1
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
2
|
Li Z, Dang Q, Wang P, Zhao F, Huang J, Wang C, Liu X, Min W. Food-Derived Peptides: Beneficial CNS Effects and Cross-BBB Transmission Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20453-20478. [PMID: 38085598 DOI: 10.1021/acs.jafc.3c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Food-derived peptides, as dietary supplements, have significant effects on promoting brain health and relieving central nervous system (CNS) diseases. However, the blood-brain barrier (BBB) greatly limits their in-brain bioavailability. Thus, overcoming the BBB to target the CNS is a major challenge for bioactive peptides in the prevention and treatment of CNS diseases. This review discusses improvement in the neuroprotective function of food-derived active peptides in CNS diseases, as well as the source of BBB penetrating peptides (BBB-shuttles) and the mechanism of transmembrane transport. Notably, this review also discusses various peptide modification methods to overcome the low permeability and stability of the BBB. Lipification, glycosylation, introduction of disulfide bonds, and cyclization are effective strategies for improving the penetration efficiency of peptides through the BBB. This review provides a new prospective for improving their neuroprotective function and developing treatments to delay or even prevent CNS diseases.
Collapse
Affiliation(s)
- Zehui Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Peng Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Fanrui Zhao
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Chongchong Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Xingquan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| |
Collapse
|
3
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
4
|
Nestor JJ, Wang W. Surfactant‐modified parathyroid hormone fragments with high potency and prolonged action: Structure‐informed design using glycolipid surfactant conjugation. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Wei Wang
- CS Bio Co Menlo Park California USA
| |
Collapse
|
5
|
Ghosh U, Soni I, Kaul G, Trivedi P, Chaturvedi V, Chopra S, Kanti Chakraborty T. Synthesis and Biological Studies of Dodecameric Cationic Antimicrobial Peptides Containing Tetrahydrofuran Amino Acids. Chembiochem 2020; 21:2518-2526. [PMID: 32297461 DOI: 10.1002/cbic.202000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/13/2020] [Indexed: 11/05/2022]
Abstract
We report here a concise route to synthesize various stereoisomers of tetrahydrofuran amino acids (TAAs) and the synthesis of TAA-containing linear cationic dodecapeptides. Some of these linear peptides show slightly better antimicrobial activities than their tetra- and octameric congeners, but no activity against Mycobacterium tuberculosis, for which octapeptides exhibited by far the best results; this implies that antibacterial activity is dependent on the length of these linear peptides. All the dodecapeptides described here were found to be toxic in nature against Vero cells. The study helps to delineate the optimal length of this series of linear peptides and select potential leads in the development of novel cationic peptide-based antibiotics.
Collapse
Affiliation(s)
- Uttam Ghosh
- Department of Organic Chemistry, Indian Institution of Science, Bengaluru, 560012, Karnataka, India
| | - Isha Soni
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Priyanka Trivedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Vinita Chaturvedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tushar Kanti Chakraborty
- Department of Organic Chemistry, Indian Institution of Science, Bengaluru, 560012, Karnataka, India
| |
Collapse
|
6
|
Madica K, Lakshmi JK, Madhu S, Nadimpally KC, Gonnade R, Jagadeesh B, Sanjayan GJ. Dimedone‐Based Rigid Organic Scaffold for Organizing Symmetrical Helical Peptide Chains. ChemistrySelect 2019. [DOI: 10.1002/slct.201903087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Krishnaprasad Madica
- Division of Organic ChemistryCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Pune 411008 India
| | - Jerripothula K Lakshmi
- Centre for Nuclear Magnetic ResonanceCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Suresh Madhu
- Division of Organic ChemistryCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Pune 411008 India
| | | | - Rajesh Gonnade
- R. G. Gonnade Center for Materials CharacterizationNational Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
| | - Bharatam Jagadeesh
- Centre for Nuclear Magnetic ResonanceCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Gangadhar J Sanjayan
- Division of Organic ChemistryCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Pune 411008 India
| |
Collapse
|
7
|
Gerbelli BB, Vassiliades SV, Rojas JEU, Pelin JNBD, Mancini RSN, Pereira WSG, Aguilar AM, Venanzi M, Cavalieri F, Giuntini F, Alves WA. Hierarchical Self‐Assembly of Peptides and its Applications in Bionanotechnology. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900085] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Barbara B. Gerbelli
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Sandra V. Vassiliades
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Jose E. U. Rojas
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Juliane N. B. D. Pelin
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Rodrigo S. N. Mancini
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Wallace S. G. Pereira
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| | - Andrea M. Aguilar
- Instituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo Diadema 09972270 Brazil
| | - Mariano Venanzi
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via Cracovia, 50 00133 Roma RM Italy
| | - Francesca Cavalieri
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via Cracovia, 50 00133 Roma RM Italy
