1
|
Schwestka J, Tschofen M, Vogt S, Marcel S, Grillari J, Raith M, Swoboda I, Stoger E. Plant-derived protein bodies as delivery vehicles for recombinant proteins into mammalian cells. Biotechnol Bioeng 2020; 117:1037-1047. [PMID: 31956981 PMCID: PMC7079162 DOI: 10.1002/bit.27273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/22/2019] [Accepted: 01/11/2020] [Indexed: 12/18/2022]
Abstract
The encapsulation of biopharmaceuticals into micro- or nanoparticles is a strategy frequently used to prevent degradation or to achieve the slow release of therapeutics and vaccines. Protein bodies (PBs), which occur naturally as storage organelles in seeds, can be used as such carrier vehicles. The fusion of the N-terminal sequence of the maize storage protein, γ-zein, to other proteins is sufficient to induce the formation of PBs, which can be used to bioencapsulate recombinant proteins directly in the plant production host. In addition, the immunostimulatory effects of zein have been reported, which are advantageous for vaccine delivery. However, little is known about the interaction between zein PBs and mammalian cells. To better understand this interaction, fluorescent PBs, resulting from the fusion of the N-terminal portion of zein to a green fluorescent protein, was produced in Nicotiana benthamiana leaves, recovered by a filtration-based downstream procedure, and used to investigate their internalization efficiency into mammalian cells. We show that fluorescent PBs were efficiently internalized into intestinal epithelial cells and antigen-presenting cells (APCs) at a higher rate than polystyrene beads of comparable size. Furthermore, we observed that PBs stimulated cytokine secretion by epithelial cells, a characteristic that may confer vaccine adjuvant activities through the recruitment of APCs. Taken together, these results support the use of zein fusion proteins in developing novel approaches for drug delivery based on controlled protein packaging into plant PBs.
Collapse
Affiliation(s)
- Jennifer Schwestka
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Marc Tschofen
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Stefan Vogt
- Department of Biotechnology, Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Johannes Grillari
- Department of Biotechnology, Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Christian Doppler Laboratory for Biotechnology of Skin AgingUniversity of Natural Resources and Life SciencesViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
| | - Marianne Raith
- Biotechnology Section, FH Campus WienUniversity of Applied Sciences Campus Vienna BiocenterViennaAustria
| | - Ines Swoboda
- Biotechnology Section, FH Campus WienUniversity of Applied Sciences Campus Vienna BiocenterViennaAustria
| | - Eva Stoger
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
2
|
Zou Y, Pan R, Liu Y, Liu X, Chen X, Wang J, Wan Z, Guo J, Yang X. Effects of γ-zein peptides on lipid membrane organization: Quartz crystal microbalance with dissipation and Langmuir monolayer studies. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Arcalis E, Ibl V, Hilscher J, Rademacher T, Avesani L, Morandini F, Bortesi L, Pezzotti M, Vitale A, Pum D, De Meyer T, Depicker A, Stoger E. Russell-Like Bodies in Plant Seeds Share Common Features With Prolamin Bodies and Occur Upon Recombinant Protein Production. FRONTIERS IN PLANT SCIENCE 2019; 10:777. [PMID: 31316529 PMCID: PMC6611407 DOI: 10.3389/fpls.2019.00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/28/2019] [Indexed: 05/06/2023]
Abstract
Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production.
Collapse
Affiliation(s)
- Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Luisa Bortesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, CNR, Milan, Italy
| | - Dietmar Pum
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Eva Stoger, ;
| |
Collapse
|
4
|
Mainieri D, Marrano CA, Prinsi B, Maffi D, Tschofen M, Espen L, Stöger E, Faoro F, Pedrazzini E, Vitale A. Maize 16-kD γ-zein forms very unusual disulfide-bonded polymers in the endoplasmic reticulum: implications for prolamin evolution. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5013-5027. [PMID: 30085182 PMCID: PMC6184761 DOI: 10.1093/jxb/ery287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 05/22/2023]
Abstract
In the lumen of the endoplasmic reticulum (ER), prolamin storage proteins of cereal seeds form very large, ordered heteropolymers termed protein bodies (PBs), which are insoluble unless treated with alcohol or reducing agents. In maize PBs, 16-kD γ-zein locates at the interface between a core of alcohol-soluble α-zeins and the outermost layer mainly composed of the reduced-soluble 27-kD γ-zein. 16-kD γ-zein originates from 27-kD γ-zein upon whole-genome duplication and is mainly characterized by deletions in the N-terminal domain that eliminate most Pro-rich repeats and part of the Cys residues involved in inter-chain bonds. 27-kD γ-zein also forms insoluble PBs when expressed in transgenic vegetative tissues. We show that in Arabidopsis leaves, 16-kD γ-zein assembles into disulfide-linked polymers that fail to efficiently become insoluble. Instead of forming PBs, these polymers accumulate as very unusual threads that markedly enlarge the ER lumen, resembling amyloid-like fibers. Domain-swapping between the two γ-zeins indicates that the N-terminal region of 16-kD γ-zein has a dominant effect in preventing full insolubilization. Therefore, a newly evolved prolamin has lost the ability to form homotypic PBs, and has acquired a new function in the assembly of natural, heteropolymeric PBs.
