1
|
Serrano-León IM, Prieto P, Aguilar M. Telomere and subtelomere high polymorphism might contribute to the specificity of homologous recognition and pairing during meiosis in barley in the context of breeding. BMC Genomics 2023; 24:642. [PMID: 37884878 PMCID: PMC10601145 DOI: 10.1186/s12864-023-09738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Barley (Hordeum vulgare) is one of the most popular cereal crops globally. Although it is a diploid species, (2n = 2x = 14) the study of its genome organization is necessary in the framework of plant breeding since barley is often used in crosses with other cereals like wheat to provide them with advantageous characters. We already have an extensive knowledge on different stages of the meiosis, the cell division to generate the gametes in species with sexual reproduction, such as the formation of the synaptonemal complex, recombination, and chromosome segregation. But meiosis really starts with the identification of homologous chromosomes and pairing initiation, and it is still unclear how chromosomes exactly choose a partner to appropriately pair for additional recombination and segregation. In this work we present an exhaustive molecular analysis of both telomeres and subtelomeres of barley chromosome arms 2H-L, 3H-L and 5H-L. As expected, the analysis of multiple features, including transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots, G4 quadruplexes, genes and targeted sequence motifs for key DNA-binding proteins, revealed a high degree of variability both in telomeres and subtelomeres. The molecular basis for the specificity of homologous recognition and pairing occurring in the early chromosomal interactions at the start of meiosis in barley may be provided by these polymorphisms. A more relevant role of telomeres and most distal part of subtelomeres is suggested.
Collapse
Affiliation(s)
- I M Serrano-León
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain
| | - P Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain.
| | - M Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 3ª Planta, Córdoba, Spain
| |
Collapse
|
2
|
Ghosh S, De D, Banerjee V, Biswas S, Ghosh U. High throughput screening of a new fluorescent G-quadruplex ligand having telomerase inhibitory activity in human A549 cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-22. [PMID: 36919622 DOI: 10.1080/15257770.2023.2188220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Identification of a new G-quadruplex ligand having anti-telomerase activity would be a promising strategy for cancer therapy. The screened compound from ZINC database using docking studies was experimentally verified for its binding with three different telomeric G-quadruplex DNA sequences and anti-telomerase activity in A549 cells. Identified compound is an intrinsic fluorescent molecule, permeable to live cells and has a higher affinity to 22AG out of three different telomeric G-quadruplex DNA. It showed cytotoxicity and a significant reduction of telomerase activity in human A549 cells at a very low dose. So, this compound has a good anti-cancer effect.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Debapriya De
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Victor Banerjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Soumyajit Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
3
|
Roy S, Chakraborty N, Maiti B, Muniyappa K, Bhattacharya S. Design and Synthesis of Xanthone Analogues Conjugated with Aza-aromatic Substituents as Promising G-Quadruplex Stabilizing Ligands and their Selective Cancer Cell Cytotoxic Action. Chembiochem 2023; 24:e202200609. [PMID: 36455103 DOI: 10.1002/cbic.202200609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
We have examined the stabilization of higher-order noncanonical G-quadruplex (G4) DNA structures formed by the G-rich sequences in the promoter region of oncogenes such as c-MYC, c-KIT, VEGF and BCl2 by newly synthesized, novel nitrogen-containing aromatics conjugated to xanthone moiety. Compounds with N-heterocyclic substituents such as pyridine (XNiso), benzimidazole (XBIm), quinoxaline (XQX) and fluorophore dansyl (XDan) showed greater effectiveness in stabilizing the G4 DNA as well as selective cytotoxicity for cancer cells (mainly A549) over normal cells both in terms of UV-Vis spectral titrations and cytotoxicity assay. Both fluorescence spectral titrimetric measurements and circular dichroism (CD) melting experiments further substantiated the G4 stabilization phenomenon by these small-molecular ligands. In addition, these compounds could induce the formation of parallel G4 structures in the absence of any added salt condition in Tris⋅HCl buffer at 25 °C. In a polymerase stop assay, the formation of stable G4 structures in the promoter of oncogenes and halting of DNA synthesis in the presence of the above-mentioned compounds was demonstrated by using oncogene promoter as the DNA synthesis template. Apoptosis-mediated cell death of the cancer cells was proved by Annexin V-PI dual staining assay and cell-cycle arrest occurred in the S phase of the cell cycles. The plausible mode of binding involves the stacking of the xanthone core on the G4 DNA plane with the possibility of interaction with the 5'-overhang as indicated by molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.,School of Applied & Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Nirmal Chakraborty
- School of Applied & Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Bappa Maiti
- School of Applied & Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.,School of Applied & Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 700032, India
| |
Collapse
|
4
|
Wang X, Zhang M, Xiong XQ, Yang H, Wang P, Zhang K, Awadasseid A, Narva S, Wu YL, Zhang W. Design, synthesis and bioactivity of novel naphthalimide-benzotriazole conjugates against A549 cells via targeting BCL2 G-quadruplex and inducing autophagy. Life Sci 2022; 302:120651. [PMID: 35597548 DOI: 10.1016/j.lfs.2022.120651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
AIMS In this study, a series of novel naphthalimide-benzotriazole conjugates (1a-3c) based on 1, 8-naphthalimide as a core skeleton, aiming at G-quadruplexes, were designed and synthesized, and their anti-cancer activity and mechanism were studied. MATERIALS AND METHODS Using the CCK-8 assay, FRET melting, EMSA, CD, and molecular docking, intracellular assays, western blotting, immunofluorescence, and flow cytometry. KEY FINDINGS By the CCK-8 assay, it was found that the compound, 2-(3-(piperazin-1-yl)propyl)-6-(1H-benzo [d][1,2,3]triazol-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (3a), has better activity against A549 cells. Through extracellular assays, including FRET melting, EMSA, CD, and molecular docking, results showed that 3a selectively interacted with BCL2 G-quadruplex(es). Further studies by intracellular assays, including western blotting, immunofluorescence, flow cytometry, etc., verified that 3a mediated the death of A549 cells by two pathways: inhibition of the expression of the BCL2 gene, causing tumor cell apoptosis, and promotion of genetic instability, causing autophagy. This study suggests that the type of compounds, in particular, 3a, may be a potential molecule to explore for BCL2 G-quadruplex-targeted drugs against lung cancer. SIGNIFICANCE Our findings demonstrate that compound 3a as a BCL2 G-quadruplex ligand induces DNA damage, autophagy, and apoptosis in A549 cells. This study provides us with a type of lead compound as an anti-tumor drug.
