1
|
Mizrahi I, Bruinsma R, Rudnick J. Spanning tree model and the assembly kinetics of RNA viruses. Phys Rev E 2022; 106:044405. [PMID: 36397584 DOI: 10.1103/physreve.106.044405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/17/2022] [Indexed: 06/16/2023]
Abstract
Single-stranded RNA (ssRNA) viruses self-assemble spontaneously in solutions that contain the viral RNA genome molecules and viral capsid proteins. The self-assembly of empty capsids can be understood on the basis of free energy minimization. However, during the self-assembly of complete viral particles in the cytoplasm of an infected cell, the viral genome molecules must be selected from a large pool of very similar host messenger RNA molecules and it is not known whether this also can be understood by free energy minimization. We address this question using a simple mathematical model, the spanning tree model, that was recently proposed for the assembly of small ssRNA viruses. We present a statistical physics analysis of the properties of this model. RNA selection takes place via a kinetic mechanism that operates during the formation of the nucleation complex and that is related to Hopfield kinetic proofreading.
Collapse
Affiliation(s)
- Inbal Mizrahi
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Robijn Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Joseph Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
2
|
Mizrahi I, Bruinsma R, Rudnick J. Packaging contests between viral RNA molecules and kinetic selectivity. PLoS Comput Biol 2022; 18:e1009913. [PMID: 35363785 PMCID: PMC9022832 DOI: 10.1371/journal.pcbi.1009913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/21/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
The paper presents a statistical-mechanics model for the kinetic selection of viral RNA molecules by packaging signals during the nucleation stage of the assembly of small RNA viruses. The effects of the RNA secondary structure and folding geometry of the packaging signals on the assembly activation energy barrier are encoded by a pair of characteristics: the wrapping number and the maximum ladder distance. Kinetic selection is found to be optimal when assembly takes place under conditions of supersaturation and also when the concentration ratio of capsid protein and viral RNA concentrations equals the stoichiometric ratio of assembled viral particles. As a function of the height of the activation energy barrier, there is a form of order-disorder transition such that for sufficiently low activation energy barriers, kinetic selectivity is erased by entropic effects associated with the number of assembly pathways.
Collapse
Affiliation(s)
- Inbal Mizrahi
- Department of Physics and Astronomy, University of California, Los Angeles, California, United States of America
| | - Robijn Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- * E-mail:
| | - Joseph Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Jones PE, Pérez-Segura C, Bryer AJ, Perilla JR, Hadden-Perilla JA. Molecular dynamics of the viral life cycle: progress and prospects. Curr Opin Virol 2021; 50:128-138. [PMID: 34464843 PMCID: PMC8651149 DOI: 10.1016/j.coviro.2021.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023]
Abstract
Molecular dynamics (MD) simulations across spatiotemporal resolutions are widely applied to study viruses and represent the central technique uniting the field of computational virology. We discuss the progress of MD in elucidating the dynamics of the viral life cycle, including the status of modeling intact extracellular virions and leveraging advanced simulations to mimic active life cycle processes. We further remark on the prospects of MD for continued contributions to the basic science characterization of viruses, especially given the increasing availability of high-quality experimental data and supercomputing power. Overall, integrative computational methods that are closely guided by experiments are unmatched in the level of detail they provide, enabling-now and in the future-new discoveries relevant to thwarting viral infection.
Collapse
Affiliation(s)
- Peter Eugene Jones
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Alexander J Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
4
|
Perspectives on Viral RNA Genomes and the RNA Folding Problem. Viruses 2020; 12:v12101126. [PMID: 33027988 PMCID: PMC7600889 DOI: 10.3390/v12101126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Viral RNA genomes change shape as virus particles disassemble, form replication complexes, attach to ribosomes for translation, evade host defense mechanisms, and assemble new virus particles. These structurally dynamic RNA shapeshifters present a challenging RNA folding problem, because the RNA sequence adopts multiple structures and may sometimes contain regions of partial disorder. Recent advances in high resolution asymmetric cryoelectron microscopy and chemical probing provide new ways to probe the degree of structure and disorder, and have identified more than one conformation in dynamic equilibrium in viral RNA. Chemical probing and the Detection of RNA Folding Ensembles using Expectation Maximization (DREEM) algorithm has been applied to studies of the dynamic equilibrium conformations in HIV RNA in vitro, in virio, and in vivo. This new type of data provides insight into important questions about virus assembly mechanisms and the fundamental physical forces driving virus particle assembly.
Collapse
|
5
|
Buzón P, Maity S, Roos WH. Physical virology: From virus self-assembly to particle mechanics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1613. [PMID: 31960585 PMCID: PMC7317356 DOI: 10.1002/wnan.1613] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/01/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Viruses are highly ordered supramolecular complexes that have evolved to propagate by hijacking the host cell's machinery. Although viruses are very diverse, spreading through cells of all kingdoms of life, they share common functions and properties. Next to the general interest in virology, fundamental viral mechanisms are of growing importance in other disciplines such as biomedicine and (bio)nanotechnology. However, in order to optimally make use of viruses and virus-like particles, for instance as vehicle for targeted drug delivery or as building blocks in electronics, it is essential to understand their basic chemical and physical properties and characteristics. In this context, the number of studies addressing the mechanisms governing viral properties and processes has recently grown drastically. This review summarizes a specific part of these scientific achievements, particularly addressing physical virology approaches aimed to understand the self-assembly of viruses and the mechanical properties of viral particles. Using a physicochemical perspective, we have focused on fundamental studies providing an overview of the molecular basis governing these key aspects of viral systems. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
7
|
Systematic analysis of biological roles of charged amino acid residues located throughout the structured inner wall of a virus capsid. Sci Rep 2018; 8:9543. [PMID: 29934575 PMCID: PMC6015035 DOI: 10.1038/s41598-018-27749-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
Structure-based mutational analysis of viruses is providing many insights into the relationship between structure and biological function of macromolecular complexes. We have systematically investigated the individual biological roles of charged residues located throughout the structured capsid inner wall (outside disordered peptide segments) of a model spherical virus, the minute virus of mice (MVM). The functional effects of point mutations that altered the electrical charge at 16 different positions at the capsid inner wall were analyzed. The results revealed that MVM capsid self-assembly is rather tolerant to point mutations that alter the number and distribution of charged residues at the capsid inner wall. However, mutations that either increased or decreased the number of positive charges around capsid-bound DNA segments reduced the thermal resistance of the virion. Moreover, mutations that either removed or changed the positions of negatively charged carboxylates in rings of acidic residues around capsid pores were deleterious by precluding a capsid conformational transition associated to through-pore translocation events. The results suggest that number, distribution and specific position of electrically charged residues across the inner wall of a spherical virus may have been selected through evolution as a compromise between several different biological requirements.
