1
|
Hatem S, Elkheshen SA, Kamel AO, Nasr M, Moftah NH, Ragai MH, Elezaby RS, El Hoffy NM. Functionalized chitosan nanoparticles for cutaneous delivery of a skin whitening agent: an approach to clinically augment the therapeutic efficacy for melasma treatment. Drug Deliv 2022; 29:1212-1231. [PMID: 35403519 PMCID: PMC9004510 DOI: 10.1080/10717544.2022.2058652] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The increase in the production of melanin level inside the skin prompts a patient-inconvenient skin color disorder namely; melasma. This arouses the need to develop efficacious treatment modalities, among which are topical nano-delivery systems. This study aimed to formulate functionalized chitosan nanoparticles (CSNPs) in gel form for enhanced topical delivery of alpha-arbutin as a skin whitening agent to treat melasma. Ionic gelation method was employed to prepare α-arbutin-CSNPs utilizing a 24 full factorial design followed by In vitro, Ex vivo and clinical evaluation of the nano-dispersions and their gel forms. Results revealed that the obtained CSNPs were in the nanometer range with positive zeta potential, high entrapment efficiency, good stability characteristics and exhibited sustained release of α-arbutin over 24 h. Ex vivo deposition of CSNPs proved their superiority in accumulating the drug in deep skin layers with no transdermal delivery. DSC and FTIR studies revealed the successful amorphization of α-arbutin into the nanoparticulate system with no interaction between the drug and the carrier system. The comparative split-face clinical study revealed that α-arbutin loaded CSNPs hydrogels showed better therapeutic efficacy compared to the free drug hydrogel in melasma patients, as displayed by the decrease in: modified melasma area and severity index (mMASI) scores, epidermal melanin particle size surface area (MPSA) and the number of epidermal monoclonal mouse anti–melanoma antigen recognized by T cells-1 (MART-1) positive cells which proved that the aforementioned system is a promising modality for melasma treatment.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| | - Seham A. Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amany O. Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha H. Moftah
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Maha H Ragai
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Reham S. Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
2
|
Cesari A, Recchimurzo A, Fabiano A, Balzano F, Rossi N, Migone C, Uccello-Barretta G, Zambito Y, Piras AM. Improvement of Peptide Affinity and Stability by Complexing to Cyclodextrin-Grafted Ammonium Chitosan. Polymers (Basel) 2020; 12:polym12020474. [PMID: 32092950 PMCID: PMC7077720 DOI: 10.3390/polym12020474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
Cyclodextrin-grafted polymers are attractive biomaterials that could bring together the host–guest complexing capability of pristine cyclodextrin and the pharmaceutical features of the polymeric backbone. The present paper is aimed at characterizing the potential application of ammonium–chitosan grafted with 2-methyl-β-cyclodextrin (N+-rCh-MCD) as the functional macromolecular complexing agent for the oral administration of the neuropeptide dalargin (DAL). Specific NMR characterization procedures, along with UV and fluorescence techniques, as well as biological in vitro assessments have been performed. The results indicate that N+-rCh-MCD forms water-soluble complexes with DAL, with a prevalent involvement of Tyr or Phe over Leu and Ala residues. The association constant of DAL with the polymeric derivative is one order of magnitude higher than that with the pristine cyclodextrin (Ka: 2600 M−1 and 120 M−1, respectively). Additionally, N+-rCh-MCD shields DAL from enzymatic degradation in gastrointestinal in vitro models with a three-fold time delay, suggesting a future pharmaceutical exploitation of the polymeric derivative. Therefore, the greater affinity of N+-rCh-MCD for DAL and its protective effect against enzymatic hydrolysis can be attributed to the synergistic cooperation between cyclodextrin and the polymer, which is realized only when the former is covalently linked to the latter.
Collapse
Affiliation(s)
- Andrea Cesari
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56126 Pisa, Italy; (A.C.); (A.R.); (G.U.-B.)
| | - Alessandra Recchimurzo
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56126 Pisa, Italy; (A.C.); (A.R.); (G.U.-B.)