Collapse
Affiliation(s)
- Xiao Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mi Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xu-Qiong Xiong
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hao Yang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Panpan Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Koutian Zhang
- Zhejiang Jianing Pharmaceutical Technology Co., Ltd, Hangzhou, 310051, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan-Ling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
5
|
Tian S, Welte T, Mai J, Liu Y, Ramirez M, Shen H. Identification of an Aptamer With Binding Specificity to Tumor-Homing Myeloid-Derived Suppressor Cells. Front Pharmacol 2022; 12:752934. [PMID: 35126104 PMCID: PMC8814529 DOI: 10.3389/fphar.2021.752934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a critical role in tumor growth and metastasis. Since they constantly infiltrate into the tumor tissue, these cells are considered as an ideal carrier for tumor-targeted drug delivery. We recently identified a DNA-based thioaptamer (T1) with tumor accumulating activity, demonstrated its potential on tumor targeting and drug delivery. In the current study, we have carried out structure-activity relationship analysis to further optimize the aptamer. In the process, we have identified a sequence-modified aptamer (M1) that shows an enhanced binding affinity to MDSCs over the parental T1 aptamer. In addition, M1 can penetrate into the tumor tissue more effectively by hitchhiking on MDSCs. Taken together, we have identified a new reagent for enhanced tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Shaohui Tian
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States,Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Thomas Welte
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Maricela Ramirez
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States,Weill Cornell Medical College, White Plains, NY, United States,*Correspondence: Haifa Shen,
| |
Collapse
|
6
|
Lee HT, Sanford S, Paul T, Choe J, Bose A, Opresko PL, Myong S. Position-Dependent Effect of Guanine Base Damage and Mutations on Telomeric G-Quadruplex and Telomerase Extension. Biochemistry 2020; 59:2627-2639. [PMID: 32578995 DOI: 10.1021/acs.biochem.0c00434] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Telomeres are hot spots for mutagenic oxidative and methylation base damage due to their high guanine content. We used single-molecule fluorescence resonance energy transfer detection and biochemical assays to determine how different positions and types of guanine damage and mutations alter telomeric G-quadruplex structure and telomerase activity. We compared 15 modifications, including 8-oxoguanine (8oxoG), O-6-methylguanine (O6mG), and all three possible point mutations (G to A, T, and C) at the 3' three terminal guanine positions of a telomeric G-quadruplex, which is the critical access point for telomerase. We found that G-quadruplex structural instability was induced in the order C < T < A ≤ 8oxoG < O6mG, with the perturbation caused by O6mG far exceeding the perturbation caused by other base alterations. For all base modifications, the central G position was the most destabilizing among the three terminal guanines. While the structural disruption by 8oxoG and O6mG led to concomitant increases in telomerase binding and extension activity, the structural perturbation by point mutations (A, T, and C) did not, due to disrupted annealing between the telomeric overhang and the telomerase RNA template. Repositioning the same mutations away from the terminal guanines caused both G-quadruplex structural instability and elevated telomerase activity. Our findings demonstrate how a single-base modification drives structural alterations and telomere lengthening in a position-dependent manner. Furthermore, our results suggest a long-term and inheritable effect of telomeric DNA damage that can lead to telomere lengthening, which potentially contributes to oncogenesis.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Samantha Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania 15261, United States
| | - Tapas Paul
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joshua Choe
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Arindam Bose
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania 15261, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania 15261, United States
| | - Sua Myong
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Kuang H, Gartner Iii TE, Dorneles de Mello M, Guo J, Zuo X, Tsapatsis M, Jayaraman A, Kokkoli E. ssDNA-amphiphile architecture used to control dimensions of DNA nanotubes. NANOSCALE 2019; 11:19850-19861. [PMID: 31559999 DOI: 10.1039/c9nr03761f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the dimensions of DNA nanotubes is of great interest as they can be used in different applications ranging from functional elements in nanodevices to carriers for drug delivery. ssDNA-amphiphiles composed of a ssDNA headgroup, a hydrophobic dialkyl tail and a polycarbon spacer between the tail and the headgroup, self-assemble into hollow DNA nanotubes by forming bilayer nanotapes that transition from twisted nanotapes, to helical nanotapes, to nanotubes. The presence of the DNA nanotubes is verified via cryo-TEM and SAXS. We further explore the effect of the ssDNA secondary structure and tail length on the assembly of the ssDNA-amphiphiles. We demonstrate that the presence of intermolecular G-quadruplexes in the ssDNA sequence dictates the nanotube length. The nanotube diameter is controlled by the hydrophobic tail length, and coarse-grained molecular dynamics simulations are employed to elucidate the tail design impact on assembly.
Collapse
Affiliation(s)
- Huihui Kuang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Thomas E Gartner Iii
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Matheus Dorneles de Mello
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Guo
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Xiaobing Zuo
- X-Ray, Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Michael Tsapatsis
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA and Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Efrosini Kokkoli
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Clemente APB, Kuang H, Shabana AM, Labuza TP, Kokkoli E. Design of an Aptamer-Amphiphile for the Detection of β-Lactoglobulin on a Liquid Crystal Interface. Bioconjug Chem 2019; 30:2763-2770. [PMID: 31589417 DOI: 10.1021/acs.bioconjchem.9b00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An aptamer-amphiphile was designed that binds to β-lactoglobulin (β-LG), a major allergen from cow's milk. For this work, a 23-nucleotide ssDNA aptamer β-LG-23, capable of forming antiparallel G-quadruplexes was used, and its specificity and binding affinity of 22 ± 2 nM for β-LG were evaluated via enzyme-linked apta-sorbent assay (ELASA). The β-LG-23 aptamer was synthesized as an amphiphile by conjugating it to a C16 double tail via different spacers, and the effect of the spacers on the binding affinity and secondary structure of the aptamer was investigated. From all amphiphiles tested, direct conjugation of the aptamer to the tail gave the lowest binding affinity to β-LG (37 ± 2 nM), while maintaining the antiparallel G-quadruplex secondary structure of the aptamer. As a proof of concept, the β-LG-23 aptamer-amphiphile was used to decorate the interface of a liquid crystal (LC) and effectively detected 10 nM or 0.18 ppm of β-LG with a 20 min equilibration time, thus demonstrating that it has the potential to be used for fast and label-free detection of β-LG.
Collapse
Affiliation(s)
- Ana Paula Brumann Clemente
- Department of Food Science and Nutrition , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Huihui Kuang
- Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Ahmed M Shabana
- Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo 11562 , Egypt
| | - Theodore P Labuza
- Department of Food Science and Nutrition , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Efrosini Kokkoli
- Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States.,Department of Chemical and Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
9
|
Zhou K, Liu J, Xiong X, Cheng M, Hu X, Narva S, Zhao X, Wu Y, Zhang W. Design, synthesis of 4,5-diazafluorene derivatives and their anticancer activity via targeting telomeric DNA G-quadruplex. Eur J Med Chem 2019; 178:484-499. [PMID: 31202994 DOI: 10.1016/j.ejmech.2019.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023]
Abstract
In our work, 19 novel 4,5-diazafluorene derivatives (11a-d, 12a-d, 13a-d, 14a-c, 15c, 16a-c) bearing a 1,3-disubstituted pyrazol/thioxothiazolidinone or thioxothiazolidinone-oxadiazole moieties were designed, synthesized, preliminarily explored for their antitumor activities and in vitro mechanism. All compounds showed different values of antiproliferative activity against A549, AGS, HepG2 and MCF-7 cell lines through CCK-8. Especially, the compound 14c exhibited the strongest activity and best selectivity against A549 cells with an IC50 1.13 μM and an SI value of 7.01 relative to MRC-5 cells, which was better than cisplatin (SI = 1.80) as a positive control. Experimental results at extracellular level demonstrated that compounds 14a-c could strongly interact with the G-quadruplex(es) formed in a 26 nt telomeric G-rich DNA, in particular, the 14c exhibits quite strong binding affinity with an association equilibrium constant (KA) of 7.04(±0.16) × 107 M-1 and more than 1000-fold specificity to G4-DNA over ds-DNA and Mut-DNA at the compound/G4-DNA ratio of 1:1. Further trap assay ascertained that compounds 14a-c owned strong inhibitory ability of telomerase activity in A549 cells, suggesting that these compounds have great possibility to target telomeric G-quadruplexes and consequently indirectly inhibit the telomerase activity. In addition, it is worthy of note that the remarkable inhibitory effects of 14a-c on the mobility of tested cancer cells were observed by wound healing assays. Furthermore, molecular docking and UV-Vis spectral results unclose the rationale for the interaction of compounds with such G-quadruplex(es). These results indicate that the growth and metastasis inhibition of cancer cells mediated by these 4,5-diazafluorene derivatives possibly result from their interaction with telomeric G-quadruplexes, suggesting that 4,5-diazafluorene derivatives, especially 14c, possess potential as anticancer drugs.
