1
|
Silva AM, Moniz T, de Castro B, Rangel M. Human transferrin: An inorganic biochemistry perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Abdizadeh H, Atilgan AR, Atilgan C, Dedeoglu B. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins. Metallomics 2018; 9:1513-1533. [PMID: 28967944 DOI: 10.1039/c7mt00216e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the advances in three-dimensional structure determination techniques, high quality structures of the iron transport proteins transferrin and the bacterial ferric binding protein (FbpA) have been deposited in the past decade. These are proteins of relatively large size, and developments in hardware and software have only recently made it possible to study their dynamics using standard computational resources. We review computational techniques towards understanding the equilibrium and kinetic properties of iron transport proteins under different environmental conditions. At the level of detail that requires quantum chemical treatments, the octahedral geometry around iron has been scrutinized and it has been established that the iron coordinating tyrosines are in an unusual deprotonated state. At the atomistic level, both the N-lobe and the full bilobal structure of transferrin have been studied under varying conditions of pH, ionic strength and binding of other metal ions by molecular dynamics (MD) simulations. These studies have allowed questions to be answered, among others, on the function of second shell residues in iron release, the role of synergistic anions in preparing the active site for iron binding, and the differences between the kinetics of the N- and the C-lobe. MD simulations on FbpA have led to the detailed observation of the binding kinetics of phosphate to the apo form, and to the conformational preferences of the holo form under conditions mimicking the environmental niches provided by the periplasmic space. To study the dynamics of these proteins with their receptors, one must resort to coarse-grained methodologies, since these systems are prohibitively large for atomistic simulations. A study of the complex of human transferrin (hTf) with its pathogenic receptor by such methods has revealed a potential mechanistic explanation for the defense mechanism that arises in evolutionary warfare. Meanwhile, the motions in the transferrin receptor bound hTf have been shown to disfavor apo hTf dissociation, explaining why the two proteins remain in complex during the recycling process from the endosome to the cell surface. Open problems and possible technological applications related to metal ion binding-release in iron transport proteins that may be handled by hybrid use of quantum mechanical, MD and coarse-grained approaches are discussed.
Collapse
Affiliation(s)
- H Abdizadeh
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı 34956, Tuzla, Istanbul, Turkey.
| | | | | | | |
Collapse
|
3
|
Abdizadeh H, Atilgan AR, Atilgan C. Mechanisms by Which Salt Concentration Moderates the Dynamics of Human Serum Transferrin. J Phys Chem B 2017; 121:4778-4789. [DOI: 10.1021/acs.jpcb.7b02380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haleh Abdizadeh
- Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| | - Ali Rana Atilgan
- Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| | - Canan Atilgan
- Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| |
Collapse
|
4
|
Barbany M, Meyer T, Hospital A, Faustino I, D'Abramo M, Morata J, Orozco M, de la Cruz X. Molecular dynamics study of naturally existing cavity couplings in proteins. PLoS One 2015; 10:e0119978. [PMID: 25816327 PMCID: PMC4376744 DOI: 10.1371/journal.pone.0119978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.
Collapse
Affiliation(s)
- Montserrat Barbany
- Translational Bioinformatics in Neurosciences, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Tim Meyer
- Theoretische und computergestützte Biophysik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Adam Hospital
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
| | - Ignacio Faustino
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
| | - Marco D'Abramo
- Department of Chemistry, Università degli Studi di Roma "La Sapienza", Roma, Italy
| | - Jordi Morata
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Modesto Orozco
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Translational Bioinformatics in Neurosciences, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
5
|
Mujika JI, Escribano B, Akhmatskaya E, Ugalde JM, Lopez X. Molecular Dynamics Simulations of Iron- and Aluminum-Loaded Serum Transferrin: Protonation of Tyr188 Is Necessary To Prompt Metal Release. Biochemistry 2012; 51:7017-27. [DOI: 10.1021/bi300584p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. I. Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center, PK 1072, 20080 Donostia, Euskadi, Spain
| | - B. Escribano
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, E-48009
Bilbao, Spain
| | - E. Akhmatskaya
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, E-48009
Bilbao, Spain
| | - J. M. Ugalde
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center, PK 1072, 20080 Donostia, Euskadi, Spain
| | - X. Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center, PK 1072, 20080 Donostia, Euskadi, Spain
| |
Collapse
|
6
|
Byrne SL, Steere AN, Chasteen ND, Mason AB. Identification of a kinetically significant anion binding (KISAB) site in the N-lobe of human serum transferrin. Biochemistry 2010; 49:4200-7. [PMID: 20397659 DOI: 10.1021/bi1003519] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human serum transferrin (hTF) binds two ferric iron ions which are delivered to cells in a transferrin receptor (TFR) mediated process. Critical to the delivery of iron to cells is the binding of hTF to the TFR and the efficient release of iron orchestrated by the interaction. Within the endosome, iron release from hTF is also aided by lower pH, the presence of anions, and a chelator yet to be identified. We have recently shown that three of the four residues comprising a loop in the N-lobe (Pro142, Lys144, and Pro145) are critical to the high-affinity interaction of hTF with the TFR. In contrast, Arg143 in this loop does not participate in the binding isotherm. In the current study, the kinetics of iron release from alanine mutants of each of these four residues (placed into both diferric and monoferric N-lobe backgrounds) have been determined +/- the TFR. The R143A mutation greatly retards the rate of iron release from the N-lobe in the absence of the TFR but has considerably less of an effect in its presence. Our data definitively show that Arg143 serves as a kinetically significant anion binding (KISAB) site that is, by definition, sensitive to salt concentration and critical to the conformational change necessary to induce iron release from the N-lobe of hTF (in the absence of the TFR). This is the first identification of an authentic KISAB site in the N-lobe of hTF. The effect of the single R143A mutation on the kinetic profile of iron release provides a dramatic illustration of the dynamic nature of hTF.