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy; (A.F.); (N.R.); (C.M.); (Y.Z.)
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56126 Pisa, Italy; (A.C.); (A.R.); (G.U.-B.)
- Correspondence: (F.B.); (A.M.P.)
| | - Nicolò Rossi
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy; (A.F.); (N.R.); (C.M.); (Y.Z.)
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy; (A.F.); (N.R.); (C.M.); (Y.Z.)
| | - Gloria Uccello-Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56126 Pisa, Italy; (A.C.); (A.R.); (G.U.-B.)
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy; (A.F.); (N.R.); (C.M.); (Y.Z.)
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy; (A.F.); (N.R.); (C.M.); (Y.Z.)
- Correspondence: (F.B.); (A.M.P.)
| |
Collapse
|
3
|
Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018; 110:97-109. [DOI: 10.1016/j.ijbiomac.2017.08.140] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/30/2022]
|
4
|
Delivery of expression constructs of secreted frizzled-related protein 4 and its domains by chitosan-dextran sulfate nanoparticles enhances their expression and anti-cancer effects. Mol Cell Biochem 2017; 443:205-213. [PMID: 29185158 DOI: 10.1007/s11010-017-3225-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
In malignant mesothelioma (MM) cells, secreted frizzled-related protein 4 (SFRP4) expression is downregulated by promoter methylation. In this study, we evaluated the effect of encapsulated chitosan-dextran (CS-DS) nanoparticle formulations of SFRP4 and its cysteine-rich domain (CRD) and netrin-like domain (NLD) as means of SFRP4-GFP protein delivery and their effects in JU77 and ONE58 MM cell lines. CS-DS formulations of SFRP4, CRD, and NLD nanoparticles were prepared by a complex coacervation technique, and particle size ranged from 300 nm for empty particles to 337 nm for particles containing the proteins. Measurement of the zeta potential showed that all preparations were around 25 mV or above, suggesting stable formulation and good affinity for the DNA molecules. The CS-DS nanoparticle formulation maintained high integrity and entrapment efficiency. Gene delivery of SFRP4 and its domains showed enhanced biological effects in both JU77 and ONE58 cell lines when compared to the non-liposomal FUGENE® HD transfection reagent. In comparison to the CRD nanoparticles, both the SFRP4 and NLD nanoparticles significantly reduced the viability of MM cells, with the NLD showing the greatest effect. The CS-DS nanoparticle effects were observed at an earlier time point and with lower DNA concentrations. Morphological changes in MM cells were characterized by the formation of membrane-associated vesicles and green fluorescent protein expression specific to SFRP4 and the NLD. The findings from our proof-of-concept study provide a stepping stone for further investigations using in vivo models.
Collapse
|
5
|
Zaman P, Wang J, Blau A, Wang W, Li T, Kohane DS, Loscalzo J, Zhang YY. Incorporation of heparin-binding proteins into preformed dextran sulfate-chitosan nanoparticles. Int J Nanomedicine 2016; 11:6149-6159. [PMID: 27920522 PMCID: PMC5125769 DOI: 10.2147/ijn.s119174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Incorporation of proteins into dextran sulfate (DS)-chitosan (CS) nanoparticles (DSCS NPs) is commonly performed using entrapment procedures, in which protein molecules are mixed with DS and CS until particle formation occurs. As DS is an analog of heparin, the authors examined whether proteins could be directly incorporated into preformed DSCS NPs through a heparin binding domain-mediated interaction. The authors formulated negatively-charged DSCS NPs, and quantified the amount of charged DS in the outer shell of the particles. The authors then mixed the DSCS NPs with heparin-binding proteins (SDF-1α, VEGF, FGF-2, BMP-2, or lysozyme) to achieve incorporation. Data show that for DSCS NPs containing 100 nmol charged glucose sulfate units in DS, up to ~1.5 nmol of monomeric or ~0.75 nmol of dimeric heparin-binding proteins were incorporated without significantly altering the size or zeta potential of the particles. Incorporation efficiencies of these proteins were 95%–100%. In contrast, serum albumin or serum globulin showed minimal incorporation (8% and 4%, respectively) in 50% physiological saline, despite their large adsorption in water (80% and 92%, respectively). The NP-incorporated SDF-1α and VEGF exhibited full activity and sustained thermal stability. An in vivo aerosolization study showed that NP-incorporated SDF-1α persisted in rat lungs for 72 h (~34% remaining), while free SDF-1α was no longer detectable after 16 h. As many growth factors and cytokines contain heparin-binding sites/domains, incorporation into preformed DSCS NPs could facilitate in vivo applications of these proteins.