Collapse
Affiliation(s)
- Kang Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiachun Liu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuqiong Xiong
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mei Cheng
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaolin Hu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Lu C, Smith-Carpenter JE, Taylor JSA. Evidence for Reverse Hoogsteen Hairpin Intermediates in the Photocrosslinking of Human Telomeric DNA Sequences. Photochem Photobiol 2018; 94:685-697. [PMID: 29418001 DOI: 10.1111/php.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022]
Abstract
UVB irradiation of human telomeric d(GGGTTA)3 GGG sequences in potassium ion solution crosslinks the first and third TTA segments through anti cyclobutane pyrimidine dimer (CPD) formation. The photocrosslinking reaction was first proposed to occur through a form 3 two-tetrad G-quadruplex in which the lateral four-nucleotide GTTA loop can interact with an adjacent TTA loop. Curiously, the reaction does not occur with sodium ion, which was explained by the formation of a basket structure which only has three-nucleotide TTA loops that cannot interact. Sequences known or expected to favor the two-tetrad basket did not show enhanced photocrosslinking, suggesting that some other structure was the reactive intermediate. Herein, we report that anti CPDs form in human telomeric DNA sequences with lithium ion that is known to disfavor G-quadruplex formation, as well as with potassium ion when the bases are modified to interfere with G-quartet formation. We also show that anti CPDs form in sequences containing A's in place of G's that cannot form Hoogsteen hairpins, but can form reverse Hoogsteen hairpins. These results suggest that reverse Hoogsteen hairpins may play a hitherto unrecognized role in the biology and photoreactivity of DNA in telomeres, and possibly in other purine-rich sequences found in regulatory regions.
Collapse
Affiliation(s)
- Chen Lu
- Department of Chemistry, Washington University, St. Louis, MO
| | | | | |
Collapse
|
11
|
del Mundo I, Zewail-Foote M, Kerwin SM, Vasquez KM. Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic Acids Res 2017; 45:4929-4943. [PMID: 28334873 PMCID: PMC5416782 DOI: 10.1093/nar/gkx100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023] Open
Abstract
Mutation 'hotspot' regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene.
Collapse
Affiliation(s)
- Imee Marie A. del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| | - Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, 1001 E University Ave, Georgetown, TX 78626, USA
| | - Sean M. Kerwin
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| |
Collapse
|
12
|
Rebič M, Mocci F, Uličný J, Lyubartsev AP, Laaksonen A. Coarse-Grained Simulation of Rodlike Higher-Order Quadruplex Structures at Different Salt Concentrations. ACS OMEGA 2017; 2:386-396. [PMID: 31457446 PMCID: PMC6641151 DOI: 10.1021/acsomega.6b00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/19/2017] [Indexed: 05/03/2023]
Abstract
We present a coarse-grained (CG) model of a rodlike higher-order quadruplex with explicit monovalent salts, which was developed from radial distribution functions of an underlying reference atomistic molecular dynamics simulation using inverse Monte Carlo technique. This work improves our previous CG model and extends its applicability beyond the minimal salt conditions, allowing its use at variable ionic strengths. The strategies necessary for the model development are clearly explained and discussed. The effects of the number of stacked quadruplexes and varied salt concentration on the elasticity of the rodlike higher-order quadruplex structures are analyzed. The CG model reproduces the deformations of the terminal parts in agreement with experimental observations without introducing any special parameters for terminal beads and reveals slight differences in the rise and twist of the G-quartet arrangement along the studied biopolymer. The conclusions of our study can be generalized for other G-quartet-based structures.
Collapse
Affiliation(s)
- Matúš Rebič
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Department of Biophysics, Faculty
of Science and Centre for Multimodal Imaging (CMI),
Department of Biophysics, Institute of Physics, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
- Science
for Life Laboratory (SciLifeLab), 17121 Solna, Sweden
| | - Francesca Mocci
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Science
for Life Laboratory (SciLifeLab), 17121 Solna, Sweden
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Jozef Uličný
- Department of Biophysics, Faculty
of Science and Centre for Multimodal Imaging (CMI),
Department of Biophysics, Institute of Physics, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Alexander P. Lyubartsev
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Aatto Laaksonen
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Science
for Life Laboratory (SciLifeLab), 17121 Solna, Sweden
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
- Stellenbosch
Institute of Advanced Study (STIAS), Wallenberg
Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
- E-mail: . Phone: +46 8 162372 (A.L.)
| |
Collapse
|
13
|
Yang L, Wang Y, Li B, Jin Y. High-throughput identification of telomere-binding ligands based on the fluorescence regulation of DNA-copper nanoparticles. Biosens Bioelectron 2016; 87:915-920. [PMID: 27664411 DOI: 10.1016/j.bios.2016.09.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 01/08/2023]
Abstract
Formation of the G-quadruplex in the human telomeric DNA is an effective way to inhibit telomerase activity. Therefore, screening ligands of G-quadruplex has potential applications in the treatment of cancer by inhibit telomerase activity. Although several techniques have been explored for screening of telomeric G-quadruplexes ligands, high-throughput screening method for fast screening telomere-binding ligands from the large compound library is still urgently needed. Herein, a label-free fluorescence strategy has been proposed for high-throughput screening telomere-binding ligands by using DNA-copper nanoparticles (DNA-CuNPs) as a signal probe. In the absence of ligands, human telomeric DNA (GDNA) hybridized with its complementary DNA (cDNA) to form double stranded DNA (dsDNA) which can act as an efficient template for the formation of DNA-CuNPs, leading to the high fluorescence of DNA-CuNPs. In the presence of ligands, GDNA folded into G-quadruplex. Single-strdanded cDNA does not support the formation of DNA-CuNP, resulting in low fluorescence of DNA-CuNPs. Therefore, telomere-binding ligands can be high-throughput screened by monitoring the change in the fluorescence of DNA-CuNPs. Thirteen traditional chinese medicines were screened. Circular dichroism (CD) measurements demonstrated that the selected ligands could induce single-stranded telomeric DNA to form G-quadruplex. The telomere repeat amplification protocol (TRAP) assay demonstrated that the selected ligands can effectively inhibit telomerase activity. Therefore, it offers a cost-effective, label-free and reliable high-throughput way to identify G-quadruplex ligands, which holds great potential in discovering telomerase-targeted anticancer drugs.
Collapse
Affiliation(s)
- Luzhu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanjun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
14
|
Zhao A, Zhao C, Tateishi-Karimata H, Ren J, Sugimoto N, Qu X. Incorporation of O(6)-methylguanine restricts the conformational conversion of the human telomere G-quadruplex under molecular crowding conditions. Chem Commun (Camb) 2016; 52:1903-6. [PMID: 26673900 DOI: 10.1039/c5cc09728b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we systematically studied the incorporation of O(6)-methylguanine (6mG) into different positions of the human telomere G-quadruplex. In contrast to the natural G-quadruplex, the 6mG incorporated G-quadruplexes impeded the conformational conversion of the G-quadruplex from a hybrid to a parallel structure under molecular crowding conditions in a K(+) containing buffer.