Collapse
Affiliation(s)
- Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
| | | | - Bhakti Prinsi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Dario Maffi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Marc Tschofen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Luca Espen
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
- Correspondence: or
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
- Correspondence: or
| |
Collapse
|
5
|
Afonin S, Kubyshkin V, Mykhailiuk PK, Komarov IV, Ulrich AS. Conformational Plasticity of the Cell-Penetrating Peptide SAP As Revealed by Solid-State 19F-NMR and Circular Dichroism Spectroscopies. J Phys Chem B 2017; 121:6479-6491. [PMID: 28608690 DOI: 10.1021/acs.jpcb.7b02852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell-penetrating peptide SAP, which was designed as an amphipathic poly-l-proline helix II (PPII), was suggested to self-assemble into regular fibrils that are relevant for its internalization. Herein we have analyzed the structure of SAP in the membrane-bound state by solid-state 19F-NMR, which revealed other structural states, in addition to the expected surface-aligned PPII. Trifluoromethyl-bicyclopentyl-glycine (CF3-Bpg) and two rigid isomers of trifluoromethyl-4,5-methanoprolines (CF3-MePro) were used as labels for 19F-NMR analysis. The equilibria between different conformations of SAP were studied and were found to be shifted by the substituents at Pro-11. Synchrotron-CD results suggested that substituting Pro-11 by CF3-MePro governed the coil-to-PPII equilibrium in solution and in the presence of a lipid bilayer. Using CD and 19F-NMR, we examined the slow kinetics of the association of SAP with membranes and the dependence of the SAP conformational dynamics on the lipid composition. The peptide did not bind to lipids in the solid ordered phase and aggregated only in the liquid ordered "raft"-like bilayers. Self-association could not be detected in solution or in the presence of liquid disordered membranes. Surface-bound amphipathic SAP in a nonaggregated state was structured as a mixture of nonideal extended conformations reflecting the equilibrium already present in solution, i.e., before binding to the membrane.
Collapse
Affiliation(s)
- Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology , P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Vladimir Kubyshkin
- Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Pavel K Mykhailiuk
- Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.,Enamine Ltd. , Vul. Chervonotkatska 78, 02660 Kyiv, Ukraine
| | - Igor V Komarov
- Institute of High Technologies, Taras Shevchenko National University of Kyiv , Prosp. Glushkova 4-g, 02033 Kyiv, Ukraine
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology , P.O.B. 3640, 76021 Karlsruhe, Germany.,Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Thapa RK, Nguyen HT, Jeong JH, Shin BS, Ku SK, Choi HG, Yong CS, Kim JO. Synergistic anticancer activity of combined histone deacetylase and proteasomal inhibitor-loaded zein nanoparticles in metastatic prostate cancers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:885-896. [DOI: 10.1016/j.nano.2016.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/31/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023]
|
7
|
Pedrazzini E, Mainieri D, Marrano CA, Vitale A. Where do Protein Bodies of Cereal Seeds Come From? FRONTIERS IN PLANT SCIENCE 2016; 7:1139. [PMID: 27540384 PMCID: PMC4973428 DOI: 10.3389/fpls.2016.01139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/18/2016] [Indexed: 05/03/2023]
Abstract
Protein bodies of cereal seeds consist of ordered, largely insoluble heteropolymers formed by prolamin storage proteins within the endoplasmic reticulum (ER) of developing endosperm cells. Often these structures are permanently unable to traffic along the secretory pathway, thus representing a unique example for the use of the ER as a protein storage compartment. In recent years, marked progress has been made in understanding what is needed to make a protein body and in formulating hypotheses on how protein body formation might have evolved as an efficient mechanism to store large amounts of protein during seed development, as opposed to the much more common system of seed storage protein accumulation in vacuoles. The major key evolutionary events that have generated prolamins appear to have been insertions or deletions that have disrupted the conformation of the eight-cysteine motif, a protein folding motif common to many proteins with different functions and locations along the secretory pathway, and, alternatively, the fusion between the eight-cysteine motif and domains containing additional cysteine residues.
Collapse
|
8
|
Sun X, Chi-Ham CL, Cohen-Davidyan T, DeBen C, Getachew G, DePeters E, Putnam D, Bennett A. Protein accumulation and rumen stability of wheat γ-gliadin fusion proteins in tobacco and alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:974-82. [PMID: 25659597 DOI: 10.1111/pbi.12338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine-rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine-rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ-gliadin-δ-zein and γ-δ-zein, as well as δ-zein co-expressed with β-zein, all formed protein bodies. However, the γ-gliadin-δ-zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ-gliadin-δ-zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ-gliadin-δ-zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ-gliadin-GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ-gliadin-δ-zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ-gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants.