Collapse
|
8
|
Fang PY, Bowman JC, Gómez Ramos L, Hsiao C, Williams LD. RNA: packaged and protected by VLPs. RSC Adv 2018; 8:21399-21406. [PMID: 35539947 PMCID: PMC9080931 DOI: 10.1039/c8ra02084a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 01/16/2023] Open
Abstract
VLP packaging is most efficient for compact RNA, and protects RNA against assault by small diffusible damaging agents.
Collapse
Affiliation(s)
- Po-Yu Fang
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Jessica C. Bowman
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Lizzette M. Gómez Ramos
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemical and Biomolecular Engineering
| | - Chiaolong Hsiao
- Institute of Biochemical Sciences
- National Taiwan University
- Taipei 10617
- Republic of China
| | - Loren Dean Williams
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
9
|
Muthukumar M. 50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions. Macromolecules 2017; 50:9528-9560. [PMID: 29296029 PMCID: PMC5746850 DOI: 10.1021/acs.macromol.7b01929] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/27/2017] [Indexed: 12/17/2022]
Abstract
From the beginning of life with the information-containing polymers until the present era of a plethora of water-based materials in health care industry and biotechnology, polyelectrolytes are ubiquitous with a broad range of structural and functional properties. The main attribute of polyelectrolyte solutions is that all molecules are strongly correlated both topologically and electrostatically in their neutralizing background of charged ions in highly polarizable solvent. These strong correlations and the necessary use of numerous variables in experiments on polyelectrolytes have presented immense challenges toward fundamental understanding of the various behaviors of charged polymeric systems. This Perspective presents the author's subjective summary of several conceptual advances and the remaining persistent challenges in the contexts of charge and size of polymers, structures in homogeneous solutions, thermodynamic instability and phase transitions, structural evolution with oppositely charged polymers, dynamics in polyelectrolyte solutions, kinetics of phase separation, mobility of charged macromolecules between compartments, and implications to biological systems.
Collapse
Affiliation(s)
- M. Muthukumar
- Department of Polymer Science
and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Borodavka A, Singaram SW, Stockley PG, Gelbart WM, Ben-Shaul A, Tuma R. Sizes of Long RNA Molecules Are Determined by the Branching Patterns of Their Secondary Structures. Biophys J 2016; 111:2077-2085. [PMID: 27851933 PMCID: PMC5113152 DOI: 10.1016/j.bpj.2016.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/25/2016] [Accepted: 10/11/2016] [Indexed: 12/26/2022] Open
Abstract
Long RNA molecules are at the core of gene regulation across all kingdoms of life, while also serving as genomes in RNA viruses. Few studies have addressed the basic physical properties of long single-stranded RNAs. Long RNAs with nonrepeating sequences usually adopt highly ramified secondary structures and are better described as branched polymers. To test whether a branched polymer model can estimate the overall sizes of large RNAs, we employed fluorescence correlation spectroscopy to examine the hydrodynamic radii of a broad spectrum of biologically important RNAs, ranging from viral genomes to long noncoding regulatory RNAs. The relative sizes of long RNAs measured at low ionic strength correspond well to those predicted by two theoretical approaches that treat the effective branching associated with secondary structure formation-one employing the Kramers theorem for calculating radii of gyration, and the other featuring the metric of maximum ladder distance. Upon addition of multivalent cations, most RNAs are found to be compacted as compared with their original, low ionic-strength sizes. These results suggest that sizes of long RNA molecules are determined by the branching pattern of their secondary structures. We also experimentally validate the proposed computational approaches for estimating hydrodynamic radii of single-stranded RNAs, which use generic RNA structure prediction tools and thus can be universally applied to a wide range of long RNAs.
Collapse
Affiliation(s)
- Alexander Borodavka
- Faculty of Biological Sciences, Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Surendra W Singaram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; The Institute of Chemistry and Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter G Stockley
- Faculty of Biological Sciences, Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Avinoam Ben-Shaul
- The Institute of Chemistry and Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roman Tuma
- Faculty of Biological Sciences, Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
11
|
Reddy T, Sansom MSP. Computational virology: From the inside out. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1610-8. [PMID: 26874202 PMCID: PMC4884666 DOI: 10.1016/j.bbamem.2016.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/23/2022]
Abstract
Viruses typically pack their genetic material within a protein capsid. Enveloped viruses also have an outer membrane made up of a lipid bilayer and membrane-spanning glycoproteins. X-ray diffraction and cryoelectron microscopy provide high resolution static views of viral structure. Molecular dynamics (MD) simulations may be used to provide dynamic insights into the structures of viruses and their components. There have been a number of simulations of viral capsids and (in some cases) of the inner core of RNA or DNA packaged within them. These simulations have generally focussed on the structural integrity and stability of the capsid and/or on the influence of the nucleic acid core on capsid stability. More recently there have been a number of simulation studies of enveloped viruses, including HIV-1, influenza A, and dengue virus. These have addressed the dynamic behaviour of the capsid, the matrix, and/or of the outer envelope. Analysis of the dynamics of the lipid bilayer components of the envelopes of influenza A and of dengue virus reveals a degree of biophysical robustness, which may contribute to the stability of virus particles in different environments. Significant computational challenges need to be addressed to aid simulation of complex viruses and their membranes, including the need to integrate structural data from a range of sources to enable us to move towards simulations of intact virions. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Tyler Reddy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
12
|
Perlmutter JD, Mohajerani F, Hagan MF. Many-molecule encapsulation by an icosahedral shell. eLife 2016; 5. [PMID: 27166515 PMCID: PMC4947392 DOI: 10.7554/elife.14078] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/10/2016] [Indexed: 12/31/2022] Open
Abstract
We computationally study how an icosahedral shell assembles around hundreds of molecules. Such a process occurs during the formation of the carboxysome, a bacterial microcompartment that assembles around many copies of the enzymes ribulose 1,5-bisphosphate carboxylase/ oxygenase and carbonic anhydrase to facilitate carbon fixation in cyanobacteria. Our simulations identify two classes of assembly pathways leading to encapsulation of many-molecule cargoes. In one, shell assembly proceeds concomitantly with cargo condensation. In the other, the cargo first forms a dense globule; then, shell proteins assemble around and bud from the condensed cargo complex. Although the model is simplified, the simulations predict intermediates and closure mechanisms not accessible in experiments, and show how assembly can be tuned between these two pathways by modulating protein interactions. In addition to elucidating assembly pathways and critical control parameters for microcompartment assembly, our results may guide the reengineering of viruses as nanoreactors that self-assemble around their reactants. DOI:http://dx.doi.org/10.7554/eLife.14078.001 Bacterial microcompartments are protein shells that are found inside bacteria and enclose enzymes and other chemicals required for certain biological reactions. For example, the carboxysome is a type of microcompartment that enables the bacteria to convert the products of photosynthesis into sugars. During the formation of a microcompartment, the outer protein shell assembles