Collapse
Affiliation(s)
- Paula Zaman
- Department of Medicine, Brigham and Women's Hospital
| | - Julia Wang
- Department of Medicine, Brigham and Women's Hospital
| | - Adam Blau
- Department of Medicine, Brigham and Women's Hospital
| | - Weiping Wang
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tina Li
- Department of Medicine, Brigham and Women's Hospital
| | - Daniel S Kohane
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ying-Yi Zhang
- Department of Medicine, Brigham and Women's Hospital
| |
Collapse
|
6
|
Bellich B, D'Agostino I, Semeraro S, Gamini A, Cesàro A. "The Good, the Bad and the Ugly" of Chitosans. Mar Drugs 2016; 14:E99. [PMID: 27196916 PMCID: PMC4882573 DOI: 10.3390/md14050099] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
The objective of this paper is to emphasize the fact that while consistent interest has been paid to the industrial use of chitosan, minor attention has been devoted to spread the knowledge of a good characterization of its physico-chemical properties. Therefore, the paper attempts to critically comment on the conflicting experimental results, highlighting the facts, the myths and the controversies. The goal is to indicate how to take advantage of chitosan versatility, to learn how to manage its variability and show how to properly tackle some unexpected undesirable features. In the sections of the paper various issues that relate chitosan properties to some basic features and to advanced solutions and applications are presented. The introduction outlines some historical pioneering works, where the chemistry of chitosan was originally explored. Thereafter, particular reference is made to analytical purity, characterization and chain modifications. The macromolecular characterization is mostly related to molecular weight and to degree of acetylation, but also refers to the conformational and rheological properties and solution stability. Then, the antimicrobial activity of chitosan in relation with its solubility is reviewed. A section is dedicated to the formulation of chitosan biomaterials, from gel to nanobeads, exploring their innovative application as active carrier nanoparticles. Finally, the toxicity issue of chitosan as a polymer and as a constructed nanomaterial is briefly commented in the conclusions.
Collapse
Affiliation(s)
- Barbara Bellich
- Laboratory of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Ilenia D'Agostino
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy. ilenia.d'
| | - Sabrina Semeraro
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Amelia Gamini
- Laboratory of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Attilio Cesàro
- Laboratory of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
- Elettra-Sincrotrone Trieste, Strada Statale 14 km 163.5, Area Science Park, 34149 Trieste, Italy.