Collapse
Affiliation(s)
- Xiaodong Sun
- Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, CA, USA
| | - Cecilia L Chi-Ham
- Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Christopher DeBen
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Girma Getachew
- Department of Animal Science, University of California, Davis, CA, USA
| | - Edward DePeters
- Department of Animal Science, University of California, Davis, CA, USA
| | - Daniel Putnam
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Alan Bennett
- Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
9
|
Mainieri D, Morandini F, Maîtrejean M, Saccani A, Pedrazzini E, Alessandro V. Protein body formation in the endoplasmic reticulum as an evolution of storage protein sorting to vacuoles: insights from maize γ-zein. FRONTIERS IN PLANT SCIENCE 2014; 5:331. [PMID: 25076952 PMCID: PMC4097401 DOI: 10.3389/fpls.2014.00331] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/23/2014] [Indexed: 05/20/2023]
Abstract
The albumin and globulin seed storage proteins present in all plants accumulate in storage vacuoles. Prolamins, which are the major proteins in cereal seeds and are present only there, instead accumulate within the endoplasmic reticulum (ER) lumen as very large insoluble polymers termed protein bodies. Inter-chain disulfide bonds play a major role in polymerization and insolubility of many prolamins. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body formation when fused to other proteins and contains seven cysteine residues involved in inter-chain bonds. We show that progressive substitution of these amino acids with serine residues in full length γ-zein leads to similarly progressive increase in solubility and availability to traffic from the ER along the secretory pathway. Total substitution results in very efficient secretion, whereas the presence of a single cysteine is sufficient to promote partial sorting to the vacuole via a wortmannin-sensitive pathway, similar to the traffic pathway of vacuolar storage proteins. We propose that the mechanism leading to accumulation of prolamins in the ER is a further evolutionary step of the one responsible for accumulation in storage vacuoles.
Collapse
Affiliation(s)
| | | | | | | | | | - Vitale Alessandro
- *Correspondence: Alessandro Vitale, Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy e-mail:
| |
Collapse
|
10
|
El-Nabarawi MA, Bendas ER, El Rehem RTA, Abary MYS. Transdermal drug delivery of paroxetine through lipid-vesicular formulation to augment its bioavailability. Int J Pharm 2013; 443:307-17. [PMID: 23337629 DOI: 10.1016/j.ijpharm.2013.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/25/2022]
Abstract
Paroxetine (PAX) is the most potent serotonin reuptake blocker antidepressant clinically available. This study is aimed to reduce the side effects accompanied with the initial high plasma concentration after oral administration of PAX and fluctuations in plasma levels and also to decrease the broad metabolism of the drug in the liver by developing and optimizing liposomal transdermal formulation of PAX in order to improve its bioavailability. PAX liposomes were prepared by reverse phase evaporation technique using lecithin phosphatidylcholine (LPC), cholesterol (CHOL) and drug in different molar ratios. The prepared liposomes were characterized for size, shape, entrapment efficiency and in vitro drug release. The studies demonstrated successful preparation of PAX liposomes. The effect of using different molar ratios of (LPC:CHOL) on entrapment efficiency and on drug release was studied. Liposomes showed percentage entrapment efficiency (%EE) of 81.22 ± 3.08% for optimized formula (F5) which composed of (LPC:CHOL, 7:7) and 20mg of PAX, with average vesicle size of 220.53 ± 0.757 nm. The selected formula F5 (7:7) was incorporated in gel bases of HPMC-E4M (2%, 4%, and 6%). The selected formula of PAX liposomal gel of HPMC-E4M (2% and 4%) were fabricated in the reservoir type of transdermal patches and evaluated through in vitro release. After that the selected formula of PAX liposomal gel transdermal patch was applied to rabbits for in vivo bioavailability study in comparison with oral administration of the marketed PAX tablet. An HPLC method was developed for the determination of PAX in plasma of rabbits after transdermal patch application and oral administration of the marketed PAX tablets of 20mg dose. The intra- and inter-day accuracy and precision were determined as relative error and relative standard deviation, respectively. The linearity was assessed in the range of 5-200 ng/ml. Pharmacokinetic parameters were determined as the C(max) of PAX liposomal transdermal patch was found to be 92.53 ng/ml at t(max) of 12h and AUC(0-48) was 2305.656 ngh/ml and AUC(0-∞) was 3852.726 ngh/ml, compared to the C(max) of 172.35 ng/ml after oral administration of the marketed PAX tablet with t(max) of 6h and AUC(0-24) was 1206.63 ngh/ml and AUC(0-∞) was 1322.878 ngh/ml. These results indicate improvement of bioavailability of the PAX after liposomal transdermal patch application and sustaining of the therapeutic effects compared to oral administration.
Collapse
Affiliation(s)
- Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | | | | | | |
Collapse
|
11
|
Ibl V, Stoger E. The formation, function and fate of protein storage compartments in seeds. PROTOPLASMA 2012; 249:379-92. [PMID: 21614590 DOI: 10.1007/s00709-011-0288-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/12/2011] [Indexed: 05/07/2023]
Abstract
Seed storage proteins (SSPs) have been studied for more than 250 years because of their nutritional value and their impact on the use of grain in food processing. More recently, the use of seeds for the production of recombinant proteins has rekindled interest in the behavior of SSPs and the question how they are able to accumulate as stable storage reserves. Seed cells produce vast amounts of SSPs with different subcellular destinations creating an enormous logistic challenge for the endomembrane system. Seed cells contain several different storage organelles including the complex and dynamic protein storage vacuoles (PSVs) and other protein bodies (PBs) derived from the endoplasmic reticulum (ER). Storage proteins destined for the PSV may pass through or bypass the Golgi, using different vesicles that follow different routes through the cell. In addition, trafficking may depend on the plant species, tissue and developmental stage, showing that the endomembrane system is capable of massive reorganization. Some SSPs contain sorting signals or interact with membranes or with other proteins en route in order to reach their destination. The ability of SSPs to form aggregates is particularly important in the formation or ER-derived PBs, a mechanism that occurs naturally in response to overloading with proteins that cannot be transported and that can be used to induce artificial storage bodies in vegetative tissues. In this review, we summarize recent findings that provide insight into the formation, function, and fate of storage organelles and describe tools that can be used to study them.