- Department of Chemical and Biomolecular EngineeringThe University of Melbourne Parkville Vitória 3010 Australia
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | - Wendel A. Alves
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABC Santo André 09210–580 Brazil
| |
Collapse
|
8
|
Sunkari YK, Pulukuri KK, Kandiyal PS, Vaishnav J, Ampapathi RS, Chakraborty TK. Conformation Analysis of GalNAc-Appended Sugar Amino Acid Foldamers as Glycopeptide Mimics. Chembiochem 2018; 19:1507-1513. [PMID: 29727041 DOI: 10.1002/cbic.201800087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/08/2022]
Abstract
Sugar amino acid (SAA)-based foldamers with well-defined secondary structures were appended with N-acetylgalactosamine (GalNAc) sugars to access sequence-defined, multidentate glycoconjugates with full control over number, spacing and position. Conformation analysis of these glycopeptides by extensive NMR spectroscopic studies revealed that the appended GalNAc units had a profound influence on the native conformational behaviour of the SAA foldamers. Whereas the 2,5-cis glycoconjugate showed a helical structure in water, comprising of two consecutive 16-membered hydrogen bonds, its 2,5-trans congener displayed an unprecedented 16/10-mixed turn structure not seen before in any glycopeptide foldamer.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kiran Kumar Pulukuri
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pancham Singh Kandiyal
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jayanti Vaishnav
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Tushar Kanti Chakraborty
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
9
|
Tian GZ, Hu J, Zhang HX, Rademacher C, Zou XP, Zheng HN, Xu F, Wang XL, Linker T, Yin J. Synthesis and conformational analysis of linear homo- and heterooligomers from novel 2-C-branched sugar amino acids (SAAs). Sci Rep 2018; 8:6625. [PMID: 29700416 PMCID: PMC5919921 DOI: 10.1038/s41598-018-24927-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 11/09/2022] Open
Abstract
Sugar amino acids (SAAs), as biologically interesting structures bearing both amino and carboxylic acid functional groups represent an important class of multifunctional building blocks. In this study, we develop an easy access to novel SAAs in only three steps starting from nitro compounds in high yields in analytically pure form, easily available by ceric (IV) mediated radical additions. Such novel SAAs have been applied in the assembly of total nine carbopeptoids with the form of linear homo- and heterooligomers for the structural investigations employing circular dichroism (CD) spectroscopy, which suggest that the carbopeptoids emerge a well-extended, left (or right)-handed conformation similar to polyproline II (PPII) helices. NMR studies also clearly demonstrated the presence of ordered secondary structural elements. 2D-ROESY spectra were acquired to identify i+1 NH ↔ i C 1 H, i C 2 H correlations which support the conformational analysis of tetramers by CD spectroscopy. These findings provide interesting information of SAAs and their oligomers as potential scaffolds for discovering new drugs and materials.
Collapse
Affiliation(s)
- Guang-Zong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China.
| | - Heng-Xi Zhang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Xiao-Peng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Hong-Ning Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Fei Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Xiao-Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China
| | - Torsten Linker
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, P.R. China.
| |
Collapse
|
10
|
Singh G, Azmi S, Ghosh JK, Ampapathi RS, Pal S. Synthesis and Conformational Studies of Taa-Containingo-Nitrobenzenesulfonamide- (o-Nosyl-) Protected GS Analogs to Prove the Importance of 6RStereochemistry of Taa over 6S. ChemistrySelect 2018. [DOI: 10.1002/slct.201800003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gajendra Singh
- NMR Research Centre; Division of SAIF; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Sarfuddin Azmi
- Molecular and Structural Biology Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Present Address: Research Centre; Prince Sultan Military Medical City, Riyadh, Kingdom of; Saudi Arabia
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Ravi Sankar Ampapathi
- NMR Research Centre; Division of SAIF; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Sudip Pal
- Medicinal & Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Department of Chemistry, School of Physical Sciences; Sikkim University (A Central University); Gangtok 737102 India
| |
Collapse
|
11
|
Das D, Khan HPA, Shivahare R, Gupta S, Sarkar J, Siddiqui MI, Ampapathi RS, Chakraborty TK. Synthesis, SAR and biological studies of sugar amino acid-based almiramide analogues: N-methylation leads the way. Org Biomol Chem 2018; 15:3337-3352. [PMID: 28368065 DOI: 10.1039/c6ob02610a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leishmaniasis, caused by the protozoan parasites of the genus Leishmania, is one of the most neglected diseases endemic in many continents posing enormous global health threats and therefore the discovery of new antileishmanial compounds is of utmost urgency. The antileishmanial activities of a library of sugar amino acid-based linear lipopeptide analogues were examined with the aim to identify potential drug candidates to treat visceral leishmaniasis. It was found that among the synthesized analogues, most of the permethylated compounds exhibited more activity in in vitro studies against intra-macrophagic amastigotes than the non-methylated analogues. SAR and NMR studies revealed that introduction of the N-methyl groups inhibited the formation of any turn structure in these molecules, which led to their improved activities.