| |
Collapse
|
7
|
Mansourpour M, Mahjub R, Amini M, Ostad SN, Shamsa ES, Rafiee- Tehrani M, Dorkoosh FA. Development of acid-resistant alginate/trimethyl chitosan nanoparticles containing cationic β-cyclodextrin polymers for insulin oral delivery. AAPS PharmSciTech 2015; 16:952-62. [PMID: 25604700 DOI: 10.1208/s12249-014-0282-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/30/2014] [Indexed: 11/30/2022] Open
Abstract
In this study, the use of trimethylchitosan (TMC), by higher solubility in comparison with chitosan, in alginate/chitosan nanoparticles containing cationic β-cyclodextrin polymers (CPβCDs) has been studied, with the aim of increasing insulin uptake by nanoparticles. Firstly, TMCs were synthesized by iodomethane, and CPβCDs were synthesized within a one-step polycondensation reaction using choline chloride (CC) and epichlorohydrine (EP). Insulin-CβCDPs complex was prepared by mixing 1:1 portion of insulin and CPβCDs solutions. Then, nanoparticles prepared in a three-step procedure based on the iono-tropic pregelation method. Nanoparticles screened using experimental design and Placket Burman methodology to obtain minimum size and polydispercity index (pdI) and the highest entrapment efficiency (EE). CPβCDs and TMC solution concentration and pH and alginate and calcium chloride solution concentrations are found as the significant parameters on size, PdI, and EE. The nanoparticles with proper physicochemical properties were obtained; the size, PdI, and EE% of optimized nanoparticles were reported as 150.82 ± 21 nm, 0.362 ± 0.036, and 93.2% ± 4.1, respectively. The cumulative insulin release in intestinal condition achieved was 50.2% during 6 h. By SEM imaging, separate, spherical, and nonaggregated nanoparticles were found. In the cytotoxicity studies on Caco-2 cell culture, no significant cytotoxicity was observed in 5 h of incubation, but after 24 h of incubation, viability was decreased to 50% in 0.5 mμ of TMC concentration. Permeability studies across Caco-2 cells had been carried out, and permeability achieved in 240 min was 8.41 ± 0.39%, which shows noticeable increase in comparison with chitosan nanoparticles. Thus, according to the results, the optimized nanoparticles can be used as a new insulin oral delivery system.
Collapse
|
8
|
Mavridis IM, Yannakopoulou K. Anionic cyclodextrins as versatile hosts for pharmaceutical nanotechnology: Synthesis, drug delivery, enantioselectivity, contrast agents for MRI. Int J Pharm 2015; 492:275-90. [DOI: 10.1016/j.ijpharm.2015.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
|
9
|
Kaskoos RA. Investigation of moxifloxacin loaded chitosan-dextran nanoparticles for topical instillation into eye: In-vitro and ex-vivo evaluation. Int J Pharm Investig 2014; 4:164-73. [PMID: 25426437 PMCID: PMC4241621 DOI: 10.4103/2230-973x.143114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction: Management of ocular surface disease by conventional formulation is limited by poor residence of drug at cul-de-sac of eye. To overcome this limitation, prolonged released mucoadhesive chitosan (CS)–dextran sulfate (DS) nanoparticles (NPs) were investigated for the prolonged topical ophthalmic delivery of moxifloxacin (Mox). Methods: Formulation was optimized by 3-factors (CS, DS, and Mox concentration), 3-levels (−1, 0, +1) Box-Behnken design. Optimized formulation was characterized for various in-vitro attributes, including particles size, zeta potential, shape and morphology, in-vitro release profile, corneal permeation, corneal retention, ocular tolerance test as well as antimicrobial activity. Results: Average hydrodynamic particle size of statistically optimized formulation was found to be 279.18 ± 15.63 nm with good polydispersity index, 0.367 ± 0.016 and positive zeta potential, +31.23 ± 1.32. NPs showed entrapment efficiency, 72.82 ± 3.6% and transmission electron microscopic analysis revealed a spherical shape of particles. Formulation exhibited biphasic release profile with an initial fast release (≈25% in 1st h) followed by sustained release (≈95% in next 24 h) following Korsmeyer–Peppas model with a nonFickian diffusion process. Mox loaded CS-DS NPs exhibited a significantly higher (P < 0.01), approximately 1.8-fold transcorneal permeation as well as significantly higher corneal retention (P < 0.01), around 4-5-fold when compared to free solution. Developed formulation exhibited safety profile comparable to normal saline, which was revealed by ocular tolerance test (Hen's egg test-chorioallantoic membrane). Mox-CS-DS NPs exhibited significantly high (P < 0.01) antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Conclusion: In-vitro and ex-vivo studies revealed that developed formulation could be a potential substitute for prolonged topical ocular delivery.