Collapse
Affiliation(s)
- Verena Ibl
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | | |
Collapse
|
12
|
Francin-Allami M, Saumonneau A, Lavenant L, Bouder A, Sparkes I, Hawes C, Popineau Y. Dynamic trafficking of wheat γ-gliadin and of its structural domains in tobacco cells, studied with fluorescent protein fusions. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4507-20. [PMID: 21617248 PMCID: PMC3170547 DOI: 10.1093/jxb/err159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/18/2011] [Accepted: 04/25/2011] [Indexed: 05/10/2023]
Abstract
Prolamins, the main storage proteins of wheat seeds, are synthesized and retained in the endoplasmic reticulum (ER) of the endosperm cells, where they accumulate in protein bodies (PBs) and are then exported to the storage vacuole. The mechanisms leading to these events are unresolved. To investigate this unconventional trafficking pathway, wheat γ-gliadin and its isolated repeated N-terminal and cysteine-rich C-terminal domains were fused to fluorescent proteins and expressed in tobacco leaf epidermal cells. The results indicated that γ-gliadin and both isolated domains were able to be retained and accumulated as protein body-like structures (PBLS) in the ER, suggesting that tandem repeats are not the only sequence involved in γ-gliadin ER retention and PBLS formation. The high actin-dependent mobility of γ-gliadin PBLS is also reported, and it is demonstrated that most of them do not co-localize with Golgi body or pre-vacuolar compartment markers. Both γ-gliadin domains are found in the same PBLS when co-expressed, which is most probably due to their ability to interact with each other, as indicated by the yeast two-hybrid and FRET-FLIM experiments. Moreover, when stably expressed in BY-2 cells, green fluorescent protein (GFP) fusions to γ-gliadin and its isolated domains were retained in the ER for several days before being exported to the vacuole in a Golgi-dependent manner, and degraded, leading to the release of the GFP 'core'. Taken together, the results show that tobacco cells are a convenient model to study the atypical wheat prolamin trafficking with fluorescent protein fusions.
Collapse
|
13
|
De Marchis F, Pompa A, Mannucci R, Morosinotto T, Bellucci M. A plant secretory signal peptide targets plastome-encoded recombinant proteins to the thylakoid membrane. PLANT MOLECULAR BIOLOGY 2011; 76:427-41. [PMID: 20714919 DOI: 10.1007/s11103-010-9676-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
Plastids are considered promising bioreactors for the production of recombinant proteins, but the knowledge of the mechanisms regulating foreign protein folding, targeting, and accumulation in these organelles is still incomplete. Here we demonstrate that a plant secretory signal peptide is able to target a plastome-encoded recombinant protein to the thylakoid membrane. The fusion protein zeolin with its native signal peptide expressed by tobacco (Nicotiana tabacum) transplastomic plants was directed into the chloroplast thylakoid membranes, whereas the zeolin mutant devoid of the signal peptide, Δzeolin, is instead accumulated in the stroma. We also show that zeolin folds in the thylakoid membrane where it accumulates as trimers able to form disulphide bonds. Disulphide bonds contribute to protein accumulation since zeolin shows a higher accumulation level with respect to stromal Δzeolin, whose folding is hampered as the protein accumulates at low amounts in a monomeric form and it is not oxidized. Thus, post-transcriptional processes seem to regulate the stability and accumulation of plastid-synthesized zeolin. The most plausible zeolin targeting mechanism to thylakoid is discussed herein.
Collapse
Affiliation(s)
- Francesca De Marchis
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche (CNR), via della Madonna Alta 130, 06128 Perugia, Italy
| | | | | | | | | |
Collapse
|
14
|
Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS. Delivery of prolamins to the protein storage vacuole in maize aleurone cells. THE PLANT CELL 2011; 23:769-84. [PMID: 21343414 PMCID: PMC3077793 DOI: 10.1105/tpc.110.082156] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/28/2011] [Accepted: 02/12/2011] [Indexed: 05/18/2023]
Abstract
Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals.