around hundreds of enzymes and chemicals. This formation process is tightly controlled and involves multiple interactions between the shell proteins and the cargo – the enzymes and other reaction ingredients – they will enclose. Understanding how to control which enzymes are encapsulated within microcompartments could help researchers to re-engineer the microcompartments so that they contain drugs or other useful products. Recent studies have used microscopy to visualize how microcompartments are assembled. However, most of the intermediate structures that form during assembly are too small and short-lived to be seen. It has therefore not been possible to explore in detail how shell proteins collect the necessary cargo and then assemble into an ordered shell with the cargo on the inside. Experiments alone are probably not enough to understand the process, especially since microcompartment assembly can currently only be studied within live cells or cellular extract. Within these complex environments it is difficult to determine the effect of any individual factor on the overall assembly process. Perlmutter, Mohajerani and Hagan have now taken a different approach by developing computational and theoretical models to explore how microcompartments assemble. Computer simulations showed that microcompartments could assemble by two pathways. In one pathway, the protein shell and cargo coalesce at the same time. In the other pathway, the cargo molecules first assemble into a large disordered complex, with the shell proteins attached on the outside. The shell proteins then assemble, carving out a piece of the cargo complex. The simulations showed that many factors affect how the shell assembles, such as the strengths of the interactions between the shell proteins and the cargo. They also identified a factor that controls how much cargo ends up inside the assembled shell. Perlmutter, Mohajerani and Hagan found that, in addition to revealing how microcompartments may assemble within their natural setting, the simulations provided guidance on how to re-engineer microcompartments to assemble around other components. This would enable researchers to create customizable compartments that self-assemble within bacteria or other host organisms, for example to carry out carbon fixation or make biofuels. A future challenge will be to investigate other aspects of microcompartment assembly, such as the factors that control the size of these compartments. DOI:http://dx.doi.org/10.7554/eLife.14078.002
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, United States
| | - Farzaneh Mohajerani
- Martin Fisher School of Physics, Brandeis University, Waltham, United States
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, United States
| |
Collapse
|
13
|
Bruinsma RF, Comas-Garcia M, Garmann RF, Grosberg AY. Equilibrium self-assembly of small RNA viruses. Phys Rev E 2016; 93:032405. [PMID: 27078388 DOI: 10.1103/physreve.93.032405] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 12/18/2022]
Abstract
We propose a description for the quasiequilibrium self-assembly of small, single-stranded (ss) RNA viruses whose capsid proteins (CPs) have flexible, positively charged, disordered tails that associate with the negatively charged RNA genome molecules. We describe the assembly of such viruses as the interplay between two coupled phase-transition-like events: the formation of the protein shell (the capsid) by CPs and the condensation of a large ss viral RNA molecule. Electrostatic repulsion between the CPs competes with attractive hydrophobic interactions and attractive interaction between neutralized RNA segments mediated by the tail groups. An assembly diagram is derived in terms of the strength of attractive interactions between CPs and between CPs and the RNA molecules. It is compared with the results of recent studies of viral assembly. We demonstrate that the conventional theory of self-assembly, which does describe the assembly of empty capsids, is in general not applicable to the self-assembly of RNA-encapsidating virions.
Collapse
Affiliation(s)
- R F Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - M Comas-Garcia
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - R F Garmann
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - A Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
| |
Collapse
|
14
|
Garmann RF, Comas-Garcia M, Knobler CM, Gelbart WM. Physical Principles in the Self-Assembly of a Simple Spherical Virus. Acc Chem Res 2016; 49:48-55. [PMID: 26653769 DOI: 10.1021/acs.accounts.5b00350] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Viruses are unique among living organisms insofar as they can be reconstituted "from scratch", that is, synthesized from purified components. In the simplest cases, their "parts list" numbers only two: a single molecule of nucleic acid and many (but a very special number, i.e., multiples of 60) copies of a single protein. Indeed, the smallest viral genomes include essentially only two genes, on the order of a thousand times fewer than the next-simplest organisms like bacteria and yeast. For these reasons, it is possible and even fruitful to take a reductionist approach to viruses and to understand how they work in terms of fundamental physical principles. In this Account, we discuss our recent physical chemistry approach to studying the self-assembly of a particular spherical virus (cowpea chlorotic mottle virus) whose reconstitution from RNA and capsid protein has long served as a model for virus assembly. While previous studies have clarified the roles of certain physical (electrostatic, hydrophobic, steric) interactions in the stability and structure of the final virus, it has been difficult to probe these interactions during assembly because of the inherently short lifetimes of the intermediate states. We feature the role of pH in tuning the magnitude of the interactions among capsid proteins during assembly: in particular, by making the interactions between proteins sufficiently weak, we are able to stall the assembly process and interrogate the structure and composition of particular on-pathway intermediates. Further, we find that the strength of the lateral attractions between RNA-bound proteins plays a key role in addressing several outstanding questions about assembly: What determines the pathway or pathways of assembly? What is the importance of kinetic traps and hysteresis? How do viruses copackage multiple short (compared with wild-type) RNAs or single long RNAs? What determines the relative packaging efficiencies of different RNAs when they are forced to compete for an insufficient supply of protein? And what is the limit on the length of RNA that can be packaged by CCMV capsid protein?
Collapse
Affiliation(s)
- Rees F. Garmann
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Mauricio Comas-Garcia
- HIV
Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | | | | |
Collapse
|
15
|
The Role of Packaging Sites in Efficient and Specific Virus Assembly. J Mol Biol 2015; 427:2451-2467. [PMID: 25986309 DOI: 10.1016/j.jmb.2015.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022]
Abstract
During the life cycle of many single-stranded RNA viruses, including many human pathogens, a protein shell called the capsid spontaneously assembles around the viral genome. Understanding the mechanisms by which capsid proteins selectively assemble around the viral RNA amidst diverse host RNAs is a key question in virology. In one proposed mechanism, short sequences (packaging sites) within the genomic RNA promote rapid and efficient assembly through specific interactions with the capsid proteins. In this work, we develop a coarse-grained particle-based computational model for capsid proteins and RNA that represents protein-RNA interactions arising both from nonspecific electrostatics and from specific packaging site interactions. Using Brownian dynamics simulations, we explore how the efficiency and specificity of assembly depend on solution conditions (which control protein-protein and nonspecific protein-RNA interactions) and the strength and number of packaging sites. We identify distinct regions in parameter space in which packaging sites lead to highly specific assembly via different mechanisms and others in which packaging sites lead to kinetic traps. We relate these computational predictions to in vitro assays for specificity in which cognate viral RNAs compete against non-cognate RNAs for assembly by capsid proteins.