Collapse
Affiliation(s)
- Dipendu Das
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pal S, Ghosh U, Singh G, Alam F, Singh S, Chopra S, Sinha S, Ampapathi RS, Chakraborty TK. Synthesis, Conformational Studies and Biological Profiles of Tetrahydrofuran Amino-Acid-Containing Cationic Antitubercular Peptides. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sudip Pal
- Medicinal & Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Uttam Ghosh
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
| | - Gajendra Singh
- NMR Research Centre, Division of SAIF; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Faiyaz Alam
- NMR Research Centre, Division of SAIF; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Shyam Singh
- Biochemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Sidharth Chopra
- Microbiology Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Sudhir Sinha
- Biochemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Ravi Sankar Ampapathi
- NMR Research Centre, Division of SAIF; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Tushar Kanti Chakraborty
- Medicinal & Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
| |
Collapse
|
13
|
Petakamsetty R, Ansari A, Ramapanicker R. Diastereoselective synthesis of furanose and pyranose substituted glycine and alanine derivatives via proline-catalyzed asymmetric α-amination of aldehydes. Carbohydr Res 2016; 435:37-49. [PMID: 27693912 DOI: 10.1016/j.carres.2016.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 01/06/2023]
Abstract
A concise organocatalytic route toward the synthesis of furanose and pyranose substituted glycine and alanine derivatives is reported. These compounds are core structural units of some of the naturally available antibiotics and antifungal agents. Proline-catalyzed asymmetric α-amination of aldehydes derived from sugars is used as the key reaction to synthesize twelve sugar amino acid derivatives. The asymmetric transformations proceeded in good yields and with good to excellent diastereoselectivity. The application of the synthesized amino acids is demonstrated by synthesizing a tripeptide containing one of them.
Collapse
Affiliation(s)
- Ramu Petakamsetty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Anas Ansari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Ramesh Ramapanicker
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
14
|
Singh N, Kandiyal PS, Shukla PK, Ampapathi RS, Chakraborty TK. Conformational studies of glycosylated cyclic oligomers of furanoid sugar amino acids. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Sunkari YK, Alam F, Kandiyal PS, Aloysius S, Ampapathi RS, Chakraborty TK. Influence of Linker Length on Conformational Preferences of Glycosylated Sugar Amino Acid Foldamers. Chembiochem 2016; 17:1839-1844. [DOI: 10.1002/cbic.201600386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Yashoda Krishna Sunkari
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Faiyaz Alam
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Pancham Singh Kandiyal
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Siriwardena Aloysius
- Laboratoire des Glucides (UMR 6912); CNRS-FRE-3517; Universit de Picardie Jules Verne, 33, Rue St Leu, Faculte des Sciences; Amiens 80039 France
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Tushar Kanti Chakraborty
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| |
Collapse
|
16
|
Dhar S, La Clair JJ, León B, Hammons JC, Yu Z, Kashyap MK, Castro JE, Burkart MD. A Carbohydrate-Derived Splice Modulator. J Am Chem Soc 2016; 138:5063-8. [PMID: 27058259 DOI: 10.1021/jacs.5b13427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small-molecule splice modulators have recently been recognized for their clinical potential for diverse cancers. This, combined with their use as tools to study the importance of splice-regulated events and their association with disease, continues to fuel the discovery of new splice modulators. One of the key challenges found in the current class of materials arises from their instability, where rapid metabolic degradation can lead to off-target responses. We now describe the preparation of bench-stable splice modulators by adapting carbohydrate motifs as a central scaffold to provide rapid access to potent splice modulators.
Collapse
Affiliation(s)
- Sachin Dhar
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Brian León
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Justin C Hammons
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Zhe Yu
- Moores Cancer Center, University of California-San Diego , La Jolla, California 92093-0358, United States
| | - Manoj K Kashyap
- Moores Cancer Center, University of California-San Diego , La Jolla, California 92093-0358, United States
| | - Januario E Castro
- Moores Cancer Center, University of California-San Diego , La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
17
|
Stephenson RJ, Wolber F, Plieger PG, Harding DRK. Synthesis and Characterization of Bradykinin Derivatives Based on a β-Cyclodextrin Core. Aust J Chem 2016. [DOI: 10.1071/ch15460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mono-6A-fluorenylmethyloxycarbonylamino-mono-6X-succinyl-β-cyclodextrin (1), an amino acid-based bi-functionalized derivative of β-cyclodextrin (β-CD), has been functionalized with the bioactive peptide, bradykinin and/or sulfonamides using fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). The all-in-one molecule contains a carrier (cyclodextrin), targeting agent (bradykinin), and/or model drug (sulfonamide). Varying combinations of these bradykinin-focussed molecules have been synthesized using Fmoc SPPS on Rink amide resin. The positioning of the sulfonamide group, the bradykinin peptide and the cyclodextrin carrier are essential for biological activity. The inclusion of spacers is also important. Structure–activity studies performed on three cancer cell lines in vitro support these conclusions.
Collapse
|
18
|
Microwave-Assisted Synthesis and Antimicrobial Activity of Some Novel Isatin Schiff Bases Linked to Nicotinic Acid via Certain Amino Acid Bridge. J CHEM-NY 2015. [DOI: 10.1155/2015/364841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The coupling reaction of nicotinic acid with certain L-amino acid methyl esters including valine, leucine, and phenylalanine was done by the use of acid chloride method. The products were reacted with hydrazine hydrate 99% to give the corresponding hydrazides that were reacted with indoline-2,3-dione (isatin) to get Schiff bases under the application of microwave irradiation technique. These novel compounds were characterized by means of their FT-IR,1H NMR, and mass spectral data. Additionally, the specific optical rotation and elemental analysis were measured. Thein vitroantimicrobial activity of the synthesized compounds was evaluated by agar diffusion method. The compounds showed a strong antimicrobial inhibitory activity. Most of the test compounds possessed a broad spectrum of activities having MIC values ranging from 50 µg/mL to 500 µg/mL.