Collapse
Affiliation(s)
- Raad A Kaskoos
- Department of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
10
|
Cortie MB, Nafea EH, Chen H, Valenzuela SM, Ting SS, Sonvico F, Milthorpe B. Nanomedical research in Australia and New Zealand. Nanomedicine (Lond) 2013; 8:1999-2006. [PMID: 24279489 DOI: 10.2217/nnm.13.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although Australia and New Zealand have a combined population of less than 30 million, they have an active and interlinked community of nanomedical researchers. This report provides a synopsis and update on this network with a view to identifying the main topics of interest and their likely future trajectories. In addition, our report may also serve to alert others to opportunities for joint projects. Australian and New Zealand researchers are engaged in most of the possible nanomedical topics, but the majority of interest is focused on drug and nucleic acid delivery using nanoparticles or nanoporous constructs. There are, however, smaller programs directed at hyperthermal therapy and radiotherapy, various kinds of diagnostic tests and regenerative technologies.
Collapse
Affiliation(s)
- Michael B Cortie
- Institute for Nanoscale Technology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Taranejoo S, Monemian S, Moghri M, Derakhshankhah H. Development of ultrasmall chitosan/succinyl β-cyclodextrin nanoparticles as a sustained protein-delivery system. J Appl Polym Sci 2013. [DOI: 10.1002/app.39648] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shahrouz Taranejoo
- Chemical Engineering Department; Monash University; Clayton Campus Melbourne Australia
- Medical Nanotechnology and Tissue Engineering Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Seyedali Monemian
- Department of Macromolecular Science and Engineering; Case Western Reserve University; Cleveland Ohio 44106-7202
| | - Mehdi Moghri
- Islamic Azad University; Kashan Branch Kashan Iran
| | | |
Collapse
|
12
|
Aboutaleb E, Atyabi F, Khoshayand MR, Vatanara AR, Ostad SN, Kobarfard F, Dinarvand R. Improved brain delivery of vincristine using dextran sulfate complex solid lipid nanoparticles: Optimization andin vivoevaluation. J Biomed Mater Res A 2013; 102:2125-36. [DOI: 10.1002/jbm.a.34890] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/09/2013] [Accepted: 07/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Ehsan Aboutaleb
- Department of Pharmaceutics; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmaceutics; School of Pharmacy, Guilan University of Medical Sciences; Rasht Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
- Nanotechnology Research Center; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
| | - Ali Reza Vatanara
- Department of Pharmaceutics; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
| | - Seyed Nasser Ostad
- Nanotechnology Research Center; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
- Nanotechnology Research Center; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
13
|
Rather MA, Sharma R, Gupta S, Ferosekhan S, Ramya VL, Jadhao SB. Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. PLoS One 2013; 8:e57094. [PMID: 23468918 PMCID: PMC3584147 DOI: 10.1371/journal.pone.0057094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/17/2013] [Indexed: 01/10/2023] Open
Abstract
A controlled release delivery system helps to overcome the problem of short life of the leutinizing hormone releasing hormone (LHRH) in blood and avoids use of multiple injections to enhance reproductive efficacy. Chitosan- and chitosan-gold nanoconjugates of salmon LHRH of desired size, dispersity and zeta potential were synthesized and evaluated at half the dose rate against full dose of bare LHRH for their reproductive efficacy in the female fish, Cyprinus carpio. Whereas injections of both the nanoconjugates induced controlled and sustained surge of the hormones with peak (P<0.01) at 24 hrs, surge due to bare LHRH reached its peak at 7 hrs and either remained at plateau or sharply declined thereafter. While the percentage of relative total eggs produced by fish were 130 and 67 per cent higher, that of fertilised eggs were 171 and 88 per cent higher on chitosan- and chitosan-gold nanoconjugates than bare LHRH. Chitosan nanoconjugates had a 13 per cent higher and chitosan gold preparation had a 9 per cent higher fertilization rate than bare LHRH. Histology of the ovaries also attested the pronounced effect of nanoparticles on reproductive output. This is the first report on use of chitosan-conjugated nanodelivery of gonadotropic hormone in fish.