Collapse
Affiliation(s)
| | - Taijoon Chung
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - David Holding
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588-0665
| | - Rudolf Jung
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa 50131
| | - Richard Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
15
|
Llop-Tous I, Madurga S, Giralt E, Marzabal P, Torrent M, Ludevid MD. Relevant elements of a maize gamma-zein domain involved in protein body biogenesis. J Biol Chem 2010; 285:35633-44. [PMID: 20829359 PMCID: PMC2975188 DOI: 10.1074/jbc.m110.116285] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 09/08/2010] [Indexed: 11/06/2022] Open
Abstract
The N-terminal proline-rich domain of γ-zein (Zera) plays an important role in protein body (PB) formation not only in the original host (maize seeds) but in a broad spectrum of eukaryotic cells. However, the elements within the Zera sequence that are involved in the biogenesis of PBs have not been clearly identified. Here, we focused on amino acid sequence motifs that could be involved in Zera oligomerization, leading to PB-like structures in Nicotiana benthamiana leaves. By using fusions of Zera with fluorescent proteins, we found that the lack of the repeat region (PPPVHL)(8) of Zera resulted in the secretion of the fusion protein but that this repeat by itself did not form PBs. Although the repeat region containing eight units was the most efficient for Zera self-assembly, shorter repeats of 4-6 units still formed small multimers. Based on site-directed mutagenesis of Zera cysteine residues and analysis of multimer formation, we conclude that the two N-terminal Cys residues of Zera (Cys(7) and Cys(9)) are critical for oligomerization. Immunoelectron microscopy and confocal studies on PB development over time revealed that early, small, Zera-derived oligomers were sequestered in buds along the rough ER and that the mature size of the PBs could be attained by both cross-linking of preformed multimers and the incorporation of new chains of Zera fusions synthesized by active membrane-bound ribosomes. Based on these results and on the behavior of the Zera structure determined by molecular dynamics simulation studies, we propose a model of Zera-induced PB biogenesis.
Collapse
Affiliation(s)
- Immaculada Llop-Tous
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sergio Madurga
- the Departament de Química Física and IQTCUB, Universidad de Barcelona, Martí Franquès 1, 08028 Barcelona, Spain
| | - Ernest Giralt
- the Institut de Recerca Biomèdica, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain, and
| | | | - Margarita Torrent
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M. Dolors Ludevid
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
16
|
Banc A, Desbat B, Renard D, Popineau Y, Mangavel C, Navailles L. Exploring the interactions of gliadins with model membranes: effect of confined geometry and interfaces. Biopolymers 2009; 91:610-22. [PMID: 19301297 DOI: 10.1002/bip.21188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mechanisms leading to the assembly of wheat storage proteins into proteins bodies within the endoplasmic reticulum (ER) of endosperm cells are unresolved today. In this work, physical chemistry parameters which could be involved in these processes were explored. To model the confined environment of proteins within the ER, the dynamic behavior of gamma-gliadins inserted inside lyotropic lamellar phases was studied using FRAP experiments. The evolution of the diffusion coefficient as a function of the lamellar periodicity enabled to propose the hypothesis of an interaction between gamma-gliadins and membranes. This interaction was further studied with the help of phospholipid Langmuir monolayers. gamma- and omega-gliadins were injected under DMPC and DMPG monolayers and the two-dimensional (2D) systems were studied by Brewster angle microscopy (BAM), polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and surface tension measurements. Results showed that both gliadins adsorbed under phospholipid monolayers, considered as biological membrane models, and formed micrometer-sized domains at equilibrium. However, their thicknesses, probed by reflectance measurements, were different: omega-gliadins aggregates displayed a constant thickness, consistent with a monolayer, while the thickness of gamma-gliadins aggregates increased with the quantity of protein injected. These different behaviors could find some explanations in the difference of aminoacid sequence distribution: an alternate repeated - unrepeated domain within gamma-gliadin sequence, while one unique repeated domain was present within omega-gliadin sequence. All these findings enabled to propose a model of gliadins self-assembly via a membrane interface and to highlight the predominant role of wheat prolamin repeated domain in the membrane interaction. In the biological context, these results would mean that the repeated domain could be considered as an anchor for the interaction with the ER membrane and a nucleus point for the formation and growth of protein bodies within endosperm cells. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 610-622, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.
Collapse
Affiliation(s)
- Amélie Banc
- Université Bordeaux-1 CNRS, Centre de Recherche Paul-Pascal, Pessac, France
| | | | | | | | | | | |
Collapse
|
17
|
Torrent M, Llompart B, Lasserre-Ramassamy S, Llop-Tous I, Bastida M, Marzabal P, Westerholm-Parvinen A, Saloheimo M, Heifetz PB, Ludevid MD. Eukaryotic protein production in designed storage organelles. BMC Biol 2009; 7:5. [PMID: 19175916 PMCID: PMC2637842 DOI: 10.1186/1741-7007-7-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/28/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Protein bodies (PBs) are natural endoplasmic reticulum (ER) or vacuole plant-derived organelles that stably accumulate large amounts of storage proteins in seeds. The proline-rich N-terminal domain derived from the maize storage protein gamma zein (Zera) is sufficient to induce PBs in non-seed tissues of Arabidopsis and tobacco. This Zera property opens up new routes for high-level accumulation of recombinant proteins by fusion of Zera with proteins of interest. In this work we extend the advantageous properties of plant seed PBs to recombinant protein production in useful non-plant eukaryotic hosts including cultured fungal, mammalian and insect cells. RESULTS Various Zera fusions with fluorescent and therapeutic proteins accumulate in induced PB-like organelles in all eukaryotic systems tested: tobacco leaves, Trichoderma reesei, several mammalian cultured cells and Sf9 insect cells. This accumulation in membranous organelles insulates both recombinant protein and host from undesirable activities of either. Recombinant protein encapsulation in these PBs facilitates stable accumulation of proteins in a protected sub-cellular compartment which results in an enhancement of protein production without affecting the viability and development of stably transformed hosts. The induced PBs also retain the high-density properties of native seed PBs which facilitate the recovery and purification of the recombinant proteins they contain. CONCLUSION The Zera sequence provides an efficient and universal means to produce recombinant proteins by accumulation in ER-derived organelles. The remarkable cross-kingdom conservation of PB formation and their biophysical properties should have broad application in the manufacture of non-secreted recombinant proteins and suggests the existence of universal ER pathways for protein insulation.
