1
|
Privitera AP, Scalisi S, Paternò G, Cerutti E, D'Amico M, Pelicci PG, Faretta M, Dellino GI, Diaspro A, Lanzanò L. Super-resolved analysis of colocalization between replication and transcription along the cell cycle in a model of oncogene activation. Commun Biol 2024; 7:1260. [PMID: 39367096 PMCID: PMC11452374 DOI: 10.1038/s42003-024-06972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
To understand how oncogenes affect genome organization, it is essential to visualize fundamental processes such as DNA replication and transcription at high resolution in intact cells. At the same time, it is important to determine the progression of the cell along the cell cycle, as cell cycle regulation is crucial for the control of cell proliferation and oncogenesis. Here, we present a super-resolution imaging-based method to analyze single cell nuclei sorted according to specific phases of the cell cycle. The sorting is based on the evaluation of the number and the intensity of pixels in the replication foci image and the colocalization analysis is based on image cross-correlation spectroscopy (ICCS). We evaluate the colocalization between replication and transcription, at different cell cycle phases, in a model of PML-RARα oncogene activation. We find that colocalization between replication and transcription is higher in cells in early S phase compared to cells in middle and late S phase. When we turn on the PML-RARα oncogene, this colocalization pattern is preserved but we detect an increase of colocalization between replication and transcription in the early S phase which points to an effect of the PML-RARα oncogene on the coordination between replication and transcription.
Collapse
Affiliation(s)
| | - Silvia Scalisi
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Greta Paternò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Elena Cerutti
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Morgana D'Amico
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Pier Giuseppe Pelicci
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Gaetano Ivan Dellino
- European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy.
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
2
|
Pronkin PG, Tatikolov AS. Spectral-fluorescent and photochemical study of 6,6'-di(benzoylamino)trimethine cyanine dyes in solutions as possible probes for DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122416. [PMID: 36746042 DOI: 10.1016/j.saa.2023.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Spectral-fluorescent and photochemical properties of trimethine cyanine dyes T-304, T-306, and T-307, having substituents in 6,6'-positions, in various organic solvents, in aqueous buffer solutions, in the presence of surfactants and ethanol additives, and the effect on these properties of addition of DNA have been studied. Strong aggregation of the dyes in aqueous and aqueous buffer solutions has been shown. This is due to increased hydrophobicity of the dyes, which makes it difficult to use them as spectral-fluorescent probes for DNA. In the presence of DNA, trimethine cyanines partially form highly fluorescent complexes of dye monomers with the biomolecule, with slight decomposition of the initial aggregates and the formation of aggregates on DNA molecules. The formation of different types of dye-DNA complexes, i.e., intercalation and binding in the DNA grooves, was modeled by molecular docking. Dye-DNA complexes were also studied by circular dichroism spectroscopy and by thermal dissociation of DNA. To reveal selectivity of the dyes, their interaction with human serum albumin was briefly studied. The presence of moderate concentrations of nonionic surfactants does not lead to a significant decomposition of aggregates, but leads to a biphasic dependence of the fluorescence intensity on the DNA concentration. At the same time, ethanol additives (15%) lead to a more or less linear concentration dependence of the fluorescence intensity, which makes it possible to use these dyes as fluorescent probes for DNA. The effective binding constants of the dyes to DNA and the limits of DNA detection using the dyes in the presence of 15% ethanol were estimated. Photoisomerization and generation of the triplet states of T-304, T-306, and T-307 have been also studied. Along with the fluorescence growth, complexation with DNA leads to an increase in the yield of the triplet states of the dyes. This creates a prerequisite for using the dyes in targeted PDT. In the presence of DNA, the decay kinetics of the triplet states are biexponential, which indicates different types of dye complexes with DNA. The rate constants of oxygen quenching of the triplet states of the dyes bound to DNA are significantly lower than the diffusion-controlled values (taking into account the spin-statistical factor), which is explained by the shielding effect on the triplet molecules in complexes with DNA. The data obtained show that dyes T-304, T-306 and T-307, with addition of 15% ethanol, can be used as possible fluorescent probes for DNA.