Collapse
Affiliation(s)
| | - Rupam Sharma
- Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Subodh Gupta
- Central Institute of Fisheries Education, Versova, Mumbai, India
| | - S. Ferosekhan
- Central Institute of Fisheries Education, Versova, Mumbai, India
| | - V. L. Ramya
- Central Institute of Fisheries Education, Versova, Mumbai, India
| | - Sanjay B. Jadhao
- Central Institute of Fisheries Education, Versova, Mumbai, India
| |
Collapse
|
14
|
How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J Control Release 2013; 166:46-56. [DOI: 10.1016/j.jconrel.2012.12.014] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
|
15
|
Gaudana R, Gokulgandhi M, Khurana V, Kwatra D, Mitra AK. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme. Pharm Dev Technol 2012; 18:752-9. [PMID: 23137392 DOI: 10.3109/10837450.2012.737806] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.
Collapse
Affiliation(s)
- Ripal Gaudana
- Par Pharmaceutical Companies, Inc., One Ram Ridge Road, Spring Valley, NY, USA
| | | | | | | | | |
Collapse
|
16
|
Sharma S, Benson HAE, Mukkur TKS, Rigby P, Chen Y. Preliminary studies on the development of IgA-loaded chitosan-dextran sulphate nanoparticles as a potential nasal delivery system for protein antigens. J Microencapsul 2012; 30:283-94. [PMID: 22994538 DOI: 10.3109/02652048.2012.726279] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study describes the development of a biodegradable nanoparticulate system for the intranasal delivery of multiple proteins. Chitosan (CS)-dextran sulphate (DS) nanoparticles were developed and optimised for the incorporation of pertussis toxin (PTX) and a potential targeting ligand (immunoglobulin-A, IgA). In vitro characterization and in vivo uptake studies were performed for the evaluation of developed nanoparticles. The ratio of CS to DS, the order of mixing and pH of nanoparticle suspension were identified as important formulation factors governing the size and zeta potential of nanoparticles. An optimised CS-DS nanoparticle formulation prepared with the CS to DS weight ratio of 3 : 1 was used to load PTX and/or IgA. Entrapment efficiency of >90% was obtained for both. The in vivo uptake of IgA-loaded CS-DS nanoparticles in mice showed a preferential uptake of nanoparticles probably by nasal membranous or microfold cells following intranasal administration. The results of this study indicate the potential application of IgA-loaded CS-DS nanoparticles as a nasal vaccine delivery system.
Collapse
Affiliation(s)
- Sameer Sharma
- School of Pharmacy, CHIRI, Western Australia Biomedical Research Institute, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Colonna C, Dorati R, Conti B, Modena T, Biggiogera M, Spedito A, Genta I. Induction of an in vitro reversible hypometabolism through chitosan-based nanoparticles. J Microencapsul 2011; 28:229-39. [PMID: 21545314 DOI: 10.3109/02652048.2011.557746] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Chitosan-based nanoparticles (NPs) were prepared to promote intracellular sustained delivery of the synthetic delta opioid D-Ala(2)-D-Leu(5)-enkephalin (DADLE), prolonging peptide activity and inducing a safe and reversible hypometabolic state. MATERIALS AND METHODS NPs were prepared by combining ionotropic gelation and ultrasonication treatment. NP uptake studies and the effects of encapsulated DADLE on HeLa cells proliferation were tested by transmission electron microscopy (TEM) analysis, by immuno-fluorescence and immuno-cytochemistry. RESULTS DADLE-loaded NPs are produced with suitable characteristics, a satisfactory process yield (55.4% ± 2.4%) and encapsulation efficiency (64.6% ± 2.1%). NPs are effective in inducing a hypometabolic stasis at a 10(-4) M DADLE concentration. Moreover, as seen from the immunofluorescence study, the effect persists through the recovery period (72 h). Indeed, NPs labelled by anti-enkephalin antibody inside cell nucleus reassert that the in vivo release of the peptide can be prolonged with respect to the case of free peptide supply. CONCLUSION The nanoparticulate drug delivery system described seems to be effective in inducing and prolonging a sort of hibernation-like state in the cells.