Collapse
Affiliation(s)
- Margarita Torrent
- Departament de Genètica Molecular, Consorci CSIC-IRTA, Jordi Girona, 08034 Barcelona, Spain
| | - Blanca Llompart
- ERA Biotech, S.A. Parc Científic de Barcelona, Baldiri Reixac, 08028 Barcelona, Spain
| | | | - Immaculada Llop-Tous
- Departament de Genètica Molecular, Consorci CSIC-IRTA, Jordi Girona, 08034 Barcelona, Spain
| | - Miriam Bastida
- ERA Biotech, S.A. Parc Científic de Barcelona, Baldiri Reixac, 08028 Barcelona, Spain
| | - Pau Marzabal
- ERA Biotech, S.A. Parc Científic de Barcelona, Baldiri Reixac, 08028 Barcelona, Spain
| | | | - Markku Saloheimo
- VTT Technical Research Centre, PO Box 1000, FIN-02044VTT, Finland
| | - Peter B Heifetz
- ERA Biotech, S.A. Parc Científic de Barcelona, Baldiri Reixac, 08028 Barcelona, Spain
| | - M Dolors Ludevid
- Departament de Genètica Molecular, Consorci CSIC-IRTA, Jordi Girona, 08034 Barcelona, Spain
| |
Collapse
|
18
|
Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci 2008; 9:1276-1320. [PMID: 19325804 PMCID: PMC2635728 DOI: 10.3390/ijms9071276] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/04/2008] [Accepted: 07/14/2008] [Indexed: 12/20/2022] Open
Abstract
Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10–30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisense-oligonucleotides), which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls.
Collapse
Key Words
- CLSM, confocal laser scanning microscopy
- CPP, cell-penetrating peptide
- EIPA, ethylisopropylamiloride
- FCS, fetal calf serum
- GFP, green fluorescent protein
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HIV, human immunodeficiency virus
- IFN, interferon
- IL, interleukin
- LF, Lipofectamine™
- LF2000, Lipofectamine™ 2000
- MAP, model amphipathic peptide
- MEND, multifunctional envelope-type nano device
- NLS, nuclear localisation sequence
- OMe, O-methyl
- PAMAM, polyamidoamine
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PMO, phosphorodiamidate morpholino oligomer
- PNA, peptide nucleic acid
- PTD, protein transduction domains
- RNAi, RNA interference
- SAP, Sweet Arrow Peptide
- STR-R8, stearyl-R8
- TAR, transactivator responsive region
- TFO, triplex forming oligonucleotide
- TLR9, toll-like receptor 9
- TNF, tumour necrosis factor
- TP10, transportan 10
- bPrPp, bovine prion protein derived peptide
- cell-penetrating peptides
- endocytosis
- hCT, human calcitonin
- mPrPp, murine prion protein derived peptide
- miRNA, microRNA
- nucleic acid delivery
- nucleic acid drugs
- siRNA, small inhibitory RNA
Collapse
Affiliation(s)
- Sandra Veldhoen
- Department of Metabolomics, ISAS - Institute for Analytical Sciences, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
- Author to whom correspondence should be addressed; E-mail:
| | - Sandra D. Laufer
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
19
|
Pujals S, Giralt E. Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev 2008; 60:473-84. [PMID: 18187229 DOI: 10.1016/j.addr.2007.09.012] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 09/21/2007] [Indexed: 11/30/2022]
Abstract
Proline-rich peptides are a chemically and structurally diverse family of cell-penetrating vectors characterised by the presence of pyrrolidine rings from prolines. Amphipathic Pro-rich peptides are particularly effective, demonstrating efficient cellular uptake and non-cytotoxicity. Derivatives with hydrophobic moieties, such as fatty acids or silaproline, have shown highly improved internalisation efficiency; an all D-amino acid version of the CPP SAP was shown to be completely protease resistant and was evaluated in a preliminary in vivo study. CD and TEM studies regarding the self-assembly properties of this family of peptides highlight the possible role of aggregated species in the internalisation process. Finally, these CPPs were shown to be internalised via caveolae or lipid-rafts mediated endocytosis, which circumvents the lysosomal route of degradation.