Collapse
|
16
|
Abstract
Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid and in some cases are surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assemble within their host cells and in vitro. We describe the thermodynamics and kinetics for the assembly of protein subunits into icosahedral capsid shells and how these are modified in cases in which the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques used to characterize capsid assembly, and we highlight aspects of virus assembly that are likely to receive significant attention in the near future.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454;
| | | |
Collapse
|
17
|
Abstract
I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened.
Collapse
|
18
|
Fenley MO, Harris RC, Mackoy T, Boschitsch AH. Features of CPB: a Poisson-Boltzmann solver that uses an adaptive Cartesian grid. J Comput Chem 2014; 36:235-43. [PMID: 25430617 DOI: 10.1002/jcc.23791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/14/2014] [Accepted: 10/12/2014] [Indexed: 11/10/2022]
Abstract
The capabilities of an adaptive Cartesian grid (ACG)-based Poisson-Boltzmann (PB) solver (CPB) are demonstrated. CPB solves various PB equations with an ACG, built from a hierarchical octree decomposition of the computational domain. This procedure decreases the number of points required, thereby reducing computational demands. Inside the molecule, CPB solves for the reaction-field component (ϕrf ) of the electrostatic potential (ϕ), eliminating the charge-induced singularities in ϕ. CPB can also use a least-squares reconstruction method to improve estimates of ϕ at the molecular surface. All surfaces, which include solvent excluded, Gaussians, and others, are created analytically, eliminating errors associated with triangulated surfaces. These features allow CPB to produce detailed surface maps of ϕ and compute polar solvation and binding free energies for large biomolecular assemblies, such as ribosomes and viruses, with reduced computational demands compared to other Poisson-Boltzmann equation solvers. The reader is referred to http://www.continuum-dynamics.com/solution-mm.html for how to obtain the CPB software.
Collapse
Affiliation(s)
- Marcia O Fenley
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, 32306
| | | | | | | |
Collapse
|
19
|
Perlmutter JD, Perkett MR, Hagan MF. Pathways for virus assembly around nucleic acids. J Mol Biol 2014; 426:3148-3165. [PMID: 25036288 DOI: 10.1016/j.jmb.2014.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/17/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022]
Abstract
Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work, we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single-molecule fluorescence correlation spectroscopy or bulk time-resolved small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
20
|
Comas-Garcia M, Garmann RF, Singaram SW, Ben-Shaul A, Knobler CM, Gelbart WM. Characterization of Viral Capsid Protein Self-Assembly around Short Single-Stranded RNA. J Phys Chem B 2014; 118:7510-7519. [PMID: 24933579 DOI: 10.1021/jp503050z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For many viruses, the packaging of a single-stranded RNA (ss-RNA) genome is spontaneous, driven by capsid protein-capsid protein (CP) and CP-RNA interactions. Furthermore, for some multipartite ss-RNA viruses, copackaging of two or more RNA molecules is a common strategy. Here we focus on RNA copackaging in vitro by using cowpea chlorotic mottle virus (CCMV) CP and an RNA molecule that is short (500 nucleotides (nts)) compared to the lengths (≈3000 nts) packaged in wild-type virions. We show that the degree of cooperativity of virus assembly depends not only on the relative strength of the CP-CP and CP-RNA interactions but also on the RNA being short: a 500-nt RNA molecule cannot form a capsid by itself, so its packaging requires the aggregation of multiple CP-RNA complexes. By using fluorescence correlation spectroscopy (FCS), we show that at neutral pH and sufficiently low concentrations RNA and CP form complexes that are smaller than the wild-type capsid and that four 500-nt RNAs are packaged into virus-like particles (VLPs) only upon lowering the pH. Further, a variety of bulk-solution techniques confirm that fully ordered VLPs are formed only upon acidification. On the basis of these results, we argue that the observed high degree of cooperativity involves equilibrium between multiple CP/RNA complexes.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Rees F Garmann
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Surendra W Singaram
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States.,Department of Physical Chemistry, The Hebrew University , Jerusalem 91904, Israel
| | - Avinoam Ben-Shaul
- Department of Physical Chemistry, The Hebrew University , Jerusalem 91904, Israel
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Abstract
UNLABELLED We have recently discovered (R. D. Cadena-Nava et al., J. Virol. 86:3318-3326, 2012, doi:10.1128/JVI.06566-11) that the in vitro packaging of RNA by the capsid protein (CP) of cowpea chlorotic mottle virus is optimal when there is a significant excess of CP, specifically that complete packaging of all of the RNA in solution requires sufficient CP to provide charge matching of the N-terminal positively charged arginine-rich motifs (ARMS) of the CPs with the negatively charged phosphate backbone of the RNA. We show here that packaging results from the initial formation of a charge-matched protocapsid consisting of RNA decorated by a disordered arrangement of CPs. This protocapsid reorganizes into the final, icosahedrally symmetric nucleocapsid by displacing the excess CPs from the RNA to the exterior surface of the emerging capsid through electrostatic attraction between the ARMs of the excess CP and the negative charge density of the capsid exterior. As a test of this scenario, we prepare CP mutants with extra and missing (relative to the wild type) cationic residues and show that a correspondingly smaller and larger excess, respectively, of CP is needed for complete packaging of RNA. IMPORTANCE Cowpea chlorotic mottle virus (CCMV) has long been studied as a model system for the assembly of single-stranded RNA viruses. While much is known about the electrostatic interactions within the CCMV virion, relatively little is known about these interactions during assembly, i.e., within intermediate states preceding the final nucleocapsid structure. Theoretical models and coarse-grained molecular dynamics simulations suggest that viruses like CCMV assemble by the bulk adsorption of CPs onto the RNA driven by electrostatic attraction, followed by structural reorganization into the final capsid. Such a mechanism facilitates assembly by condensing the RNA for packaging while simultaneously concentrating the local density of CP for capsid nucleation. We provide experimental evidence of such a mechanism by demonstrating that efficient assembly is initiated by the formation of a disordered protocapsid complex whose stoichiometry is governed by electrostatics (charge matching of the anionic RNA and the cationic N termini of the CP).
Collapse
|
22
|
Gopal R, Venter PA, Schneemann A. Differential segregation of nodaviral coat protein and RNA into progeny virions during mixed infection with FHV and NoV. Virology 2014; 454-455:280-90. [PMID: 24725955 DOI: 10.1016/j.virol.2014.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 01/04/2023]
Abstract
Nodaviruses are icosahedral viruses with a bipartite, positive-sense RNA genome. The two RNAs are packaged into a single virion by a poorly understood mechanism. We chose two distantly related nodaviruses, Flock House virus and Nodamura virus, to explore formation of viral reassortants as a means to further understand genome recognition and encapsidation. In mixed infections, the viruses were incompatible at the level of RNA replication and their coat proteins segregated into separate populations of progeny particles. RNA packaging, on the other hand, was indiscriminate as all four viral RNAs were detectable in each progeny population. Consistent with the trans-encapsidation phenotype, fluorescence in situ hybridization of viral RNA revealed that the genomes of the two viruses co-localized throughout the cytoplasm. Our results imply that nodaviral RNAs lack rigorously defined packaging signals and that co-encapsidation of the viral RNAs does not require a pair of cognate RNA1 and RNA2.