Collapse
Affiliation(s)
- Shaina L Byrne
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
7
|
Brewer G, Butcher RJ, Viragh C, White G. Supramolecular assemblies prepared from an iron(ii) tripodal imidazole complex. A molecular scaffolding for the self assembly of icosahedral complexes of K+, Rb+, Cs+ and NH4+ cations. Dalton Trans 2007. [DOI: 10.1039/b704823h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Matinaho S, Karhumäki P, Parkkinen J. Bicarbonate inhibits the growth of Staphylococcus epidermidis in platelet concentrates by lowering the level of non-transferrin-bound iron. Transfusion 2005; 45:1768-73. [PMID: 16271102 DOI: 10.1111/j.1537-2995.2005.00601.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelet concentrates (PCs) contain non-transferrin-bound iron (NTBI) owing to the displacement of iron from plasma-derived transferrin by citrate. NTBI in the PC medium supports the growth of Staphylococcus epidermidis. The possibilities of lowering the level of NTBI have been studied with the aim to inhibit the growth of S. epidermidis in the PC medium. STUDY DESIGN AND METHODS NTBI in PC supernatants was determined by a chelation method and by the bleomycin-detectable iron assay. Iron binding by transferrin was determined by spectrophotometry. The growth of inoculated S. epidermidis in PC supernatants was monitored by optical density and determination of viable counts. RESULTS Bicarbonate enhanced in a dose-dependent manner transferrin iron binding in citrate-containing solutions, including citrated plasma and PAS-II. The use of a modified anticoagulant supplemented with bicarbonate effectively lowered the level of NTBI and inhibited bacterial growth in citrated plasma. Supplementation of bicarbonate to the additive solution to increase the ratio of bicarbonate to citrate in a reconstituted PC medium further inhibited bacterial growth. Maintenance of stable pH and bicarbonate level in the reconstituted medium necessitated storage under 5 percent CO(2). CONCLUSIONS The relatively low bicarbonate level in PC medium promotes iron displacement by citrate from plasma-derived transferrin. The appearance of NTBI can be decreased and iron-dependent bacterial growth can be inhibited by increasing bicarbonate level in citrated plasma and PC medium. To achieve the same beneficial effect in blood banking, other more practical ways to bind NTBI in a harmless form should be developed.
Collapse
|
9
|
Harris WR, Brook CE, Spilling CD, Elleppan S, Peng W, Xin M, Wyk JV. Release of iron from transferrin by phosphonocarboxylate and diphosphonate chelating agents. J Inorg Biochem 2005; 98:1824-36. [PMID: 15522410 DOI: 10.1016/j.jinorgbio.2004.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/06/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
The rates at which phosphonocarboxylate and diphosphonate ligands remove iron from the serum iron transport protein transferrin at 25 degrees C and pH 7.4 have been evaluated. These ligands show a combination of saturation and first-order kinetics with respect to the free ligand concentrations. The ability of the ligands to remove iron from transferrin appears to be subject to steric restrictions that are essentially identical to those associated with the ability of a ligand to substitute for the synergistic carbonate anion. This observation supports the hypothesis that the first-order component for iron removal involves a mechanism in which the rate-limiting step is the slow substitution of the synergistic carbonate by the incoming chelating agent. Studies on monoferric transferrins indicate that phosphonocarboxylates are unusually effective at removing iron from the C-terminal site of the protein. Difference UV spectroscopy has been used to show that the phosphonocarboxylates bind strongly to apotransferrin. It is suggested that the rapid release of iron from the C-terminal site may be due to the binding of the ligand to an allosteric anion-binding site in the C-terminal lobe of the protein.
Collapse
Affiliation(s)
- Wesley R Harris
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Drive, St. Louis, MO 63121, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Sun Y, Welsh WJ, Latour RA. Prediction of the orientations of adsorbed protein using an empirical energy function with implicit solvation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5616-26. [PMID: 15924498 DOI: 10.1021/la046932o] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
When simulating protein adsorption behavior, decisions must first be made regarding how the protein should be oriented on the surface. To address this problem, we have developed a molecular simulation program that combines an empirical adsorption free energy function with an efficient configurational search method to calculate orientation-dependent adsorption free energies between proteins and functionalized surfaces. The configuration space is searched systematically using a quaternion rotation technique, and the adsorption free energy is evaluated using an empirical energy function with an efficient grid-based calculational method. In this paper, the developed method is applied to analyze the preferred orientations of a model protein, lysozyme, on various functionalized alkanethiol self-assembled monolayer (SAM) surfaces by the generation of contour graphs that relate adsorption free energy to adsorbed orientation, and the results are compared with experimental observations. As anticipated, the adsorbed orientation of lysozyme is predicted to be dependent on the discrete organization of the functional groups presented by the surface. Lysozyme, which is a positively charged protein, is predicted to adsorb on its 'side' on both hydrophobic and negatively charged surfaces. On surfaces with discrete positively charged sites, attractive interaction energies can also be obtained due to the presence of discrete local negative charges present on the lysozyme surface. In this case, 'end-on' orientations are preferred. Additionally, SAM surface models with mixed functionality suggest that the interactions between lysozyme and surfaces could be greatly enhanced if individual surface functional groups are able to access the catalytic cleft region of lysozyme, similar to ligand-receptor interactions. The contour graphs generated by this method can be used to identify low-energy orientations that can then be used as starting points for further simulations to investigate conformational changes induced in protein structure following initial adsorption.
Collapse
Affiliation(s)
- Yu Sun
- Department of Bioengineering and Center for Advanced Engineering Fibers & Films (CAEFF), Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|