Collapse
Affiliation(s)
- Andong Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
15
|
Shi Z, Zhang X, Cheng R, Zhang Q, Jin Y. High-throughout identification of telomere-binding ligands based on photo-induced electron transfer. RSC Adv 2016. [DOI: 10.1039/c5ra25612g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A fast and cost-effective method is developed for high-throughout screening G-quadruplex-binding ligands based on the photo-induced electron transfer.
Collapse
Affiliation(s)
- Zhilu Shi
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Xiafei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Rui Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Qi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
| |
Collapse
|
16
|
Formation and stabilization of the telomeric antiparallel G-quadruplex and inhibition of telomerase by novel benzothioxanthene derivatives with anti-tumor activity. Sci Rep 2015; 5:13693. [PMID: 26329134 PMCID: PMC4557076 DOI: 10.1038/srep13693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes formed in telomeric DNA sequences at human chromosome ends can be a novel target for the development of therapeutics for the treatment of cancer patients. Herein, we examined the ability of six novel benzothioxanthene derivatives S1–S6 to induce the formation of and stabilize an antiparallel G-quadruplex by EMSA, UV-melting and CD techniques and the influence of S1–S6 on A549 and SGC7901 cells through real-time cell analysis, wound healing, trap assay methods. Results show that six compounds could differentially induce 26 nt G-rich oligonucleotides to form the G-quadruplex with high selectivity vs C-rich DNA, mutated DNA and double-stranded DNA, stabilize it with high affinity, promote apoptosis and inhibit mobility and telomerase activity of A549 cells and SGC7901 cells. Especially, S1, S3, S4 displayed stronger abilities, of which S3 was the most optimal with the maximum ΔTm value being up to 29.8 °C for G-quadruplex, the minimum IC50 value being 0.53 μM and the maximum cell inhibitory rate being up to 97.2%. This study suggests that this type of compounds that induce the formation of and stabilize the telomeric antiparallel G-quadruplex, and consequently inhibit telomerase activity, leading to cell apoptosis, can be screened for the discovery of novel antitumor therapeutics.
Collapse
|
17
|
Agarwala P, Kumar S, Pandey S, Maiti S. Human telomeric RNA G-quadruplex response to point mutation in the G-quartets. J Phys Chem B 2015; 119:4617-27. [PMID: 25763809 DOI: 10.1021/acs.jpcb.5b00619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many putative G-quadruplex forming sequences have been predicted to exist in the human genome and transcriptome. As these sequences are subject to point mutations or SNPs (single nucleotide polymorphisms) during the course of evolution, we attempt to understand impact of these mutations in context of RNA G-quadruplex formation using human telomeric RNA (TERRA) as a model sequence. Our studies suggest that G-quadruplex stability is sensitive to substitution of the guanines comprising G-quartets. While central G-quartet plays a crucial role in maintaining the DNA G-quadruplex stability as evident in literature, there is equal importance of three G-quartets in the stability of RNA quadruplex structure. The work here highlights the alterations in the G-quartet are detrimental to the integrity of overall RNA G-quadruplex structure. Furthermore, TmPyP4 molecules are shown to exhibit similar binding behavior toward telomeric RNA G-quadruplex harboring base substitutions employing CD titrations and isothermal titration calorimetry; well indicating that mutation does not influence TmPyP4 recognition ability as it affects the stability of RNA G-quadruplex. Thus, our study implicates that mutation in G-quartets causes destabilization of RNA G-quadruplex without affecting its trans factor binding ability.
Collapse
Affiliation(s)
- Prachi Agarwala
- †Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India.,‡Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110 007, India
| | - Santosh Kumar
- ‡Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110 007, India
| | - Satyaprakash Pandey
- †Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India.,‡Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110 007, India
| | - Souvik Maiti
- †Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India.,‡Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110 007, India.,§CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
18
|
Rebič M, Mocci F, Laaksonen A, Uličný J. Multiscale simulations of human telomeric G-quadruplex DNA. J Phys Chem B 2014; 119:105-13. [PMID: 25469629 DOI: 10.1021/jp5103274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present a coarse-grain (CG) model of human telomeric G-quadruplex, obtained using the inverse Monte Carlo (IMC) and iterative Boltzmann inversion (IBI) techniques implemented within the software package called MagiC. As a starting point, the 2HY9 human telomeric [3 + 1] hybrid, a 26-nucleobase sequence, was modeled performing a 1 μs long atomistic molecular dynamics (MD) simulation. The chosen quadruplex includes two kinds of loops and all possible combinations of relative orientations of guanine strands that can be found in quadruplexes. The effective CG potential for a one bead per nucleotide model has been developed from the radial distribution functions of this reference system. The obtained potentials take into account explicitly the interaction with counterions, while the effect of the solvent is included implicitly. The structural properties of the obtained CG model of the quadruplex provided a perfect match to those resulting from the reference atomistic MD simulation. The same set of interaction potentials was then used to simulate at the CG level another quadruplex topology (PDB id 1KF1 ) that can be formed by the human telomeric DNA sequence. This quadruplex differs from 2HY9 in the loop topology and G-strand relative orientation. The results of the CG MD simulations of 1KF1 are very encouraging and suggest that the CG model based on 2HY9 can be used to simulate quadruplexes with different topologies. The CG model was further applied to a higher order human telomeric quadruplex formed by the repetition, 20 times, of the 1KF1 quadruplex structure. In all cases, the developed model, which to the best of our knowledge is the first model of quadruplexes at the CG level presented in the literature, reproduces the main structural features remarkably well.
Collapse
Affiliation(s)
- Matúš Rebič
- Department of Biophysics, Faculty of Science, P. J. Šafárik University , Jesenná 5, 041 54 Košice, Slovakia
| | | | | | | |
Collapse
|
19
|
Gracie K, Dhamodharan V, Pradeepkumar PI, Faulds K, Graham D. Qualitative SERS analysis of G-quadruplex DNAs using selective stabilising ligands. Analyst 2014; 139:4458-65. [DOI: 10.1039/c4an00551a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A SERS-based method has been developed for the analysis of G-quadruplex DNAs using three novel stabilising ligands.