Collapse
|
19
|
Pal S, Singh G, Singh S, Tripathi JK, Ghosh JK, Sinha S, Ampapathi RS, Chakraborty TK. Tetrahydrofuran amino acid-containing gramicidin S analogues with improved biological profiles. Org Biomol Chem 2015; 13:6789-802. [DOI: 10.1039/c5ob00622h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Replacement of thed-Phe-Pro units of GS with novel C6-Bn-substituted tetrahydrofuran amino acid minimized its cytotoxicity while preserving its antimicrobial activity, with a few analogs showing selective anti-TB activity as well.
Collapse
Affiliation(s)
- Sudip Pal
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Gajendra Singh
- Centre for Nuclear Magnetic Resonance
- SAIF
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Shyam Singh
- Biochemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Jitendra Kumar Tripathi
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Sudhir Sinha
- Biochemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance
- SAIF
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Tushar Kanti Chakraborty
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
- Department of Organic Chemistry
| |
Collapse
|
20
|
Smeenk LEJ, Timmers-Parohi D, Benschop JJ, Puijk WC, Hiemstra H, van Maarseveen JH, Timmerman P. Reconstructing the discontinuous and conformational β1/β3-loop binding site on hFSH/hCG by using highly constrained multicyclic peptides. Chembiochem 2014; 16:91-9. [PMID: 25469830 DOI: 10.1002/cbic.201402540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 11/11/2022]
Abstract
Making peptide-based molecules that mimic functional interaction sites on proteins remains a challenge in biomedical sciences. Here, we present a robust technology for the covalent assembly of highly constrained and discontinuous binding site mimics, the potential of which is exemplified for structurally complex binding sites on the "Cys-knot" proteins hFSH and hCG. Peptidic structures were assembled by Ar(CH2 Br)2-promoted peptide cyclizations, combined with oxime ligation and disulfide formation. The technology allows unprotected side chain groups and is applicable to peptides of different lengths and nature. A tetracyclic FSH mimic was constructed, showing >600-fold improved binding compared to linear or monocyclic controls. Binding of a tricyclic hCG mimic to anti-hCG mAb 8G5 was identical to hCG itself (IC50 =260 vs. 470 pM), whereas this mimic displayed an IC50 value of 149 nM for mAb 3468, an hCG-neutralizing antibody with undetectable binding to either linear or monocyclic controls.
Collapse
Affiliation(s)
- Linde E J Smeenk
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)
| | | | | | | | | | | | | |
Collapse
|
21
|
Kordopati GG, Tselios TV, Kellici T, Merzel F, Mavromoustakos T, Grdadolnik SG, Tsivgoulis GM. A novel synthetic luteinizing hormone-releasing hormone (LHRH) analogue coupled with modified β-cyclodextrin: insight into its intramolecular interactions. Biochim Biophys Acta Gen Subj 2014; 1850:159-68. [PMID: 25450179 DOI: 10.1016/j.bbagen.2014.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cyclodextrins (CDs) in combination with therapeutic proteins and other bioactive compounds have been proposed as candidates that show enhanced chemical and enzymatic stability, better absorption, slower plasma clearance and improved dose-response curves or immunogenicity. As a result, an important number of therapeutic complexes between cyclodextrins and bioactive compounds capable to control several diseases have been developed. RESULTS In this article, the synthesis and the structural study of a conjugate between a luteinizing hormone-releasing hormone (LHRH) analogue, related to the treatment of hormone dependent cancer and fertility, and modified β-cyclodextrin residue are presented. The results show that both the phenyl group of tyrosine (Tyr) as well as the indole group of tryptophan (Trp) can be encapsulated inside the cyclodextrin cavity. Solution NMR experiments provide evidence that these interactions take place intramolecularly and not intermolecularly. CONCLUSIONS The study of a LHRH analogue conjugated with modified β-cyclodextrin via high field NMR and MD experiments revealed the existence of intramolecular interactions that could lead to an improved drug delivery. GENERAL SIGNIFICANCE NMR in combination with MD simulation is of great value for a successful rational design of peptide-cyclodextrin conjugates showing stability against enzymatic proteolysis and a better pharmacological profile.
Collapse
Affiliation(s)
| | | | - Tahsin Kellici
- National and Kapodistrian University of Athens, Department of Chemistry, Athens 15771, Greece
| | - Franci Merzel
- National Institute of Chemistry, Laboratory of Biomolecular Structure, Ljubljana 1001, Slovenia
| | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Athens 15771, Greece
| | - Simona Golic Grdadolnik
- National Institute of Chemistry, Laboratory of Biomolecular Structure, Ljubljana 1001, Slovenia; EN-FIST Centre of Excellence, Dunajska 156, Ljubljana 1000, Slovenia.