Collapse
Affiliation(s)
- P G Pronkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia.
| | - A S Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia
| |
Collapse
|
3
|
Cho Y, Park SH, Huh JH, Gopinath A, Lee S. DNA as grabbers and steerers of quantum emitters. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:399-412. [PMID: 39635394 PMCID: PMC11501876 DOI: 10.1515/nanoph-2022-0602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2024]
Abstract
The chemically synthesizable quantum emitters such as quantum dots (QDs), fluorescent nanodiamonds (FNDs), and organic fluorescent dyes can be integrated with an easy-to-craft quantum nanophotonic device, which would be readily developed by non-lithographic solution process. As a representative example, the solution dipping or casting of such soft quantum emitters on a flat metal layer and subsequent drop-casting of plasmonic nanoparticles can afford the quantum emitter-coupled plasmonic nanocavity (referred to as a nanoparticle-on-mirror (NPoM) cavity), allowing us for exploiting various quantum mechanical behaviors of light-matter interactions such as quantum electrodynamics (QED), strong coupling (e.g., Rabi splitting), and quantum mirage. This versatile, yet effective soft quantum nanophotonics would be further benefitted from a deterministic control over the positions and orientations of each individual quantum emitter, particularly at the molecule level of resolution. In this review, we will argue that DNA nanotechnology can provide a gold vista toward this end. A collective set of exotic characteristics of DNA molecules, including Watson-Crick complementarity and helical morphology, enables reliable grabbing of quantum emitters at the on-demand position and steering of their directors at the single molecular level. More critically, the recent advances in large-scale integration of DNA origami have pushed the reliance on the distinctly well-formed single device to the regime of the ultra-scale device arrays, which is critical for promoting the practically immediate applications of such soft quantum nanophotonics.
Collapse
Affiliation(s)
- YongDeok Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| | - Sung Hun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| | - Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| | - Ashwin Gopinath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
- Department of Integrative Energy Engineering, Department of Biomicrosystem Technology, and KU Photonics Center, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
4
|
Photonics of Trimethine Cyanine Dyes as Probes for Biomolecules. Molecules 2022; 27:molecules27196367. [PMID: 36234904 PMCID: PMC9573451 DOI: 10.3390/molecules27196367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cyanine dyes are widely used as fluorescent probes in biophysics and medical biochemistry due to their unique photophysical and photochemical properties (their photonics). This review is focused on a subclass of the most widespread and studied cyanine dyes—trimethine cyanines, which can serve as potential probes for biomolecules. The works devoted to the study of the noncovalent interaction of trimethine cyanine dyes with biomolecules and changing the properties of these dyes upon the interaction are reviewed. In addition to the spectral-fluorescent properties, elementary photochemical properties of trimethine cyanines are considered, including: photoisomerization and back isomerization of the photoisomer, generation and decay of the triplet state, and its quenching by oxygen and other quenchers. The influence of DNA and other nucleic acids, proteins, and other biomolecules on these properties is covered. The interaction of a monomer dye molecule with a biomolecule usually leads to a fluorescence growth, damping of photoisomerization (if any), and an increase in intersystem crossing to the triplet state. Sometimes aggregation of dye molecules on biomolecules is observed. Quenching of the dye triplet state in a complex with biomolecules by molecular oxygen usually occurs with a rate constant much lower than the diffusion limit with allowance for the spin-statistical factor 1/9. The practical application of trimethine cyanines in biophysics and (medical) biochemistry is also considered. In conclusion, the prospects for further studies on the cyanine dye–biomolecule system and the development of new effective dye probes (including probes of a new type) for biomolecules are discussed.
Collapse
|
5
|
Babi M, Neuman K, Peng CY, Maiuri T, Suart CE, Truant R. Recent Microscopy Advances and the Applications to Huntington’s Disease Research. J Huntingtons Dis 2022; 11:269-280. [PMID: 35848031 PMCID: PMC9484089 DOI: 10.3233/jhd-220536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Huntingtin is a 3144 amino acid protein defined as a scaffold protein with many intracellular locations that suggest functions in these compartments. Expansion of the CAG DNA tract in the huntingtin first exon is the cause of Huntington’s disease. An important tool in understanding the biological functions of huntingtin is molecular imaging at the single-cell level by microscopy and nanoscopy. The evolution of these technologies has accelerated since the Nobel Prize in Chemistry was awarded in 2014 for super-resolution nanoscopy. We are in a new era of light imaging at the single-cell level, not just for protein location, but also for protein conformation and biochemical function. Large-scale microscopy-based screening is also being accelerated by a coincident development of machine-based learning that offers a framework for truly unbiased data acquisition and analysis at very large scales. This review will summarize the newest technologies in light, electron, and atomic force microscopy in the context of unique challenges with huntingtin cell biology and biochemistry.