Collapse
Affiliation(s)
- K. Gracie
- Centre of Molecular Nanometrology
- WestChem
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow, UK
| | - V. Dhamodharan
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076, India
| | - P. I. Pradeepkumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076, India
| | - K. Faulds
- Centre of Molecular Nanometrology
- WestChem
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow, UK
| | - D. Graham
- Centre of Molecular Nanometrology
- WestChem
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow, UK
| |
Collapse
|
20
|
Zhao C, Wu L, Ren J, Xu Y, Qu X. Targeting Human Telomeric Higher-Order DNA: Dimeric G-Quadruplex Units Serve as Preferred Binding Site. J Am Chem Soc 2013; 135:18786-9. [DOI: 10.1021/ja410723r] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chuanqi Zhao
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Li Wu
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinsong Ren
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yan Xu
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Xiaogang Qu
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
21
|
Abstract
This review summarizes the results of structural studies carried out with analogs of G-quadruplexes built from natural nucleotides. Several dozens of base-, sugar-, and phosphate derivatives of the biological building blocks have been incorporated into more than 50 potentially quadruplex forming DNA and RNA oligonucleotides and the stability and folding topology of the resultant intramolecular, bimolecular and tetramolecular architectures characterized. The TG4T, TG5T, the 15 nucleotide-long thrombin binding aptamer, and the human telomere repeat AG3(TTAG3)3 sequences were modified in most cases, and four guanine analogs can be noted as being particularly useful in structural studies. These are the fluorescent 2-aminopurine, the 8-bromo-, and 8-methylguanines, and the hypoxanthine. The latter three analogs stabilize a given fold in a mixture of structures making possible accurate structural determinations by circular dichroism and nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Janos Sagi
- a Rimstone Laboratory , RLI, 29 Lancaster Way, Cheshire , CT , 06410 , USA
| |
Collapse
|
22
|
Reddy K, Zamiri B, Stanley SYR, Macgregor RB, Pearson CE. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J Biol Chem 2013; 288:9860-9866. [PMID: 23423380 DOI: 10.1074/jbc.c113.452532] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Certain DNA and RNA sequences can form G-quadruplexes, which can affect promoter activity, genetic instability, RNA splicing, translation, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia were recently shown to be caused by expansion of a (GGGGCC)n·(GGCCCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n-containing transcripts aggregate in nuclear foci possibly sequestering repeat-binding proteins, suggesting a toxic RNA pathogenesis. We demonstrate that the r(GGGGCC)n RNA but not the C-rich r(GGCCCC)n RNA forms extremely stable uni- and multimolecular parallel G-quadruplex structures (up to 95 °C). Multimolecular G-quadruplex formation is influenced by repeat number and RNA concentration. MBNL1, a splicing factor that is sequestered in myotonic dystrophy patients by binding to expanded r(CUG)n repeat hairpins, does not bind the C9orf72 repeats, but the splicing factor ASF/SF2 can bind the r(GGGGCC)n repeat. Because multimolecular G-quadruplexes are enhanced by repeat length, RNA-RNA interactions facilitated by G-quadruplex formation at expanded repeats might influence transcript aggregation and foci formation in amyotrophic lateral sclerosis-frontotemporal dementia cells. Tract length-dependent G-quadruplex formation by the C9orf72 RNA should be considered when assessing the role of this repeat in C9orf72 gene activity, protein binding, transcript foci formation, and translation of the C9orf72 product, including the noncanonical repeat-associated non-ATG translation (RAN translation) into pathologic dipeptide repeats, as well as any oligonucleotide repeat-based therapy.
Collapse
Affiliation(s)
- Kaalak Reddy
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Bita Zamiri
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sabrina Y R Stanley
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada; Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
23
|
Hänsel R, Löhr F, Trantirek L, Dötsch V. High-resolution insight into G-overhang architecture. J Am Chem Soc 2013; 135:2816-24. [PMID: 23339582 DOI: 10.1021/ja312403b] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NMR and fluorescence spectroscopy were used to address the effect of intracellular molecular crowding and related hydration on a model telomeric G-quadruplex (G4) DNA structure (d(AG(3)(TTAGGG)(3))). d(AG(3)(TTAGGG)(3)) prevalently adopted the hybrid-1 conformation in vivo, ex vivo, and in dilute potassium-based solution, while it formed the parallel propeller fold in water-depleted potassium-based solution, a commonly used model system for studying intracellular molecular crowding. The dilute potassium-based solution appeared to imitate the properties of the cellular environment required for d(AG(3)(TTAGGG)(3)) folding under in vivo and ex vivo conditions. High-resolution NMR investigations of site-specifically (15)N-labeled G4 units in native-like single-stranded telomeric DNA revealed that the 3'-terminal and internal G4 unit predominantly coexist in 2-tetrad antiparallel basket and hybrid-2 structures that are arranged in "beads-on-a-string"-like fashion. Our data provide the first high-resolution insight into the telomeric G-overhang architecture under essentially physiological conditions and identify the 2-tetrad antiparallel basket and hybrid-2 topologies as the structural targets for the development of telomere-specific G4 ligands.
Collapse
Affiliation(s)
- Robert Hänsel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
24
|
Smestad J, Maher LJ. Ion-dependent conformational switching by a DNA aptamer that induces remyelination in a mouse model of multiple sclerosis. Nucleic Acids Res 2013; 41:1329-42. [PMID: 23175609 PMCID: PMC3553947 DOI: 10.1093/nar/gks1093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We recently reported that a guanosine-rich 40-mer DNA aptamer (LJM-3064) mediates remyelination in the Theiler's murine encephalomyelitis virus mouse model of multiple sclerosis. Here, we characterize the G-quadruplex forms of this aptamer in vitro, and demonstrate using circular dichroism spectroscopy that LJM-3064 undergoes a monovalent ion-dependent conformational switch. In the presence of sodium ions and no potassium ions, LJM-3064 adopts an antiparallel-stranded G-quadruplex structure. When presented with low concentrations of potassium ions in a buffer that mimics the composition of interstitial fluid and blood plasma, LJM-3064 rapidly switches to a parallel-stranded G-quadruplex conformation, which is presumably the physiologically active folded form. We characterize these conformational states using dimethyl sulfate reactivity studies and Bal 31 nuclease probing. Our analysis indicates that only the 5'-terminal 26 nucleotides are involved in G-quadruplex formation. Thermodynamic characterization of LJM-3064 at physiologically relevant ion concentrations reveals the G-quadruplex to be metastable at human body temperature. These data provide important structural and thermodynamic insights that may be valuable in optimizing LJM-3064 as a therapeutic remyelinating agent.
Collapse
Affiliation(s)
- John Smestad
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
25
|
Mei H, Budow S, Seela F. Construction and assembly of chimeric DNA: oligonucleotide hybrid molecules composed of parallel or antiparallel duplexes and tetrameric i-motifs. Biomacromolecules 2012; 13:4196-204. [PMID: 23121010 DOI: 10.1021/bm301471d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chimeric DNA containing parallel (ps) and antiparallel (aps) duplex elements as well as poly-dC tracts were designed and synthesized. Oligonucleotide duplexes with ps chain orientation containing reverse Watson-Crick dA-dT base pairs and short d(C)2 tails are stabilized under slightly acidic conditions by hemiprotonated dCH+-dC base pairs ("clamp" effect). Corresponding molecules with aps orientation containing Watson-Crick dA-dT base pairs do not show this phenomenon. Chimeric DNA with ps duplex elements and long d(C)5 tails at one or at both ends assemble to tetrameric i-motif structures. Molecules with two terminal d(C)5 tails form multimeric assemblies which have the potential to form nanoscopic scaffolds. A preorganization of the ps duplex chains stabilizes the i-motif assemblies up to almost neutral conditions as evidenced by thermal melting and gel electrophoresis. Although, ps DNA is generally less stable than aps DNA, the aps duplexes contribute less to the stability of the i-motif than ps DNA.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | | | | |
Collapse
|
26
|
Binding of gemini bisbenzimidazole drugs with human telomeric G-quadruplex dimers: effect of the spacer in the design of potent telomerase inhibitors. PLoS One 2012; 7:e39467. [PMID: 22737240 PMCID: PMC3380826 DOI: 10.1371/journal.pone.0039467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3′-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or n-mers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3)8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties.