| | | |
Collapse
|
22
|
|
23
|
A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues. Amino Acids 2013; 45:613-89. [DOI: 10.1007/s00726-013-1521-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/21/2013] [Indexed: 12/19/2022]
|
24
|
Gajula PK, Asthana J, Panda D, Chakraborty TK. A Synthetic Dolastatin 10 Analogue Suppresses Microtubule Dynamics, Inhibits Cell Proliferation, and Induces Apoptotic Cell Death. J Med Chem 2013; 56:2235-45. [DOI: 10.1021/jm3009629] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Jayant Asthana
- Department
of Biosciences and
Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076,
India
| | - Dulal Panda
- Department
of Biosciences and
Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076,
India
| | | |
Collapse
|
25
|
Pawar SA, Jabgunde AM, Petzold K, Maguire GEM, Dhavale DD, Kruger HG, Govender T. Investigation and folding pattern of l-ido and d-gluco peptides by EASY ROESY NMR and X-ray. RSC Adv 2013. [DOI: 10.1039/c3ra44542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Rodriguez MC, Cudic M. Optimization of physicochemical and pharmacological properties of peptide drugs by glycosylation. Methods Mol Biol 2013; 1081:107-136. [PMID: 24014437 DOI: 10.1007/978-1-62703-652-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many biological interactions and functions are mediated by glycans, leading to the emerging importance of carbohydrate and glycoconjugate chemistry in the design of novel drug therapeutics. In addition to direct effects on biological activity, sugar addition appears to alter many physicochemical and pharmacological properties of the peptide backbone. Consequently, glycosylation has been often used to improve various less than optimal features of peptide drug leads.In order to study the effects that naturally occurring and/or nonnatural glycans have on peptide drug solubility, conformation, proteolytic resistance, membrane permeability, and toxicity, it is essential to have convenient synthetic access toward synthesis of glycopeptide analogs. The crucial step in the synthesis of glycopeptides is the introduction of the carbohydrate group. The preformed glycosyl amino acid building block is the most commonly employed approach used in glycopeptide synthesis.In this review, we will describe various synthetic approaches to prepare N- and O-glycopeptides bearing simple monosaccharides as a tool to improve peptide therapeutic efficacy by glycosylation.
Collapse
Affiliation(s)
- Maria C Rodriguez
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | |
Collapse
|
27
|
Güell I, Ferre R, Sørensen KK, Badosa E, Ng-Choi I, Montesinos E, Bardají E, Feliu L, Jensen KJ, Planas M. Multivalent display of the antimicrobial peptides BP100 and BP143. Beilstein J Org Chem 2012; 8:2106-17. [PMID: 23243472 PMCID: PMC3520567 DOI: 10.3762/bjoc.8.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/07/2012] [Indexed: 12/25/2022] Open
Abstract
Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, we describe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptides KKLFKKILKYL-NH2 (BP100) and KKLfKKILKYL-NH2 (BP143) attached to the carbohydrate template cyclodithioerythritol (cDTE) or α-D-galactopyranoside (Galp). The synthesis involved the preparation of the corresponding peptide aldehyde followed by coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtained in high purities (90–98%) and in good yields (42–64%). These compounds were tested against plant and human pathogenic bacteria and screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteria analyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively, were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest that preassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of the activity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassembly is critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect.
Collapse
Affiliation(s)
- Imma Güell
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Synthesis and molecular modelling studies of novel carbapeptide analogs for inhibition of HIV-1 protease. Eur J Med Chem 2012; 53:13-21. [DOI: 10.1016/j.ejmech.2012.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022]
|
29
|
Mikata Y, Takahashi K, Noguchi Y, Naemura M, Ugai A, Itami S, Yasuda K, Tamotsu S, Matsuo T, Storr T. Synthesis of Rhenium(I) Tricarbonyl Complexes with Carbohydrate-Pendant Tridentate Ligands and Their Cellular Uptake. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100953] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Peptide screening to knockdown Bcl-2's anti-apoptotic activity: implications in cancer treatment. Int J Biol Macromol 2011; 50:796-814. [PMID: 22155216 DOI: 10.1016/j.ijbiomac.2011.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 11/21/2022]
Abstract
Bcl-2 (B cell lymphoma-2) is an anti-apoptotic member of Bcl-2 family and its overexpression causes development of several types of cancer. The BH3 domain of pro-apoptotic and BH3-only proteins is capable of binding to Bcl-2 protein to induce apoptosis. This binding is the basis for the development of novel anticancer drug which would likely antagonize Bcl-2 overexpression. In this study we have identified BH3 domain of Bax (Bax BH3) as potentially the best Bcl-2 antagonist by performing docking of BH3 peptides (peptides representing BH3 domain of pro-apoptotic and BH3-only proteins) into the Bcl-2 hydrophobic groove formed by BH3, BH1 and BH2 domains (also referred as BH3 cleft). To predict the best small antagonist for Bcl-2, three groups of small peptides (pentapeptide, tetrapeptide and tripeptide) were designed and screened against Bcl-2 which revealed the structural importance of a set of residues playing a vital role in interaction with Bcl-2. The docking and scoring function identified KRIG and KRI as specific peptides among the screened small peptides responsible for Bcl-2 neutralization and would induce apoptosis. The applied pharmacokinetic and pharmacological filters to all small peptides signify that only IGD has drug-like properties and displayed good oral bioavailability. However, the obtained binding affinity of IGD to Bcl-2 was diminutive. Hence deprotonation, amidation, acetylation, benzoylation, benzylation, and addition of phenyl, deoxyglucose and glucose fragments were performed to increase the binding affinity and to prevent its rapid degradation. Benzoylated IGD tripeptide (IGD(bzo)) was observed to have increased binding affinity than IGD with acceptable pharmacokinetic filters. In addition, stability of Bcl-2/IGD(bzo) complex was validated by Molecular Dynamics (MD) simulations revealing improved binding energy, salt bridges and strong interaction energies. This study suggests a new molecule that inhibits Bcl-2 associated cancer/tumor regression.