Collapse
Affiliation(s)
- Radhika Gopal
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - P Arno Venter
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anette Schneemann
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
23
|
Garmann RF, Comas-Garcia M, Gopal A, Knobler CM, Gelbart WM. The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions. J Mol Biol 2013; 426:1050-60. [PMID: 24148696 DOI: 10.1016/j.jmb.2013.10.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/28/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
The strength of attraction between capsid proteins (CPs) of cowpea chlorotic mottle virus (CCMV) is controlled by the solution pH. Additionally, the strength of attraction between CP and the single-stranded RNA viral genome is controlled by ionic strength. By exploiting these properties, we are able to control and monitor the in vitro co-assembly of CCMV CP and single-stranded RNA as a function of the strength of CP-CP and CP-RNA attractions. Using the techniques of velocity sedimentation and electron microscopy, we find that the successful assembly of nuclease-resistant virus-like particles (VLPs) depends delicately on the strength of CP-CP attraction relative to CP-RNA attraction. If the attractions are too weak, the capsid cannot form; if they are too strong, the assembly suffers from kinetic traps. Separating the process into two steps-by first turning on CP-RNA attraction and then turning on CP-CP attraction-allows for the assembly of well-formed VLPs under a wide range of attraction strengths. These observations establish a protocol for the efficient in vitro assembly of CCMV VLPs and suggest potential strategies that the virus may employ in vivo.
Collapse
Affiliation(s)
- Rees F Garmann
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Mauricio Comas-Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Ajaykumar Gopal
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute, and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
To build a virus on a nucleic acid substrate. Biophys J 2013; 104:1595-604. [PMID: 23561536 DOI: 10.1016/j.bpj.2013.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/10/2013] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Many viruses package their genomes concomitant with assembly. Here, we show that this reaction can be described by three coefficients: association of capsid protein (CP) to nucleic acid (NA), KNA; CP-CP interaction, ω; and α, proportional to the work required to package NA. The value of α can vary as NA is packaged. A phase diagram of average lnα versus lnω identifies conditions where assembly is likely to fail or succeed. NA morphology can favor (lnα > 0) or impede (lnα < 0) assembly. As lnω becomes larger, capsids become more stable and assembly becomes more cooperative. Where (lnα + lnω) < 0, the CP is unable to contain the NA, so that assembly results in aberrant particles. This phase diagram is consistent with quantitative studies of cowpea chlorotic mottle virus, hepatitis B virus, and simian virus 40 assembling on ssRNA and dsDNA substrates. Thus, the formalism we develop is suitable for describing and predicting behavior of experimental studies of CP assembly on NA.
Collapse
|
25
|
The icosahedral RNA virus as a grotto: organizing the genome into stalagmites and stalactites. J Biol Phys 2013; 39:163-72. [PMID: 23860866 DOI: 10.1007/s10867-013-9312-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/08/2013] [Indexed: 10/26/2022] Open
Abstract
There are two important problems in the assembly of small, icosahedral RNA viruses. First, how does the capsid protein select the viral RNA for packaging, when there are so many other candidate RNA molecules available? Second, what is the mechanism of assembly? With regard to the first question, there are a number of cases where a particular RNA sequence or structure--often one or more stem-loops--either promotes assembly or is required for assembly, but there are others where specific packaging signals are apparently not required. With regard to the assembly pathway, in those cases where stem-loops are involved, the first step is generally believed to be binding of the capsid proteins to these "fingers" of the RNA secondary structure. In the mature virus, the core of the RNA would then occupy the center of the viral particle, and the stem-loops would reach outward, towards the capsid, like stalagmites reaching up from the floor of a grotto towards the ceiling. Those viruses whose assembly does not depend on protein binding to stem-loops could have a different structure, with the core of the RNA lying just under the capsid, and the fingers reaching down into the interior of the virus, like stalactites. We review the literature on these alternative structures, focusing on RNA selectivity and the assembly mechanism, and we propose experiments aimed at determining, in a given virus, which of the two structures actually occurs.
Collapse
|
26
|
Stockley PG, Twarock R, Bakker SE, Barker AM, Borodavka A, Dykeman E, Ford RJ, Pearson AR, Phillips SEV, Ranson NA, Tuma R. Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism. J Biol Phys 2013; 39:277-87. [PMID: 23704797 PMCID: PMC3662417 DOI: 10.1007/s10867-013-9313-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative theory, which recognizes the important cooperative roles played by RNA–coat protein interactions, at sites we have termed packaging signals. The hypothesis is that multiple copies of packaging signals, repeated according to capsid symmetry, aid formation of the required capsid protein conformers at defined positions, resulting in significantly enhanced assembly efficiency. The precise mechanistic roles of packaging signal interactions may vary between viruses, as we have demonstrated for MS2 and STNV. We quantify the impact of packaging signals on capsid assembly efficiency using a dodecahedral model system, showing that heterogeneous affinity distributions of packaging signals for capsid protein out-compete those of homogeneous affinities. These insights pave the way to a new anti-viral therapy, reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals, and opens up new avenues for the efficient construction of protein nanocontainers in bionanotechnology.
Collapse
Affiliation(s)
- Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Xia Z, Bell DR, Shi Y, Ren P. RNA 3D structure prediction by using a coarse-grained model and experimental data. J Phys Chem B 2013; 117:3135-44. [PMID: 23438338 DOI: 10.1021/jp400751w] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
RNAs form complex secondary and three-dimensional structures, and their biological functions highly rely on their structures and dynamics. Here we developed a general coarse-grained framework for RNA 3D structure prediction. A new, hybrid coarse-grained model that explicitly describes the electrostatics and hydrogen-bond interactions has been constructed based on experimental structural statistics. With the simulated annealing simulation protocol, several RNAs of less than 30-nt were folded to within 4.0 Å of the native structures. In addition, with limited restraints on Watson-Crick basepairing based on the data from NMR spectroscopy and small-angle X-ray scattering (SAXS) information, the current model was able to characterize the complex tertiary structures of large size RNAs, such as 5S ribosome and U2/U6 snRNA. We also demonstrated that the pseudoknot structure was better captured when the coordinating Mg(2+) cations and limited basepairing restraints were included. The accuracy of our model has been compared favorably with other RNA structure prediction methods presented in the previous study of RNA-Puzzles. Therefore the coarse-grained model presented here offers a unique approach for accurate prediction and modeling of RNA structures.