Collapse
|
27
|
Singh V, Azarkh M, Drescher M, Hartig JS. Conformations of individual quadruplex units studied in the context of extended human telomeric DNA. Chem Commun (Camb) 2012; 48:8258-60. [PMID: 22531827 DOI: 10.1039/c2cc32012f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G-quadruplex conformations within a sequence of three quadruplex units of human telomeric DNA were studied by two-frequency pulsed electron paramagnetic resonance (EPR) spectroscopy. In contrast to some individual G-quadruplexes, within the higher-order human telomeric sequence a (3+1) hybrid structure is formed.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
28
|
Payet L, Huppert JL. Stability and structure of long intramolecular G-quadruplexes. Biochemistry 2012; 51:3154-61. [PMID: 22417391 DOI: 10.1021/bi201750g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
G-quadruplexes are formed from guanine-rich sequences of DNA and RNA. They consist of stacks of square arrangements of guanines called G-quartets. Increasing evidence suggests that these structures are involved in cellular processes such as transcription or translation. Knowing their structure and their stability in vitro should help to predict their formation in vivo and to understand their biological functions. Many studies have been performed on isolated G-quadruplexes, but little attention has been given to their interactions. Here, we present non-denaturing gel electrophoresis, UV melting, and circular dichroism data obtained for long sequences of DNA which are capable of forming two simultaneous G-quadruplexes, namely, d(TG(3)T(3)G(3)T(3)G(3)T(3)G(3)T(n)G(3)T(3)G(3)T(3)G(3)T(3)G(3)T), with n varying from one to seven. These sequences can form up to two separate G-quadruplexes. We also study mutated versions of these sequences designed to form one G-quadruplex at specific positions on the strand. Comparing results from the original sequences and their mutated versions, we show that for the former different folded states coexist: either with six stacked G-quartets or only three, in various combinations. Which ones are favored depends on n. Moreover, for n greater than three, the thermodynamic stability stays constant, contrary to an expected decrease in stability if the six G-quartets were stacked together in a single structure. This result agrees with a beads-on-a-string folding model for long sequences of G-quadruplexes, where two adjacent G-quadruplexes fold independently.
Collapse
Affiliation(s)
- Linda Payet
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE, UK.
| | | |
Collapse
|
29
|
Jain AK, Paul A, Maji B, Muniyappa K, Bhattacharya S. Dimeric 1,3-Phenylene-bis(piperazinyl benzimidazole)s: Synthesis and Structure–Activity Investigations on their Binding with Human Telomeric G-Quadruplex DNA and Telomerase Inhibition Properties. J Med Chem 2012; 55:2981-93. [DOI: 10.1021/jm200860b] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akash K Jain
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ananya Paul
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Basudeb Maji
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K. Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
30
|
Koirala D, Mashimo T, Sannohe Y, Yu Z, Mao H, Sugiyama H. Intramolecular folding in three tandem guanine repeats of human telomeric DNA. Chem Commun (Camb) 2012; 48:2006-8. [PMID: 22234724 DOI: 10.1039/c2cc16752b] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular folding in three tandem guanine repeats of human telomeric DNA has been investigated using optical-tweezers, MD simulation and circular dichroism. A mechanically and thermodynamically stable species in this sequence shows a structure consistent with a triplex conformation. A similar species has also been observed to coexist with a G-quadruplex in a DNA sequence with four tandem guanine repeats.
Collapse
Affiliation(s)
- Deepak Koirala
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Structural studies have shown that four G-tracts along a DNA strand are the minimal requirement for intramolecular G-quadruplex formation. Longer DNA sequences containing multiples of four G-tracts could, in principle, form higher-order structures based on multiple G-quadruplex blocks. This latter condition is abundantly verified for the telomeric single-stranded overhang (~200 nt) consisting of tens of TTAGGG repeats, thus opening new interesting questions about the structure of the "real" telomeric DNA. How many quadruplex units form in the human telomeric overhang? Which type of quadruplex topologies? Do they interact or not? What about their binding properties? Although many of these questions are still unanswered, recent experimental and computational studies have begun to address them. The existence and relevance of these higher-order quadruplex structures in the human genome is now an interesting and stimulating research topic in the quadruplex field. The recent results, the unsolved problems, and the future prospects for understanding higher-order telomeric quadruplex structures are the main topics of this review. Other studies on long telomeric RNA sequences and on other intramolecular (non telomeric) DNA higher order quadruplex structures are also presented.
Collapse
|
32
|
Petraccone L, Spink C, Trent JO, Garbett NC, Mekmaysy CS, Giancola C, Chaires JB. Structure and stability of higher-order human telomeric quadruplexes. J Am Chem Soc 2011; 133:20951-61. [PMID: 22082001 PMCID: PMC3244555 DOI: 10.1021/ja209192a] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G-quadruplex formation in the sequences 5'-(TTAGGG)(n) and 5'(TTAGGG)(n)TT (n = 4, 8, 12) was studied using circular dichroism, sedimentation velocity, differential scanning calorimetry, and molecular dynamics simulations. Sequences containing 8 and 12 repeats formed higher-order structures with two and three contiguous quadruplexes, respectively. Plausible structures for these sequences were determined by molecular dynamics simulations followed by experimental testing of predicted hydrodynamic properties by sedimentation velocity. These structures featured folding of the strand into contiguous quadruplexes with mixed hybrid conformations. Thermodynamic studies showed the strands folded spontaneous to contain the maximum number contiguous quadruplexes. For the sequence 5'(TTAGGG)(12)TT, more than 90% of the strands contained completely folded structures with three quadruplexes. Statistical mechanical-based deconvolution of thermograms for three quadruplex structures showed that each quadruplex melted independently with unique thermodynamic parmameters. Thermodynamic analysis revealed further that quadruplexes in higher-ordered structures were destabilized relative to their monomeric counterparts, with unfavorable coupling free energies. Quadruplex stability thus depends critically on the sequence and structural context.
Collapse
Affiliation(s)
- Luigi Petraccone
- Dept. Chimica “P. Corradini”, University of Naples “Federico II”, 80122 Naples, Italy
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202
| | - Charles Spink
- Department of Chemistry, SUNY-Cortland, Cortland, NY 13045
| | - John O. Trent
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202
| | - Nichola C. Garbett
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202
| | - Chongkham S. Mekmaysy
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202
| | - Concetta Giancola
- Dept. Chimica “P. Corradini”, University of Naples “Federico II”, 80122 Naples, Italy
| | - Jonathan B. Chaires
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202
| |
Collapse
|
33
|
Jain AK, Bhattacharya S. Interaction of G-Quadruplexes with Nonintercalating Duplex-DNA Minor Groove Binding Ligands. Bioconjug Chem 2011; 22:2355-68. [DOI: 10.1021/bc200268a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Akash K. Jain
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
- Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 012, India
| |
Collapse
|
34
|
Yue DJE, Lim KW, Phan AT. Formation of (3+1) G-quadruplexes with a long loop by human telomeric DNA spanning five or more repeats. J Am Chem Soc 2011; 133:11462-5. [PMID: 21702440 DOI: 10.1021/ja204197d] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Structural studies of human telomeric repeats represent an active field of research with potential applications toward the development of specific telomeric quadruplex-targeting drugs for anticancer treatment. To date, high-definition structures were limited to DNA sequences containing up to four GGGTTA repeats. Here we investigate the formation of G-quadruplexes in sequences spanning five to seven human telomeric repeats using NMR, UV, and CD spectroscopy. A (3+1) G-quadruplex with a long propeller loop was isolated from a five-repeat sequence utilizing a guanine-to-inosine substitution. A simple approach of selective site-specific labeling of guanine residues was devised to rigorously determine the folding topology of the oligonucleotide. The same scaffold could be extrapolated to six- and seven-repeat sequences. Our results suggest that long human telomeric sequences consisting of five or more GGGTTA repeats could adopt (3+1) G-quadruplex structures harboring one or more repeat(s) within a single loop. We report on the formation of a Watson-Crick duplex within the long propeller loop upon addition of the complementary strand, demonstrating that the long loop could serve as a new recognition motif.