Collapse
Affiliation(s)
- Sílvia Pujals
- Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, Spain
| | | |
Collapse
|
20
|
Pompa A, Vitale A. Retention of a bean phaseolin/maize gamma-Zein fusion in the endoplasmic reticulum depends on disulfide bond formation. THE PLANT CELL 2006; 18:2608-21. [PMID: 17041149 PMCID: PMC1626613 DOI: 10.1105/tpc.106.042226] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most seed storage proteins of the prolamin class accumulate in the endoplasmic reticulum (ER) as large insoluble polymers termed protein bodies (PBs), through mechanisms that are still poorly understood. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N-terminal half of the Zea mays prolamin gamma-zein forms ER-located PBs. Zeolin has 6 Cys residues and, like gamma-zein with 15 residues, is insoluble unless reduced. The contribution of disulfide bonds to zeolin destiny was determined by studying in vivo the effects of 2-mercaptoethanol (2-ME) and by zeolin mutagenesis. We show that in tobacco (Nicotiana tabacum) protoplasts, 2-ME enhances interactions of newly synthesized proteins with the ER chaperone BiP and inhibits the secretory traffic of soluble proteins with or without disulfide bonds. In spite of this general inhibition, 2-ME enhances the solubility of zeolin and relieves its retention in the ER, resulting in increased zeolin traffic. Consistently, mutated zeolin unable to form disulfide bonds is soluble and efficiently enters the secretory traffic without 2-ME treatment. We conclude that disulfide bonds that lead to insolubilization are a determinant for PB-mediated protein accumulation in the ER.
Collapse
Affiliation(s)
- Andrea Pompa
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | | |
Collapse
|
21
|
Pujals S, Fernández-Carneado J, López-Iglesias C, Kogan MJ, Giralt E. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:264-79. [PMID: 16545772 DOI: 10.1016/j.bbamem.2006.01.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 02/03/2023]
Abstract
In recent years, cell-penetrating peptides have proven to be an efficient intracellular delivery system. The mechanism for CPP internalisation, which first involves interaction with the extracellular matrix, is followed in most cases by endocytosis and finally, depending on the type of endocytosis, an intracellular fate is reached. Delivery of cargo attached to a CPP requires endosomal release, for which different methods have recently been proposed. Positively charged amino acids, hydrophobicity and/or amphipathicity are common to CPPs. Moreover, some CPPs can self-assemble. Herein is discussed the role of self assembly in the cellular uptake of CPPs. Sweet Arrow Peptide (SAP) CPP has been shown to aggregate by CD and TEM (freeze-fixation/freeze-drying), although the internalised species have yet to be identified as either the monomer or an aggregate.
Collapse
Affiliation(s)
- Sílvia Pujals
- Institut de Recerca Biomèdica de Barcelona, Parc Científic de Barcelona, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
22
|
Hood JL, Brooks WH, Roszman TL. Subcellular mobility of the calpain/calpastatin network: an organelle transient. Bioessays 2006; 28:850-9. [PMID: 16927317 DOI: 10.1002/bies.20440] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Calpain (Cp) is a calcium (Ca(2+))-dependent cysteine protease. Activation of the major isoforms of Cp, CpI and CpII, are required for a number of important cellular processes including adherence, shape change and migration. The current concept that cytoplasmic Cp locates and associates with its regulatory subunit (Rs) and substrates as well as translocates throughout the cell via random diffusion is not compatible with the spatial and temporal constraints of cellular metabolism. The novel finding that Cp and Rs function relies upon tenacious hydrophobic interactions with organelle membranes offers a unifying explanation for the paradoxical and puzzling features of Cp activation and regulation such as how nM concentrations of intracellular Ca(2+) can activate Cp molecules requiring muM to mM concentrations of Ca(2+) for in vitro activation, and how this protease can spatially and temporally locate specific substrates and translocate throughout the cell. We hypothesize that Cp and its regulatory moieties associate with organelles to facilitate the activation of this protease resulting in the cleavage of substrates and aid in its translocation throughout the cell.
Collapse
Affiliation(s)
- Joshua L Hood
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | |
Collapse
|
23
|
Bicudo TC, Forato LA, Batista LAR, Colnago LA. Study of the conformation of γ-zeins in purified maize protein bodies by FTIR and NMR spectroscopy. Anal Bioanal Chem 2005; 383:291-6. [PMID: 16132146 DOI: 10.1007/s00216-005-0003-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/14/2005] [Accepted: 07/03/2005] [Indexed: 10/25/2022]
Abstract
The gamma-zeins are a mixture of 16, 27, and 50-kDa polypeptides which are important in the formation and stabilization of protein bodies (PB). These organelles are used for deposition of zeins, the water-insoluble storage proteins in maize. The nature of the physical interaction between proteins in the assembly and stabilization of PB are fairly well known. It is suggested the repeated hexapeptide sequence (PPPVHL)(8) in the N-terminus is responsible for aggregation of the gamma-zeins on the PB surface. Despite this importance, there is little information about the native conformation of gamma-zeins. In this work, we have analyzed the secondary structures of gamma-zeins in purified protein bodies from two maize cultivars, in the solid state, by FTIR and NMR spectroscopy. The results revealed that gamma-zeins in their physiological state are comprise similar proportions of alpha-helix and beta-sheet, 33 and 31% as determined by FTIR. It was not possible to state if the polyproline II (PPII) conformation is present in the solid-state structure of gamma-zeins, as has been demonstrated for the hexapeptide in solution. Because of the similarity of the solid-state NMR spectra of gamma and alpha-zeins in the alpha carbon region we attributed their contributions to the beta-sheet structures rather than to the PPII conformation or a mixture of these extended structures.