Collapse
|
31
|
Idris A, Bukhari A. Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis. Biotechnol Adv 2011; 30:550-63. [PMID: 22041165 DOI: 10.1016/j.biotechadv.2011.10.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/09/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
This work reviews the stripping off, role of water molecules in activity, and flexibility of immobilized Candida antarctica lipase B (CALB). Employment of CALB in ring opening polyester synthesis emphasizing on a polylactide is discussed in detail. Execution of enzymes in place of inorganic catalysts is the most green alternative for sustainable and environment friendly synthesis of products on an industrial scale. Robust immobilization and consequently performance of enzyme is the essential objective of enzyme application in industry. Water bound to the surface of an enzyme (contact class of water molecules) is inevitable for enzyme performance; it controls enzyme dynamics via flexibility changes and has intensive influence on enzyme activity. The value of pH during immobilization of CALB plays a critical role in fixing the active conformation of an enzyme. Comprehensive selection of support and protocol can develop a robust immobilized enzyme thus enhancing its performance. Organic solvents with a log P value higher than four are more suitable for enzymatic catalysis as these solvents tend to strip away very little of the enzyme surface bound water molecules. Alternatively ionic liquid can work as a more promising reaction media. Covalent immobilization is an exclusively reliable technique to circumvent the leaching of enzymes and to enhance stability. Activated polystyrene nanoparticles can prove to be a practical and economical support for chemical immobilization of CALB. In order to reduce the E-factor for the synthesis of biodegradable polymers; enzymatic ring opening polyester synthesis (eROPS) of cyclic monomers is a more sensible route for polyester synthesis. Synergies obtained from ionic liquids and immobilized enzyme can be much effective eROPS.
Collapse
Affiliation(s)
- Ani Idris
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | | |
Collapse
|
32
|
C-3 branched δ-3,5-cis- and trans-THF sugar amino acids: synthesis of the first generation of branched homooligomers. Amino Acids 2011; 41:643-61. [PMID: 21350854 DOI: 10.1007/s00726-011-0849-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/12/2011] [Indexed: 12/22/2022]
Abstract
This article describes the efficient synthesis of the first generation of branched sugar amino acid (SAA) oligomers in solution phase via two main routes: by the use of a standard coupling reagent and via the use of active ester intermediates. Benzyl-protected dimeric carbopeptoid and methyl-protected dimeric and tetrameric, hexameric and octameric carbopeptoids were obtained from a branched δ-3,5-trans-tetrahydrofuran (THF) SAA and methyl-protected dimeric and tetrameric carbopeptoids were synthesised from a branched δ-3,5-cis-THF SAA. These systems are of interest because of their potential to display foldameric properties reminiscent of those observed in α-peptides and proteins. Amongst their many uses, foldamers provide simpler models in the study of the factors which induce the folding and unfolding of proteins and, ultimately, potential insights into their functioning.
Collapse
|
33
|
Delsuc N, Massip S, Léger JM, Kauffmann B, Huc I. Relative helix-helix conformations in branched aromatic oligoamide foldamers. J Am Chem Soc 2011; 133:3165-72. [PMID: 21306159 DOI: 10.1021/ja110677a] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The de novo design and synthesis of large and well-organized, tertiary-like, α-peptidic folded architectures is difficult because it relies on multiple cooperative interactions within and between secondary folded motifs of relatively weak intrinsic stability. The very stable helical structures of oligoamides of 8-amino-2-quinoline carboxylic acid offer a way to circumvent this difficulty thanks to their ability to fold into predictable and stable secondary motifs. Branched architectures comprised of two pairs of tetrameric (1), pentameric (2), or octameric (3) oligomers connected via an ethylene glycol spacer were designed and synthesized. The short spacer holds two helices in close proximity, thus enabling interactions between them. Degrees of freedom allowed in the system are well-defined: the relative P or M handedness of the two helices; the relative orientation of the helix axes; and the gauche or anti conformation of the ethylene spacer. Investigating the structures of 1-3 in the solid state and in solution allowed a detailed picture to be drawn of their conformational preferences and dynamics. The high variability of the solid state structures provides many snapshots of possible solution conformations. Helix-helix handedness communication was evidenced and shown to depend both on solvent and on a defined set of side chains at the helix-helix interface. Interdigitation of the side chains was found to restrict free rotation about the ethylene spacer. One solid state structure shows a high level of symmetry and provides a firm basis to further design specific side chain/side chain directional interactions.