Collapse
Affiliation(s)
- Doris Jia En Yue
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
35
|
Xu Y. Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. Chem Soc Rev 2011; 40:2719-40. [DOI: 10.1039/c0cs00134a] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Víglaský V, Tlučková K, Bauer Ľ. The first derivative of a function of circular dichroism spectra: biophysical study of human telomeric G-quadruplex. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:29-37. [DOI: 10.1007/s00249-010-0625-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/12/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
37
|
Abstract
Telomeres play an important role in cellular aging and cancer. Human telomeric DNA and RNA G-rich sequences are capable of forming a four-stranded structure, known as the G-quadruplex. Such a structure might be important for telomere biology and a good target for drug design. This minireview describes the structural diversity or conservation of DNA and RNA human telomeric G-quadruplexes, discusses structural views on targeting these G-quadruplexes and presents some future challenges for structural studies.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
38
|
Jin Y, Li H, Bai J. Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay. Anal Chem 2009; 81:5709-15. [PMID: 19527045 DOI: 10.1021/ac900482p] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-quadruplexes are higher-order DNA and RNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. There is considerable interest in the design of ligands that target G-quadruplex DNA because of their potential anticancer activity. We designed a fluorescence resonance energy transfer (FRET) system to identify molecules that stabilize G-quadruplexes in a homogeneous medium using unmodified gold nanoparticles (GNPs) as a fluorescence quencher. The assay exploits the different adsorption abilities of GNPs for single-stranded DNA and double-stranded DNA. Fluorescein-tagged probe DNA adsorbed onto the surface of GNPs can quench the fluorescence of a DNA probe. Intramolecular folding of an oligonucleotide of the human telomeric sequence into a G-quadruplex structure led to fluorescence enhancement in the presence of quadruplex-binding ligands. G-quadruplex formation, induced by specific binding of GDNA ligands, was investigated by CD measurements. Melting of the G-quadruplex was monitored in the presence of putative G-quadruplex-binding molecules by measuring the absorbance at 295 nm. Two series of natural drugs were studied, and flavonoids were shown to increase the melting temperature of the G-quadruplex. This increase in the Tm value was well-correlated with an increase in FRET efficiency. The combined data from fluorescence measurements and melting experiments indicate that the FRET approach offers a simple, sensitive, and effective method to identify ligands with potential anticancer activity.
Collapse
Affiliation(s)
- Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, China.
| | | | | |
Collapse
|
39
|
Affiliation(s)
- Luigi Petraccone
- James Graham Brown Cancer Center, University of Louisville, 529 South Jackson Street, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
40
|
Smith NM, Corry B, Swaminathan Iyer K, Norret M, Raston CL. A microfluidic platform to synthesize a G-quadruplex binding ligand. LAB ON A CHIP 2009; 9:2021-5. [PMID: 19568670 DOI: 10.1039/b902986a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An aromatic triarylpyridine chromophore promotes pi-stacking interactions with the terminal G-tetrad in quadruplex DNA, stabilizing the structure and presenting a pathway towards cancer treatment by inhibition of telomerase. An interesting parent compound in this class is the dimethylamino functionalised 4'-aryl-2,6-bis(4-aminophenyl)pyridine. However, access to this compound using traditional batch synthetic methodology is limited, due to thermodynamic and kinetic constraints. A novel approach to the synthesis of this compound has been developed, involving dynamic thin films, overcoming a series of competing reactions, effectively controlling chemical reactivity and selectivity.
Collapse
Affiliation(s)
- N M Smith
- Centre for Strategic Nano-fabrication, School of Biomedical, Biomolecular and Chemical Sciences, Crawley, WA-6009, Australia
| | | | | | | | | |
Collapse
|
41
|
Netchvolodov KK, Kurova VS, Kononikhin AS, Savochkina YUA, Nikolaevb EN, Kupriyanova NS, Ryskov AP, Varfolomeev SD. Complexes of DNA-dependent protein kinase with single-stranded oligo-(AGGG)6: identification and possible role in modulation of ribosomal RNA transcription. DOKL BIOCHEM BIOPHYS 2009; 424:1-4. [PMID: 19341095 DOI: 10.1134/s1607672909010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- K K Netchvolodov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334 Russia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schonhoft JD, Bajracharya R, Dhakal S, Yu Z, Mao H, Basu S. Direct experimental evidence for quadruplex-quadruplex interaction within the human ILPR. Nucleic Acids Res 2009; 37:3310-20. [PMID: 19324891 PMCID: PMC2691825 DOI: 10.1093/nar/gkp181] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Here we report the analysis of dual G-quadruplexes formed in the four repeats of the consensus sequence from the insulin-linked polymorphic region (ACAGGGGTGTGGGG; ILPRn=4). Mobilities of ILPRn=4 in nondenaturing gel and circular dichroism (CD) studies confirmed the formation of two intramolecular G-quadruplexes in the sequence. Both CD and single molecule studies using optical tweezers showed that the two quadruplexes in the ILPRn=4 most likely adopt a hybrid G-quadruplex structure that was entirely different from the mixture of parallel and antiparallel conformers previously observed in the single G-quadruplex forming sequence (ILPRn=2). These results indicate that the structural knowledge of a single G-quadruplex cannot be automatically extrapolated to predict the conformation of multiple quadruplexes in tandem. Furthermore, mechanical pulling of the ILPRn=4 at the single molecule level suggests that the two quadruplexes are unfolded cooperatively, perhaps due to a quadruplex–quadruplex interaction (QQI) between them. Additional evidence for the QQI was provided by DMS footprinting on the ILPRn=4 that identified specific guanines only protected in the presence of a neighboring G-quadruplex. There have been very few experimental reports on multiple G-quadruplex-forming sequences and this report provides direct experimental evidence for the existence of a QQI between two contiguous G-quadruplexes in the ILPR.
Collapse
Affiliation(s)
- Joseph D Schonhoft
- Department of Chemistry, School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sannohe Y, Sato K, Matsugami A, Shinohara KI, Mashimo T, Katahira M, Sugiyama H. The orientation of the ends of G-quadruplex structures investigated using end-extended oligonucleotides. Bioorg Med Chem 2009; 17:1870-5. [PMID: 19223183 DOI: 10.1016/j.bmc.2009.01.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 01/03/2023]
Abstract
Human telomere DNA is of intense interest because of its role in the biology of both cancer and aging. The single-stranded telomere terminus can adopt the structure of a G-quadruplex, which is of particular important for anticancer drug discovery many researchers have reported various G-quadruplex structures in the human telomere. Although the human telomere consists of a number of tandem repeats, higher-order G-quadruplex structures are less discussed due to the complexity of the structures. Here we examined the orientation of the ends of the G-quadruplex structures with consideration given to higher-order structures. We prepared end-extended and (Br)G-substituted oligonucleotides. Native PAGE analysis, CD measurements and NMR spectroscopy showed that the ends of stable G-quadruplex structures point in opposite directions. Our results indicate that the human telomere DNA is likely to form rod-like higher-order structures. This may provide important information for understanding telomere structure and the development of telomere G-quadruplex-binding molecules as telomerase inhibitors.