Collapse
Affiliation(s)
- Zhen Xia
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
28
|
Borodavka A, Tuma R, Stockley PG. A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence. RNA Biol 2013; 10:481-9. [PMID: 23422316 PMCID: PMC3710354 DOI: 10.4161/rna.23838] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
29
|
Ford RJ, Barker AM, Bakker SE, Coutts RH, Ranson NA, Phillips SEV, Pearson AR, Stockley PG. Sequence-specific, RNA-protein interactions overcome electrostatic barriers preventing assembly of satellite tobacco necrosis virus coat protein. J Mol Biol 2013; 425:1050-64. [PMID: 23318955 PMCID: PMC3593212 DOI: 10.1016/j.jmb.2013.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/30/2022]
Abstract
We have examined the roles of RNA–coat protein (CP) interactions in the assembly of satellite tobacco necrosis virus (STNV). The viral genomic RNA encodes only the CP, which comprises a β-barrel domain connected to a positively charged N-terminal extension. In the previous crystal structures of this system, the first 11 residues of the protein are disordered. Using variants of an RNA aptamer sequence isolated against the CP, B3, we have studied the sequence specificity of RNA-induced assembly. B3 consists of a stem–loop presenting the tetra-loop sequence ACAA. There is a clear preference for RNAs encompassing this loop sequence, as measured by the yield of T = 1 capsids, which is indifferent to sequences within the stem. The B3-containing virus-like particle has been crystallised and its structure was determined to 2.3 Å. A lower-resolution map encompassing density for the RNA has also been calculated. The presence of B3 results in increased ordering of the N-terminal helices located at the particle 3-fold axes, which extend by roughly one and a half turns to encompass residues 8–11, including R8 and K9. Under assembly conditions, STNV CP in the absence of RNA is monomeric and does not self-assemble. These facts suggest that a plausible model for assembly initiation is the specific RNA-induced stabilisation of a trimeric capsomere. The basic nature of the helical extension suggests that electrostatic repulsion between CPs prevents assembly in the absence of RNA and that this barrier is overcome by correct placement of appropriately orientated helical RNA stems. Such a mechanism would be consistent with the data shown here for assembly with longer RNA fragments, including an STNV genome. The results are discussed in light of a first stage of assembly involving compaction of the genomic RNA driven by multiple RNA packaging signal–CP interactions.
Collapse
Affiliation(s)
- Robert J Ford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
All matter has to obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them, but have managed to use them for their own survival. In this chapter we will review some of the exciting physics behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be understood using fundamental physics theories.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Fundamental Physics, Universitat de Barcelona, c/Martí i Franquès 1, 08028, Barcelona, Spain
| | | |
Collapse
|
31
|
Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 2012; 531:65-79. [PMID: 23142681 DOI: 10.1016/j.abb.2012.10.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/13/2022]
Abstract
Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
32
|
In vitro quantification of the relative packaging efficiencies of single-stranded RNA molecules by viral capsid protein. J Virol 2012; 86:12271-82. [PMID: 22951822 DOI: 10.1128/jvi.01695-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
While most T=3 single-stranded RNA (ssRNA) viruses package in vivo about 3,000 nucleotides (nt), in vitro experiments have demonstrated that a broad range of RNA lengths can be packaged. Under the right solution conditions, for example, cowpea chlorotic mottle virus (CCMV) capsid protein (CP) has been shown to package RNA molecules whose lengths range from 100 to 10,000 nt. Furthermore, in each case it can package the RNA completely, as long as the mass ratio of CP to nucleic acid in the assembly mixture is 6:1 or higher. Yet the packaging efficiencies of the RNAs can differ widely, as we demonstrate by measurements in which two RNAs compete head-to-head for a limited amount of CP. We show that the relative efficiency depends nonmonotonically on the RNA length, with 3,200 nt being optimum for packaging by the T=3 capsids preferred by CCMV CP. When two RNAs of the same length-and hence the same charge-compete for CP, differences in packaging efficiency are necessarily due to differences in their secondary structures and/or three-dimensional (3D) sizes. For example, the heterologous RNA1 of brome mosaic virus (BMV) is packaged three times more efficiently by CCMV CP than is RNA1 of CCMV, even though the two RNAs have virtually identical lengths. Finally, we show that in an assembly mixture at neutral pH, CP binds reversibly to the RNA and there is a reversible equilibrium between all the various RNA/CP complexes. At acidic pH, excess protein unbinds from RNA/CP complexes and nucleocapsids form irreversibly.
Collapse
|
33
|
Lilavivat S, Sardar D, Jana S, Thomas GC, Woycechowsky KJ. In Vivo Encapsulation of Nucleic Acids Using an Engineered Nonviral Protein Capsid. J Am Chem Soc 2012; 134:13152-5. [DOI: 10.1021/ja302743g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seth Lilavivat
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| | - Debosmita Sardar
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| | - Subrata Jana
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| | - Geoffrey C. Thomas
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| | - Kenneth J. Woycechowsky
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| |
Collapse
|
34
|
Jin Z, Wu J. Density functional theory for encapsidated polyelectrolytes: a comparison with Monte Carlo simulation. J Chem Phys 2012; 137:044905. [PMID: 22852653 DOI: 10.1063/1.4737931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Genome packaging inside viral capsids is strongly influenced by the molecular size and the backbone structure of RNA∕DNA chains and their electrostatic affinity with the capsid proteins. Coarse-grained models are able to capture the generic features of non-specific interactions and provide a useful testing ground for theoretical developments. In this work, we use the classical density functional theory (DFT) within the framework of an extended primitive model for electrolyte solutions to investigate the self-organization of flexible and semi-flexible linear polyelectrolytes in spherical capsids that are permeable to small ions but not polymer segments. We compare the DFT predictions with Monte Carlo (MC) simulation for the density distributions of polymer segments and small ions at different backbone flexibilities and several solution conditions. In general, the agreement between DFT and MC is near quantitative except when the simulation results are noticeably influenced by the boundary effects. The numerical efficiency of the DFT calculations makes it promising as a useful tool for quantification of the structural and thermodynamic properties of viral nucleocapsids in vivo and at conditions pertinent to experiments.
Collapse
Affiliation(s)
- Zhehui Jin
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
35
|
Zeng Y, Larson SB, Heitsch CE, McPherson A, Harvey SC. A model for the structure of satellite tobacco mosaic virus. J Struct Biol 2012; 180:110-6. [PMID: 22750417 DOI: 10.1016/j.jsb.2012.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/08/2012] [Accepted: 06/14/2012] [Indexed: 11/24/2022]
Abstract
Satellite tobacco mosaic virus (STMV) is an icosahedral T=1 single-stranded RNA virus with a genome containing 1058 nucleotides. X-ray crystallography revealed a structure containing 30 double-helical RNA segments, with each helix having nine base pairs and an unpaired nucleotide at the 3' end of each strand. Based on this structure, Larson and McPherson proposed a model of 30 hairpin-loop elements occupying the edges of the icosahedron and connected by single-stranded regions. More recently, Schroeder et al. have combined the results of chemical probing with a novel helix searching algorithm to propose a specific secondary structure for the STMV genome, compatible with the Larson-McPherson model. Here we report an all-atom model of STMV, using the complete protein and RNA sequences and the Schroeder RNA secondary structure. As far as we know, this is the first all-atom model for the complete structure of any virus (100% of the atoms) using the natural genomic sequence.