Collapse
Affiliation(s)
- Nicolas Delsuc
- Institut Européen de Chimie et Biologie, Université de Bordeaux-CNRS UMR5248 and UMS3033, 2 rue Robert Escarpit, 33607 Pessac, France
| | | | | | | | | |
Collapse
|
34
|
Sharma GVM, Reddy KS, Basha SJ, Reddy KR, Sarma AVS. Design and synthesis of trans-3-aminopyran-2-carboxylic acid (APyC) and α/β-peptides with 9/11-helix. Org Biomol Chem 2011; 9:8102-11. [DOI: 10.1039/c1ob06279d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Pal S, Mitra K, Azmi S, Ghosh JK, Chakraborty TK. Towards the synthesis of sugar amino acid containing antimicrobial noncytotoxic CAP conjugates with gold nanoparticles and a mechanistic study of cell disruption. Org Biomol Chem 2011; 9:4806-10. [DOI: 10.1039/c1ob05338h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Chakraborty TK, Kumar NVS, Roy S, Dutta SK, Kunwar AC, Sridhar B, Singh H. Stereochemical control in the structures of linear δ
,α
-hybrid tripeptides containing tetrahydrofuran amino acids. J PHYS ORG CHEM 2010. [DOI: 10.1002/poc.1818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
38
|
Sakurai K, Kahne D. Design and Synthesis of Functionalized Trisaccharides as p53-Peptide Mimics. Tetrahedron Lett 2010; 51:3724-3727. [PMID: 20676223 DOI: 10.1016/j.tetlet.2010.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligosaccharides represent potentially useful scaffolds for the development of peptidomimetics. We report here the design and synthesis of functionalized trisaccharides modeled after an α-helical 15-mer peptide region of p53 which binds to its cellular regulator MDM2. The trisaccharide scaffold was obtained efficiently by applying the sulfoxide glycosylation reaction as a key methodology.
Collapse
Affiliation(s)
- Kaori Sakurai
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA and Department of Biological Cellular and Molecular Pharmacology, Harvard Medical School, Longwood, Boston, MA
| | | |
Collapse
|
39
|
Andreini M, Taillefumier C, Chrétien F, Thery V, Chapleur Y. Synthesis and Solution Conformation of Homo-β-peptides Consisting of N-Mannofuranosyl-3-ulosonic acids. J Org Chem 2009; 74:7651-9. [DOI: 10.1021/jo900966b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Manuel Andreini
- Groupe SUCRES, Nancy Université UMR 7565 Université Henri Poincaré, Nancy 1-CNRS, BP 70239, F-54506, Nancy-Vandoeuvre, France
| | - Claude Taillefumier
- Clermont Université, Université Blaise Pascal, Laboratoire SEESIB (UMR 6504−CNRS), F-63177 Aubière cedex, France
| | - Françoise Chrétien
- Groupe SUCRES, Nancy Université UMR 7565 Université Henri Poincaré, Nancy 1-CNRS, BP 70239, F-54506, Nancy-Vandoeuvre, France
| | - Vincent Thery
- Clermont Université, Université Blaise Pascal, Laboratoire SEESIB (UMR 6504−CNRS), F-63177 Aubière cedex, France
| | - Yves Chapleur
- Groupe SUCRES, Nancy Université UMR 7565 Université Henri Poincaré, Nancy 1-CNRS, BP 70239, F-54506, Nancy-Vandoeuvre, France
| |
Collapse
|
40
|
Chakraborty TK, Koley D, Ravi R, Krishnakumari V, Nagaraj R, Chand Kunwar A. Synthesis, Conformational Analysis and Biological Studies of Cyclic Cationic Antimicrobial Peptides Containing Sugar Amino Acids. J Org Chem 2008; 73:8731-44. [DOI: 10.1021/jo801123q] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tushar Kanti Chakraborty
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Dipankar Koley
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Rapolu Ravi
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Viswanatha Krishnakumari
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Ramakrishnan Nagaraj
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Ajit Chand Kunwar
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| |
Collapse
|
41
|
Chagnault V, Lalot J, Murphy P. Synthesis of Somatostatin Mimetics Based on 1‐Deoxynojirimycin. ChemMedChem 2008; 3:1071-6. [DOI: 10.1002/cmdc.200800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Lucas SD, Rauter AP, Wessel HP. Synthesis of 3‐Methoxyoxetane δ‐Amino Acids with D‐lyxo, D‐ribo, and D‐arabino Configurations. J Carbohydr Chem 2008. [DOI: 10.1080/07328300802061717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Susana Dias Lucas
- a Centro de Química e Bioquímica, Departamento de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Lisboa , Portugal
| | - Amélia Pilar Rauter
- a Centro de Química e Bioquímica, Departamento de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Lisboa , Portugal
| | - Hans Peter Wessel
- b F. Hoffmann‐La Roche Ltd. , Pharmaceutical Research , Basel , Switzerland
| |
Collapse
|
43
|
Che Y, Marshall GR. Privileged scaffolds targeting reverse-turn and helix recognition. Expert Opin Ther Targets 2008; 12:101-14. [PMID: 18076374 DOI: 10.1517/14728222.12.1.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Protein-protein interactions dominate molecular recognition in biologic systems. One major challenge for drug discovery arises from the very large surfaces that are characteristic of many protein-protein interactions. OBJECTIVES To identify 'drug-like' small molecule leads capable of modulating protein-protein interactions based on common protein-recognition motifs, such as alpha-helices, beta-strands, reverse-turns and polyproline motifs for example. OVERVIEW Many proteins/peptides are unstructured under physiologic conditions and only fold into ordered structures on binding to their cellular targets. Therefore, preorganization of an inhibitor into its protein-bound conformation reduces the entropy of binding and enhances the relative affinity of the inhibitor. Accordingly, this review describes a general strategy to address the challenge based on the 'privileged structure hypothesis' [Che, PhD thesis, Washington University, 2003] that chemical templates capable of mimicking surfaces of protein-recognition motifs are potential privileged scaffolds as small-molecule inhibitors of protein-protein interactions. The authors highlight recent advances in the design of privileged scaffolds targeting reverse-turn and helical recognition. CONCLUSIONS Privileged scaffolds targeting common protein-recognition motifs are useful to help elucidate the receptor-bound conformation and to provide non-peptidic, bioavailable substructures suitable for optimization to modulate protein-protein interactions.