Collapse
Affiliation(s)
- Yuta Sannohe
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Pedroso IM, Hayward W, Fletcher TM. The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures. Nucleic Acids Res 2009; 37:1541-54. [PMID: 19139067 PMCID: PMC2655686 DOI: 10.1093/nar/gkn1081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sequence of human telomeric DNA consists of tandem repeats of 5′-d(TTAGGG)-3′. This guanine-rich DNA can form G-quadruplex secondary structures which may affect telomere maintenance. A current model for telomere protection by the telomere-binding protein, TRF2, involves the formation of a t-loop which is stabilized by a strand invasion-like reaction. This type of reaction may be affected by G-quadruplex structures. We analyzed the influence of the arginine-rich, TRF2 N-terminus (TRF2B), as well as this region plus the TRFH domain of TRF2 (TRF2BH), on the structure of G-quadruplexes. Circular dichroism results suggest that oligonucleotides with 4, 7 and 8 5′-d(TTAGGG)-3′ repeats form hybrid structures, a mix of parallel/antiparallel strand orientation, in K+. TRF2B stimulated the formation of parallel-stranded structures and, in some cases, intermolecular structures. TRF2BH also stimulated intermolecular but not parallel-stranded structures. Only full-length TRF2 and TRF2BH stimulated uptake of a telomeric single-stranded oligonucleotide into a plasmid containing telomeric DNA in the presence of K+. The results in this study suggest that G-quadruplex formation inhibits oligonucleotide uptake into the plasmid, but the inhibition can be overcome by TRF2. This study is the first analysis of the effects of TRF2 domains on G-quadruplex structures and has implications for the role of G-quadruplexes and TRF2 in the formation of t-loops.
Collapse
Affiliation(s)
- Ilene M Pedroso
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129, USA
| | | | | |
Collapse
|
45
|
Paul A, Sengupta P, Krishnan Y, Ladame S. Combining G-quadruplex targeting motifs on a single peptide nucleic acid scaffold: a hybrid (3+1) PNA-DNA bimolecular quadruplex. Chemistry 2008; 14:8682-9. [PMID: 18668497 DOI: 10.1002/chem.200800605] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe the first G-quadruplex targeting approach that combines intercalation and hybridization strategies by investigating the interaction of a G-rich peptide nucleic acid (PNA) acridone conjugate 1 with a three-repeat fragment of the human telomere G 3 to form a hybrid PNA-DNA quadruplex that mimicks the biologically relevant (3+1) pure DNA dimeric telomeric quadruplex. Using a combination of UV and fluorescence spectroscopy, circular dichroism (CD), and mass-spectrometry, we show that PNA 1 can induce the formation of a bimolecular hybrid quadruplex even at low salt concentration upon interaction with a single-stranded three-repeat fragment of telomeric DNA. However, PNA 1 cannot invade a short fragment of B-DNA even if the latter contains a CCC motif complementary to the PNA sequence. These studies could open up new possibilities for the design of a novel generation of quadruplex ligands that target not only the external features of the quadruplex but also its central core constituted by the tetrads themselves.
Collapse
Affiliation(s)
- Alexis Paul
- Institut de Science et d'Ingénierie, Supramoléculaires (ISIS), Université Louis Pasteur, CNRS UMR 7006, 8 Allée Gaspard Monge, Strasbourg Cédex, France
| | | | | | | |
Collapse
|
46
|
Menon L, Mader SA, Mihailescu MR. Fragile X mental retardation protein interactions with the microtubule associated protein 1B RNA. RNA (NEW YORK, N.Y.) 2008; 14:1644-55. [PMID: 18579868 PMCID: PMC2491469 DOI: 10.1261/rna.1100708] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fragile X mental retardation syndrome, the most common form of inherited mental retardation, is caused by the absence of the fragile X mental retardation protein (FMRP). FMRP has been shown to use its arginine-glycine-glycine (RGG) box to bind to a subset of RNA targets that form a G quadruplex structure. We performed a detailed analysis of the interactions between the FMRP RGG box and the microtubule associated protein 1B (MAP1B) mRNA, a relevant in vivo FMRP target. We show that MAP1B RNA forms an intramolecular G quadruplex structure, which is bound with high affinity and specificity by the FMRP RGG box. We determined that hydrophobic interactions are important in the FMRP RGG box-MAP1B RNA association, with minor contributions from electrostatic interactions. Our findings that at low protein:RNA ratios the RNA G quadruplex structure is slightly stabilized, whereas at high ratios is unfolded, suggest a mechanism by which the FMRP concentration variation in response to a neurotransmitter stimulation event could act as a regulatory switch for the protein function, from translation repressor to translation activator.
Collapse
Affiliation(s)
- Lakshmi Menon
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | |
Collapse
|
47
|
Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. Biophys J 2008; 95:296-311. [PMID: 18375510 DOI: 10.1529/biophysj.107.120501] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Guanine-rich DNA repeat sequences located at the terminal ends of chromosomal DNA can fold in a sequence-dependent manner into G-quadruplex structures, notably the terminal 150-200 nucleotides at the 3' end, which occur as a single-stranded DNA overhang. The crystal structures of quadruplexes with two and four human telomeric repeats show an all-parallel-stranded topology that is readily capable of forming extended stacks of such quadruplex structures, with external TTA loops positioned to potentially interact with other macromolecules. This study reports on possible arrangements for these quadruplex dimers and tetramers, which can be formed from 8 or 16 telomeric DNA repeats, and on a methodology for modeling their interactions with small molecules. A series of computational methods including molecular dynamics, free energy calculations, and principal components analysis have been used to characterize the properties of these higher-order G-quadruplex dimers and tetramers with parallel-stranded topology. The results confirm the stability of the central G-tetrads, the individual quadruplexes, and the resulting multimers. Principal components analysis has been carried out to highlight the dominant motions in these G-quadruplex dimer and multimer structures. The TTA loop is the most flexible part of the model and the overall multimer quadruplex becoming more stable with the addition of further G-tetrads. The addition of a ligand to the model confirms the hypothesis that flat planar chromophores stabilize G-quadruplex structures by making them less flexible.
Collapse
|
48
|
Auriche C, Di Domenico EG, Ascenzioni F. Budding yeast with human telomeres: a puzzling structure. Biochimie 2007; 90:108-15. [PMID: 17954006 DOI: 10.1016/j.biochi.2007.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 09/13/2007] [Indexed: 12/11/2022]
Abstract
Telomeres share some common features among eukaryotes, with few exceptions such as the fruit fly Drosophila that uses transposons as telomeres, they consist of G-rich repetitive DNA that is elongated by telomerase and/or alternative pathways depending on recombination. Telomere structure comprises both cis-acting satellite DNA (telomeric DNA) and proteins that interact directly and/or indirectly with the underlying DNA. Telomeric DNAs are surprisingly conserved among the vertebrates and very similar in most eukaryotes, but present some differences in yeast such as Saccharomyces cerevisiae. The telomeric proteins are more variable although the basic mechanisms which control telomere lengthening and capping are very similar, in fact orthologues of the yeast telomeric proteins, which have been studied first, have been identified in other organisms. Here we describe the structure of human telomeres in budding yeast as compared to canonical yeast and mammalian telomeres taking into consideration the more recent findings highlighting the mechanisms that are responsible for chromosome end protection and lengthening, and the role of chromatin organization in telomere function. This yeast represents a model for the study of mammalian telomeres that could be reconstituted step-by-step in all their components, moreover it could be useful for the assembly of mammalian artificial chromosome.
Collapse
Affiliation(s)
- Cristina Auriche
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma La Sapienza, Roma, Italy
| | | | | |
Collapse
|