantages and drawbacks of ESI-MS in this type of application are described. Subsequently, a list of ca. 300 studies is reported, in which ESI-MS was used to give number and stoichiometry of the species at equilibrium, or also to estimate their stability constants. All studies are classified according to the metal ions under examination. Other related applications, such as host-guest interactions and metal ion-protein binding studies, are briefly reviewed as well.
Collapse
|
20
|
Lawrence J, Cointeaux L, Maire P, Vallée Y, Blandin V. N-Hydroxy and N-acyloxy peptides: synthesis and chemical modifications. Org Biomol Chem 2006; 4:3125-41. [PMID: 16886082 DOI: 10.1039/b606677a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of a series of N-hydroxy peptides is described, along with their acylation on the oxygen of the pseudopeptide bond. Nineteen N-acyloxy peptides, first examples of this new class of pseudopeptides, were thus synthesized; they present a range of acyl groups, including N-protected amino acyl groups. Possibilities of elongation for these pseudopeptides were also investigated.
Collapse
Affiliation(s)
- James Lawrence
- Grenoble Universités, LEDSS, UMR CNRS/UJF 5616, ICMG, FR-2607, Université Joseph Fourier Grenoble I, BP 53, 38041, Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
21
|
Di Gioia ML, Leggio A, Le Pera A, Liguori A, Siciliano C. Optically PureN-Hydroxy-O-triisopropylsilyl-α-l-amino Acid Methyl Esters from AlCl3-Assisted Ring Opening of Chiral Oxaziridines by Nitrogen Containing Nucleophiles. J Org Chem 2005; 70:10494-501. [PMID: 16323863 DOI: 10.1021/jo051890+] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] This article reports a straightforward and unprecedented process of AlCl3-assisted oxaziridine ring opening by nitrogen containing nucleophiles, in a totally anhydrous milieu. Under these conditions, nucleophiles exclusively attack the carbon atom of the three-membered heterocycles, obtained from methyl esters of natural alpha-amino acids, generating N-hydroxy-alpha-L-amino acid methyl esters. No nitrones, amides, or other side products, either from unwanted rearrangements or due to the attack of the nucleophile on the N atom of the oxaziridine systems, are formed. The hydroxylamine compounds are recovered in excellent yields, after their site-specific conversion into the corresponding O-triisopropylsilyl derivatives, by exposure to triisopropylsilyl triflate in the presence of 1H-imidazole. Derivatization, performed immediately after the recovery of the N-hydroxylated precursors, allows the chiral integrity of the asymmetric alpha-carbon atoms in the amino acid methyl esters to be retained. It also protects the obtained compounds from frame degradation by disproportionation. N-Hydroxy-O-triisopropylsilyl-alpha-L-amino acid methyl esters are important intermediates in the study of natural alpha-L-amino acid metabolic pathways and are ideal candidates as starting materials in the synthesis of biologically, pharmacologically, and nutritionally important N-hydroxy peptides.
Collapse
Affiliation(s)
- Maria Luisa Di Gioia
- Dipartimento di Scienze Farmaceutiche, Università della Calabria, Via P. Bucci, I-87036 Arcavacata di Rende (CS), Italy
| | | | | | | | | |
Collapse
|
22
|
Stair JL, Holcombe JA. Metal remediation and preconcentration using immobilized short-chain peptides composed of aspartic acid and cysteine. Microchem J 2005. [DOI: 10.1016/j.microc.2005.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|