Collapse
Affiliation(s)
- Ye Che
- Washington University, Center for Computational Biology and Department of Biochemistry and Molecular Biophysics, St. Louis, MO 63110, USA
| | | |
Collapse
|
44
|
Boturyn D, Defrancq E, Dolphin GT, Garcia J, Labbe P, Renaudet O, Dumy P. RAFT Nano-constructs: surfing to biological applications. J Pept Sci 2008; 14:224-40. [DOI: 10.1002/psc.964] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Risseeuw MD, Overhand M, Fleet GW, Simone MI. A compendium of sugar amino acids (SAA): scaffolds, peptide- and glyco-mimetics. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
|
47
|
Lastdrager B, Timmer MSM, van der Marel GA, Overkleeft HS, Overhand M. Transformation of Glucose into a Novel Carbasugar Amino Acid Dipeptide Isostere. J Carbohydr Chem 2007. [DOI: 10.1080/07328300701252623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Bas Lastdrager
- a Leiden Institute of Chemistry, Leiden University , Leiden, The Netherlands
| | - Mattie S. M. Timmer
- a Leiden Institute of Chemistry, Leiden University , Leiden, The Netherlands
| | | | | | - Mark Overhand
- a Leiden Institute of Chemistry, Leiden University , Leiden, The Netherlands
| |
Collapse
|
48
|
Bao X, Isaacsohn I, Drew AF, Smithrud DB. Determining the binding and intracellular transporting abilities of a host-[3]rotaxane. J Org Chem 2007; 72:3988-4000. [PMID: 17477574 DOI: 10.1021/jo0623641] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellular permeability of compounds can be enhanced in the presence of a host-[2]rotaxane (HR). The effective concentration of an HR is limited by the stoichiometry of the complex formation of the HR and the delivered compound. We speculate that a complex forms between the HR and a guest during membrane passage. To further explore the relationship between guest binding and guest delivery and to obtain more efficient delivery devices, we present, in this report, the first example of a cyclophane-[3]rotaxane (Cy3R), which has two wheels and a cyclophane as a blocking group. The properties of Cy3R were compared to a new cyclophane-[2]rotaxane (Cy2R) that has the same cyclophane pocket as Cy3R but only a single wheel. The second wheel of Cy3R can form additional noncovalent bonds, e.g., salt bridges, cation-pi interactions or aromatic-aromatic interactions, with appropriately functionalized guests. We show by flow cytometric analysis that Cy3R transfers Fl-AVWAL (76%) and to a lesser degree Fl-QEAVD (26%) into live cells. The level of Fl-peptide within a cell is concentration dependent and largely temperature and ATP independent, suggesting that a Cy3R.Fl-peptide complex passes through the cellular membrane without requiring active cell-mediated processes. Cy2R, on the other hand, forms weaker complexes and requires a higher concentration to transfer materials into cells. These results demonstrate that the addition of a second wheel on a rotaxane can improve guest binding in various solvents and hence delivery through cellular membranes.
Collapse
Affiliation(s)
- Xiaofeng Bao
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | | | |
Collapse
|
49
|
Chatterjee J, Mierke D, Kessler H. N-methylated cyclic pentaalanine peptides as template structures. J Am Chem Soc 2007; 128:15164-72. [PMID: 17117868 DOI: 10.1021/ja063123d] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The N-methylation of cyclic peptides can be used to modify the activity and/or selectivity of biologically active peptides. As N-methylation introduces different flexibility and lipophilicity, it can also improve the bioavailability (the ADMET profile). To search for conformationally constrained cyclic peptides, a library of 30 different N-methylated peptides with the basic sequence cyclo(-D-Ala-L-Ala4-) was synthesized. Based on the NMR analysis, seven of these peptides exhibited single conformations (>98%). The structural features of these peptides were determined by a combination of NMR and distance geometry and then further refined by molecular dynamics simulations in an explicit DMSO solvent box. The structures provided from these efforts can now serve as templates for the rational design of cyclic pentapeptides with a distinct backbone conformation or for "spatial screening" to explore the bioactive conformation of medically important peptide systems.
Collapse
Affiliation(s)
- Jayanta Chatterjee
- Department Chemie, Lehrstuhl II für Organische Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching D-85747, Germany
| | | | | |
Collapse
|
50
|
Chakraborty TK, Koley D, Ravi R, Kunwar AC. Synthesis and structural studies of peptides containing a mannose-derived furanoid sugar amino acid. Org Biomol Chem 2007; 5:3713-6. [DOI: 10.1039/b712365p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|