Collapse
Affiliation(s)
- Tatiana C Bicudo
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense 400, Caixa Postal 780, 13560-970, São Carlos-SP, Brazil
| | | | | | | |
Collapse
|
24
|
Randall JJ, Sutton DW, Hanson SF, Kemp JD. BiP and zein binding domains within the delta zein protein. PLANTA 2005; 221:656-666. [PMID: 15726401 DOI: 10.1007/s00425-005-1482-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/03/2005] [Indexed: 05/24/2023]
Abstract
Zeins are alcohol soluble seed storage proteins synthesized within the endosperm of maize and subsequently deposited into endoplasmic reticulum (ER) derived protein bodies. The genes encoding the beta and delta zeins were previously introduced into tobacco with the expectation of improving the nutritional quality of plants (Bagga et al. in Plant Physiol 107:13, 1997). Novel protein bodies are produced in the leaves of transgenic plants accumulating the beta or delta zein proteins. The mechanism of protein body formation within leaves is unknown. It is also unknown how zeins are retained in the ER since they do not contain known ER retention motifs. Retention may be due to an interaction of zeins with an ER chaperone such as binding luminal protein (BiP). We have demonstrated protein-protein interactions with the delta zeins, beta zeins, and BiP proteins using an E. coli two-hybrid system. In this study, four putative BiP binding motifs were identified within the delta zein protein using a BiP scoring program (Blond-Elguindi et al. in Cell 75:717, 1993). These putative binding motifs were mutated and their effects on protein interactions were analyzed in both a prokaryotic two-hybrid system and in plants. These mutations resulted in reduced BiP-zein protein interaction and also altered zein-zein interactions. Our results indicate that specific motifs are necessary for BiP-delta zein protein interactions and that there are specific motifs which are necessary for zein-zein interactions. Furthermore, our data demonstrates that zein proteins must be able to interact with BiP and zeins for their stability and ability to form protein bodies.
Collapse
Affiliation(s)
- Jennifer J Randall
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, 3BE Skeen Hall, Las Cruces, NM 88003, USA.
| | | | | | | |
Collapse
|
25
|
Seredyuk VA, Menger FM. Membrane-bound protein in giant vesicles: induced contraction and growth. J Am Chem Soc 2004; 126:12256-7. [PMID: 15453745 DOI: 10.1021/ja040151s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell-sized giant vesicles, produced by electroformation, were composed of phospholipids and zein (a hydrophobic protein that occupied a substantial percentage of the vesicle surface). Addition of sodium dodecyl sulfate removed the protein into the bulk phase, which led to a shrinkage of the vesicles. The vesicle bilayers were able to heal themselves from the damage caused by the departure of the zein, allowing the bilayers to maintain their spherical morphology. Giant vesicle growth was also observed when the following components were mixed (all four being necessary): (a) negatively charged giant vesicles, (b) membrane-incorporated zein, (c) positively charged submicroscopic vesicles (almost 103 times smaller than the giant vesicles), and (d) sodium dodecyl sulfate. The simplest mechanism consistent with literature data involves electrostatically promoted binding of the small vesicles (weakened by the surfactant) onto the giant vesicle surface, followed by the merging of membranes at protein-induced "fusion hot spots". The "feeding" of small vesicles by giant vesicles then leads to growth.
Collapse
Affiliation(s)
- Victor A Seredyuk
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
26
|
Vitale A, Ceriotti A. Protein quality control mechanisms and protein storage in the endoplasmic reticulum. A conflict of interests? PLANT PHYSIOLOGY 2004; 136:3420-6. [PMID: 15542495 PMCID: PMC527140 DOI: 10.1104/pp.104.050351] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 09/04/2004] [Accepted: 09/07/2004] [Indexed: 05/19/2023]
Affiliation(s)
- Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | | |
Collapse
|
27
|
Mainieri D, Rossi M, Archinti M, Bellucci M, De Marchis F, Vavassori S, Pompa A, Arcioni S, Vitale A. Zeolin. A new recombinant storage protein constructed using maize gamma-zein and bean phaseolin. PLANT PHYSIOLOGY 2004; 136:3447-56. [PMID: 15502013 PMCID: PMC527144 DOI: 10.1104/pp.104.046409] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 06/29/2004] [Accepted: 07/01/2004] [Indexed: 05/19/2023]
Abstract
The major seed storage proteins of maize (Zea mays) and bean (Phaseolus vulgaris), zein and phaseolin, accumulate in the endoplasmic reticulum (ER) and in storage vacuoles, respectively. We show here that a chimeric protein composed of phaseolin and 89 amino acids of gamma-zein, including the repeated and the Pro-rich domains, maintains the main characteristics of wild-type gamma-zein: It is insoluble unless its disulfide bonds are reduced and forms ER-located protein bodies. Unlike wild-type phaseolin, the protein, which we called zeolin, accumulates to very high amounts in leaves of transgenic tobacco (Nicotiana tabacum). A relevant proportion of the ER chaperone BiP is associated with zeolin protein bodies in an ATP-sensitive fashion. Pulse-chase labeling confirms the high affinity of BiP to insoluble zeolin but indicates that, unlike structurally defective proteins that also extensively interact with BiP, zeolin is highly stable. We conclude that the gamma-zein portion is sufficient to induce the formation of protein bodies also when fused to another protein. Because the storage proteins of cereals and legumes nutritionally complement each other, zeolin can be used as a starting point to produce nutritionally balanced and highly stable chimeric storage proteins.
Collapse
Affiliation(s)
- Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|