Collapse
Affiliation(s)
- Yingying Zeng
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
36
|
On the origin of order in the genome organization of ssRNA viruses. Biophys J 2011; 101:774-80. [PMID: 21843467 DOI: 10.1016/j.bpj.2011.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022] Open
Abstract
Single-stranded RNA (ssRNA) viruses form a major class that includes important human, animal, and plant pathogens. While the principles underlying the structures of their protein capsids are generally well understood, much less is known about the organization of their encapsulated genomic RNAs. Cryo-electron microscopy and x-ray crystallography have revealed striking evidence of order in the packaged genomes of a number of ssRNA viruses. The physical determinants of such order, however, are largely unknown. We study here the relative effect of different energetic contributions, as well as the role of confinement, on the genome packaging of a representative ssRNA virus, the bacteriophage MS2, via a series of biomolecular simulations in which different energy terms are systematically switched off. We show that the bimodal radial density profile of the packaged genome is a consequence of RNA self-repulsion in confinement, suggesting that it should be similar for all ssRNA viruses with a comparable ratio of capsid size/genome length. In contrast, the detailed structure of the outer shell of the RNA density depends crucially on steric contributions from the capsid inner surface topography, implying that the various different polyhedral RNA cages observed in experiment are largely due to differences in the inner surface topography of the capsid.
Collapse
|
37
|
A theoretical model for the dynamic structure of hepatitis B nucleocapsid. Biophys J 2011; 101:2476-84. [PMID: 22098746 DOI: 10.1016/j.bpj.2011.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/01/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022] Open
Abstract
The genomic material of hepatitis B virus (HBV) is confined within a fenestrated nucleocapsid consisting of 240 identical copies of the capsid protein, which has a rigid core and a positively charged and highly flexible C-terminal domain (CTD). Although previous mutagenesis studies have demonstrated the importance of the CTD in viral RNA packaging and reverse transcription, the microscopic structure of the CTD and its interaction with encapsidated nucleic acids at various stages of viral maturation remain poorly understood. Here, we present a theoretical analysis of the radial distributions of the CTD chains and nucleic acids in the hepatitis B virus nucleocapsid at the beginning and final stages of viral reverse transcription based on classical density functional theory and a coarse-gained model for the pertinent biomolecules. We find that a significant portion of the CTD is exposed at the surface of the RNA-containing immature nucleocapsid and that the CTD is mostly confined within the DNA-containing mature nucleocapsid. Large accumulation of cations is predicted inside both immature and mature nucleocapsids. The theoretical results provide new insights into the molecular mechanism of CTD regulation of viral reverse transcription and nucleocapsid trafficking during various stages of the viral replication processes.
Collapse
|
38
|
Boschitsch AH, Fenley MO. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids. J Chem Theory Comput 2011; 7:1524-1540. [PMID: 21984876 DOI: 10.1021/ct1006983] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous assessment of the solution accuracy; (ii) a pair of low dielectric charged spheres embedded in a ionic solvent to compute electrostatic interaction free energies as a function of the distance between sphere centers; (iii) surface potentials of proteins, nucleic acids and their larger-scale assemblies such as ribosomes; and (iv) electrostatic solvation free energies and their salt sensitivities - obtained with both linear and nonlinear Poisson-Boltzmann equation - for a large set of proteins. These latter results along with timings can serve as benchmarks for comparing the performance of different PBE solvers.
Collapse
|
39
|
Topological constraints: using RNA secondary structure to model 3D conformation, folding pathways, and dynamic adaptation. Curr Opin Struct Biol 2011; 21:296-305. [PMID: 21497083 DOI: 10.1016/j.sbi.2011.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/10/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
Accompanying recent advances in determining RNA secondary structure is the growing appreciation for the importance of relatively simple topological constraints, encoded at the secondary structure level, in defining the overall architecture, folding pathways, and dynamic adaptability of RNA. A new view is emerging in which tertiary interactions do not define RNA 3D structure, but rather, help select specific conformers from an already narrow, topologically pre-defined conformational distribution. Studies are providing fundamental insights into the nature of these topological constraints, how they are encoded by the RNA secondary structure, and how they interplay with other interactions, breathing new meaning to RNA secondary structure. New approaches have been developed that take advantage of topological constraints in determining RNA backbone conformation based on secondary structure, and a limited set of other, easily accessible constraints. Topological constraints are also providing a much-needed framework for rationalizing and describing RNA dynamics and structural adaptation. Finally, studies suggest that topological constraints may play important roles in steering RNA folding pathways. Here, we review recent advances in our understanding of topological constraints encoded by the RNA secondary structure.
Collapse
|
40
|
Harvey SC, Petrov AS, Devkota B, Boz MB. Computational Approaches to Modeling Viral Structure and Assembly. Methods Enzymol 2011; 487:513-43. [DOI: 10.1016/b978-0-12-381270-4.00018-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Abstract
The coat proteins of many viruses spontaneously form icosahedral capsids around nucleic acids or other polymers. Elucidating the role of the packaged polymer in capsid formation could promote biomedical efforts to block viral replication and enable use of capsids in nanomaterials applications. To this end, we perform Brownian dynamics on a coarse-grained model that describes the dynamics of icosahedral capsid assembly around a flexible polymer. We identify several mechanisms by which the polymer plays an active role in its encapsulation, including cooperative polymer-protein motions. These mechanisms are related to experimentally controllable parameters such as polymer length, protein concentration and solution conditions. Furthermore, the simulations demonstrate that assembly mechanisms are correlated with encapsulation efficiency, and we present a phase diagram that predicts assembly outcomes as a function of experimental parameters. We anticipate that our simulation results will provide a framework for designing in vitro assembly experiments on single-stranded RNA virus capsids.
