1
|
Szatylowicz H, Stasyuk OA, Solà M, Krygowski TM. Aromaticity of nucleic acid bases. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Halina Szatylowicz
- Faculty of Chemistry Warsaw University of Technology, Noakowskiego 3, 00‐664 Warsaw Poland
| | - Olga A. Stasyuk
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ Maria Aurélia Capmany 69, 17003 Girona Spain
| | - Miquel Solà
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ Maria Aurélia Capmany 69, 17003 Girona Spain
| | | |
Collapse
|
2
|
Kurosaki F, Chiba J, Oda Y, Hino A, Inouye M. 2-Aminopyridine as a Nucleobase Substitute for Adenine in DNA-like Architectures: Synthesis of Alkynyl C-Nucleotides and Their Hybridization Characteristics. J Org Chem 2020; 85:2666-2671. [PMID: 31875396 DOI: 10.1021/acs.joc.9b02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halogenated 2-aminopyridine was attached to the acetylene terminal of ethynyl C-2-deoxy-β-d-ribofuranoside as a nucleobase substitute, and then, the C-nucleoside was incorporated into natural DNAs. The resulting chimeric DNA constructed double helical structures with the complementary chimeric DNA. In the duplex, 2-aminopyridine functioned as an adenine analogue that formed a base pair with a non-natural thymine isostere. Artificial homooligomers were also prepared only from the adenine-type C-nucleoside and proven to form completely artificial double helices with the corresponding artificial thymine-type homooligomers.
Collapse
Affiliation(s)
- Fumihiro Kurosaki
- Graduate School of Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Junya Chiba
- Graduate School of Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Yutaro Oda
- Graduate School of Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Airi Hino
- Graduate School of Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| |
Collapse
|
3
|
Hara T, Kodama T, Takegaki Y, Morihiro K, Ito KR, Obika S. Synthesis and Properties of 7-Deazapurine- and 8-Aza-7-deazapurine-Locked Nucleic Acid Analogues: Effect of the Glycosidic Torsion Angle. J Org Chem 2016; 82:25-36. [DOI: 10.1021/acs.joc.6b02525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takashi Hara
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Kodama
- Graduate
School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yumi Takegaki
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Morihiro
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ramon Ito
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Krepl M, Otyepka M, Banáš P, Šponer J. Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study. J Phys Chem B 2013; 117:1872-9. [DOI: 10.1021/jp311180u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Parker TM, Hohenstein EG, Parrish RM, Hud NV, Sherrill CD. Quantum-mechanical analysis of the energetic contributions to π stacking in nucleic acids versus rise, twist, and slide. J Am Chem Soc 2013; 135:1306-16. [PMID: 23265256 DOI: 10.1021/ja3063309] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Symmetry-adapted perturbation theory (SAPT) is applied to pairs of hydrogen-bonded nucleobases to obtain the energetic components of base stacking (electrostatic, exchange-repulsion, induction/polarization, and London dispersion interactions) and how they vary as a function of the helical parameters Rise, Twist, and Slide. Computed average values of Rise and Twist agree well with experimental data for B-form DNA from the Nucleic Acids Database, even though the model computations omitted the backbone atoms (suggesting that the backbone in B-form DNA is compatible with having the bases adopt their ideal stacking geometries). London dispersion forces are the most important attractive component in base stacking, followed by electrostatic interactions. At values of Rise typical of those in DNA (3.36 Å), the electrostatic contribution is nearly always attractive, providing further evidence for the importance of charge-penetration effects in π-π interactions (a term neglected in classical force fields). Comparison of the computed stacking energies with those from model complexes made of the "parent" nucleobases purine and 2-pyrimidone indicates that chemical substituents in DNA and RNA account for 20-40% of the base-stacking energy. A lack of correspondence between the SAPT results and experiment for Slide in RNA base-pair steps suggests that the backbone plays a larger role in determining stacking geometries in RNA than in B-form DNA. In comparisons of base-pair steps with thymine versus uracil, the thymine methyl group tends to enhance the strength of the stacking interaction through a combination of dispersion and electrosatic interactions.
Collapse
Affiliation(s)
- Trent M Parker
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | | | | | | | |
Collapse
|
6
|
Theile CS, McLaughlin LW. Synthesis of 6,6′-(S)-cyclo-2′-deoxyuridine featuring a unique Barbier-style cyclization. RSC Adv 2012. [DOI: 10.1039/c2ra21559d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Hari Y, Nakahara M, Obika S. A 2-AMINO-6-METHYLPYRIDIN-5-YL NUCLEOBASE FOR GC BASE PAIR RECOGNITION IN THE PARALLEL TRIPLEX DNA. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Nakano SI, Fujii M, Sugimoto N. Use of nucleic Acid analogs for the study of nucleic Acid interactions. J Nucleic Acids 2011; 2011:967098. [PMID: 21822475 PMCID: PMC3142669 DOI: 10.4061/2011/967098] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/02/2011] [Indexed: 12/27/2022] Open
Abstract
Unnatural nucleosides have been explored to expand the properties and the applications of oligonucleotides. This paper briefly summarizes nucleic acid analogs in which the base is modified or replaced by an unnatural stacking group for the study of nucleic acid interactions. We also describe the nucleoside analogs of a base pair-mimic structure that we have examined. Although the base pair-mimic nucleosides possess a simplified stacking moiety of a phenyl or naphthyl group, they can be used as a structural analog of Watson-Crick base pairs. Remarkably, they can adopt two different conformations responding to their interaction energies, and one of them is the stacking conformation of the nonpolar aromatic group causing the site-selective flipping of the opposite base in a DNA double helix. The base pair-mimic nucleosides can be used to study the mechanism responsible for the base stacking and the flipping of bases out of a nucleic acid duplex.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
9
|
Salandria KJ, Arico JW, Calhoun AK, McLaughlin LW. Stability of DNA containing a structural water mimic in an A-T rich sequence. J Am Chem Soc 2011; 133:1766-8. [PMID: 21244084 DOI: 10.1021/ja1103684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe here the synthesis and properties of A-T rich DNA containing covalently bound water mimics located in the DNA minor groove.
Collapse
Affiliation(s)
- Kerry J Salandria
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | | | | | | |
Collapse
|
10
|
Janssen P, Ruiz-Carretero A, González-Rodríguez D, Meijer E, Schenning A. pH-Switchable Helicity of DNA-Templated Assemblies. Angew Chem Int Ed Engl 2009; 48:8103-6. [DOI: 10.1002/anie.200903507] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Janssen P, Ruiz-Carretero A, González-Rodríguez D, Meijer E, Schenning A. pH-Switchable Helicity of DNA-Templated Assemblies. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903507] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Model systems for understanding DNA base pairing. Curr Opin Chem Biol 2007; 11:588-94. [PMID: 17967435 DOI: 10.1016/j.cbpa.2007.09.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 09/28/2007] [Indexed: 11/23/2022]
Abstract
The fact that nucleic acid bases recognize each other to form pairs is a canonical part of the dogma of biology. However, they do not recognize each other well enough in water to account for the selectivity and efficiency that is needed in the transmission of biological information through a cell. Thus proteins assist in this recognition in multiple ways, and recent data suggest that these mechanisms of recognition can vary widely with context. To probe how the chemical differences of the four nucleobases are defined in various biological contexts, chemists and biochemists have developed modified versions that differ in their polarity, shape, size, and functional groups. This brief review covers recent advances in this field of research.
Collapse
|