Collapse
Affiliation(s)
- C Colonna
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm 2011; 78:10-8. [DOI: 10.1016/j.ejpb.2010.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 11/16/2022]
|
20
|
Sezer AD, Akbuğa J. The design of biodegradable ofloxacin-based core-shell microspheres: Influence of the formulation parameters on in vitro characterization. Pharm Dev Technol 2010; 17:118-24. [DOI: 10.3109/10837450.2010.529145] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Gaudana R, Parenky A, Vaishya R, Samanta SK, Mitra AK. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation. J Microencapsul 2010; 28:10-20. [PMID: 20939702 DOI: 10.3109/02652048.2010.520093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine-valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins.
Collapse
Affiliation(s)
- Ripal Gaudana
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108-2718, USA
| | | | | | | | | |
Collapse
|
22
|
Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, Li K. Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm 2010; 393:212-8. [PMID: 20394813 DOI: 10.1016/j.ijpharm.2010.04.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/31/2010] [Accepted: 04/07/2010] [Indexed: 11/24/2022]
Abstract
In an alginate/chitosan nanoparticle system, insulin was protected by forming complexes with cationic beta-cyclodextrin polymers (CPbetaCDs), which were synthesized from beta-cyclodextrin (beta-CD), epichlorohydrin (EP) and choline chloride (CC) through a one-step polycondensation. Due to the electrostatic attraction between insulin and CPbetaCDs, as well as the assistance of its polymeric chains, CPbetaCDs could effectively protect insulin under simulated gastrointestinal conditions. The nanoparticles have their mean size lower than 350 nm and can load insulin with the association efficiency (AE) up to 87%. It is notable that the cumulative insulin release in simulated intestinal fluid was significantly higher (40%) than that without CPbetaCDs (18%) because insulin was mainly retained in the core of the nanoparticles and well protected against degradation in simulated gastric fluid. Far-UV circular dichroism analysis also corroborated the preservation of insulin structure during the nanoparticle preparation and release process.
Collapse
Affiliation(s)
- Nan Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 2010; 62:59-82. [PMID: 19925837 DOI: 10.1016/j.addr.2009.11.009] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/16/2009] [Accepted: 11/04/2009] [Indexed: 11/28/2022]
Abstract
Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based delivery systems enhance the absorption and/or cellular uptake of peptides/proteins across mucosal sites and have immunoadjuvant properties. Chitosan is a mucoadhesive polysaccharide capable of opening the tight junctions between epithelial cells and it has functional groups for chemical modifications, which has resulted in a large variety of chitosan derivatives with tunable properties for the aimed applications. This review provides an overview of chitosan-based polymers for preparation of both therapeutic peptides/protein and antigen formulations. The physicochemical properties of these carrier systems as well as their applications in protein and antigen delivery through parenteral and mucosal (particularly nasal and pulmonary) administrations are summarized and discussed.
Collapse
Affiliation(s)
- Maryam Amidi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Otero-Espinar F, Torres-Labandeira J, Alvarez-Lorenzo C, Blanco-Méndez J. Cyclodextrins in drug delivery systems. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50046-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Huang L, Xin J, Guo Y, Li J. A novel insulin oral delivery system assisted by cationic β-cyclodextrin polymers. J Appl Polym Sci 2009. [DOI: 10.1002/app.30775] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|