Collapse
Affiliation(s)
- Oren M Elrad
- Department of Physics, Brandeis University, Waltham, MA, USA
| | | |
Collapse
|
42
|
Xia Z, Gardner DP, Gutell RR, Ren P. Coarse-grained model for simulation of RNA three-dimensional structures. J Phys Chem B 2010; 114:13497-506. [PMID: 20883011 PMCID: PMC2989335 DOI: 10.1021/jp104926t] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The accurate prediction of an RNA's three-dimensional structure from its "primary structure" will have a tremendous influence on the experimental design and its interpretation and ultimately our understanding of the many functions of RNA. This paper presents a general coarse-grained (CG) potential for modeling RNA 3-D structures. Each nucleotide is represented by five pseudo atoms, two for the backbone (one for the phosphate and another for the sugar) and three for the base to represent base-stacking interactions. The CG potential has been parametrized from statistical analysis of 688 RNA experimental structures. Molecular dynamic simulations of 15 RNA molecules with the length of 12-27 nucleotides have been performed using the CG potential, with performance comparable to that from all-atom simulations. For ~75% of systems tested, simulated annealing led to native-like structures at least once out of multiple repeated runs. Furthermore, with weak distance restraints based on the knowledge of three to five canonical Watson-Crick pairs, all 15 RNAs tested are successfully folded to within 6.5 Å of native structures using the CG potential and simulated annealing. The results reveal that with a limited secondary structure model the current CG potential can reliably predict the 3-D structures for small RNA molecules. We also explored an all-atom force field to construct atomic structures from the CG simulations.
Collapse
Affiliation(s)
- Zhen Xia
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712
| | - David Paul Gardner
- Section of Integrative Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712
| | - Robin R. Gutell
- Section of Integrative Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712
| |
Collapse
|
43
|
Mechanisms of capsid assembly around a polymer. Biophys J 2010; 99:619-28. [PMID: 20643082 DOI: 10.1016/j.bpj.2010.04.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 11/23/2022] Open
Abstract
Capsids of many viruses assemble around nucleic acids or other polymers. Understanding how the properties of the packaged polymer affect the assembly process could promote biomedical efforts to prevent viral assembly or nanomaterials applications that exploit assembly. To this end, we simulate on a lattice the dynamical assembly of closed, hollow shells composed of several hundred to 1000 subunits, around a flexible polymer. We find that assembly is most efficient at an optimum polymer length that scales with the surface area of the capsid; polymers that are significantly longer than optimal often lead to partial-capsids with unpackaged polymer "tails" or a competition between multiple partial-capsids attached to a single polymer. These predictions can be tested with bulk experiments in which capsid proteins assemble around homopolymeric RNA or synthetic polyelectrolytes. We also find that the polymer can increase the net rate of subunit accretion to a growing capsid both by stabilizing the addition of new subunits and by enhancing the incoming flux of subunits; the effects of these processes may be distinguishable with experiments that monitor the assembly of individual capsids.
Collapse
|
44
|
Kuznetsov YG, Dowell JJ, Gavira JA, Ng JD, McPherson A. Biophysical and atomic force microscopy characterization of the RNA from satellite tobacco mosaic virus. Nucleic Acids Res 2010; 38:8284-94. [PMID: 20693537 PMCID: PMC3001053 DOI: 10.1093/nar/gkq662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Agarose gel electrophoresis, circular dichroism and differential scanning calorimetry showed that single-stranded RNA from satellite tobacco mosaic virus transforms from a conformationally ‘closed state’ at 4°C to a more conformationally ‘open state’ at 65°C. The transition is reversible and shows no hysteresis. Atomic force microscopy (AFM) allowed visualization of the two states and indicated that the conformationally ‘closed state’ probably corresponds to the native encapsidated conformation, and that the ‘open state’ represents a conformation, characterized as short, thick chains of domains, as a consequence of the loss of tertiary interactions. Heating from 75°C to 85°C in the presence of EDTA was necessary to further unravel the ‘open’ conformation RNA into extended chains of lengths >280 nm. Virus exposed to low concentrations of phenol at 65°C, extruded RNA as distinctive ‘pigtails’ in a synchronous fashion, and these ‘pigtails’ then elongated, as the RNA was further discharged by the particles. Moderate concentrations of phenol at 65°C produced complete disruption of virions and only remains of decomposed particles and disordered RNA were evident. AFM images of RNA emerging from disrupted virions appear most consistent with linear arrangements of structural domains.
Collapse
Affiliation(s)
- Yuri G Kuznetsov
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
45
|
Harvey SC, Petrov AS, Devkota B, Boz MB. Viral assembly: a molecular modeling perspective. Phys Chem Chem Phys 2009; 11:10553-64. [PMID: 20145801 DOI: 10.1039/b912884k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Icosahedral viruses are among the smallest and simplest of biological systems. The investigation of their structures represented the first step toward the establishment of molecular biophysics, over half a century ago. Many research groups are now pursuing investigations of viral assembly, a process that could offer new opportunities for the design of antiviral drugs and novel nanoparticles. A variety of experimental, theoretical and computational methods have been brought to bear on the study of virus structure and assembly. In this Perspective we review the contributions of theoretical and computational approaches to our understanding of the structure, energetics, thermodynamics and assembly of DNA bacteriophage and single-stranded icosahedral RNA viruses.
Collapse
Affiliation(s)
- Stephen C Harvey
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
46
|
Jonikas MA, Radmer RJ, Altman RB. Knowledge-based instantiation of full atomic detail into coarse-grain RNA 3D structural models. ACTA ACUST UNITED AC 2009; 25:3259-66. [PMID: 19812110 PMCID: PMC2788923 DOI: 10.1093/bioinformatics/btp576] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Motivation: The recent development of methods for modeling RNA 3D structures using coarse-grain approaches creates a need to bridge low- and high-resolution modeling methods. Although they contain topological information, coarse-grain models lack atomic detail, which limits their utility for some applications. Results: We have developed a method for adding full atomic detail to coarse-grain models of RNA 3D structures. Our method [Coarse to Atomic (C2A)] uses geometries observed in known RNA crystal structures. Our method rebuilds full atomic detail from ideal coarse-grain backbones taken from crystal structures to within 1.87–3.31 Å RMSD of the full atomic crystal structure. When starting from coarse-grain models generated by the modeling tool NAST, our method builds full atomic structures that are within 1.00 Å RMSD of the starting structure. The resulting full atomic structures can be used as starting points for higher resolution modeling, thus bridging high- and low-resolution approaches to modeling RNA 3D structure. Availability: Code for the C2A method, as well as the examples discussed in this article, are freely available at www.simtk.org/home/c2a. Contact:russ.altman@stanford.edu
Collapse
|
47
|
de la Torre JG, Hernández Cifre JG, Ortega Á, Schmidt RR, Fernandes MX, Pérez Sánchez HE, Pamies R. SIMUFLEX: Algorithms and Tools for Simulation of the Conformation and Dynamics of Flexible Molecules and Nanoparticles in Dilute Solution. J Chem Theory Comput 2009; 5:2606-18. [DOI: 10.1021/ct900269n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- José García de la Torre
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - José G. Hernández Cifre
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - Álvaro Ortega
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - Ricardo Rodríguez Schmidt
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - Miguel X. Fernandes
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - Horacio E. Pérez Sánchez
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - R. Pamies
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|