Collapse
Affiliation(s)
- Mouhanad Babi
- McMaster Centre for Advanced Light Microscopy (CALM) McMaster University, Hamilton, Canada
| | - Kaitlyn Neuman
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Christina Y. Peng
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Celeste E. Suart
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- McMaster Centre for Advanced Light Microscopy (CALM) McMaster University, Hamilton, Canada
| |
Collapse
|
6
|
Kwon J, Elgawish MS, Shim S. Bleaching-Resistant Super-Resolution Fluorescence Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101817. [PMID: 35088584 PMCID: PMC8948665 DOI: 10.1002/advs.202101817] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 01/07/2022] [Indexed: 05/08/2023]
Abstract
Photobleaching is the permanent loss of fluorescence after extended exposure to light and is a major limiting factor in super-resolution microscopy (SRM) that restricts spatiotemporal resolution and observation time. Strategies for preventing or overcoming photobleaching in SRM are reviewed developing new probes and chemical environments. Photostabilization strategies are introduced first, which are borrowed from conventional fluorescence microscopy, that are employed in SRM. SRM-specific strategies are then highlighted that exploit the on-off transitions of fluorescence, which is the key mechanism for achieving super-resolution, which are becoming new routes to address photobleaching in SRM. Off states can serve as a shelter from excitation by light or an exit to release a damaged probe and replace it with a fresh one. Such efforts in overcoming the photobleaching limits are anticipated to enhance resolution to molecular scales and to extend the observation time to physiological lifespans.
Collapse
Affiliation(s)
- Jiwoong Kwon
- Department of Biophysics and Biophysical ChemistryJohns Hopkins UniversityBaltimoreMD21205USA
| | - Mohamed Saleh Elgawish
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
- Medicinal Chemistry DepartmentFaculty of PharmacySuez Canal UniversityIsmailia41522Egypt
| | - Sang‐Hee Shim
- Department of ChemistryKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
7
|
Phasor map analysis to investigate Hutchinson-Gilford progeria cell under polarization-resolved optical scanning microscopy. Sci Rep 2022; 12:1679. [PMID: 35102338 PMCID: PMC8803953 DOI: 10.1038/s41598-022-05755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
Polarized light scanning microscopy is a non-invasive and contrast-enhancing technique to investigate anisotropic specimens and chiral organizations. However, such arrangements suffer from insensitivity to confined blend of structures at sub-diffraction level. Here for the first time, we present that the pixel-by-pixel polarization modulation converted to an image phasor approach issues an insightful view of cells to distinguish anomalous subcellular organizations. To this target, we propose an innovative robust way for identifying changes in the chromatin compaction and distortion of nucleus morphology induced by the activation of the lamin-A gene from Hutchinson–Gilford progeria syndrome that induces a strong polarization response. The phasor mapping is evaluated based on the modulation and phase image acquired from a scanning microscope compared to a confocal fluorescence modality of normal cell opposed to the progeria. The method is validated by characterizing polarization response of starch crystalline granules. Additionally, we show that the conversion of the polarization-resolved images into the phasor could further utilized for segmenting specific structures presenting various optical properties under the polarized light. In summary, image phasor analysis offers a distinctly sensitive fast and easy representation of the polarimetric contrast that can pave the way for remote diagnosis of pathological tissues in real-time.
Collapse
|
8
|
Miriklis EL, Rozario AM, Rothenberg E, Bell TDM, Whelan DR. Understanding DNA organization, damage, and repair with super-resolution fluorescence microscopy. Methods Appl Fluoresc 2021; 9. [PMID: 33765677 DOI: 10.1088/2050-6120/abf239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 11/12/2022]
Abstract
Super-resolution microscopy (SRM) comprises a suite of techniques well-suited to probing the nanoscale landscape of genomic function and dysfunction. Offering the specificity and sensitivity that has made conventional fluorescence microscopy a cornerstone technique of biological research, SRM allows for spatial resolutions as good as 10 nanometers. Moreover, single molecule localization microscopies (SMLMs) enable examination of individual molecular targets and nanofoci allowing for the characterization of subpopulations within a single cell. This review describes how key advances in both SRM techniques and sample preparation have enabled unprecedented insights into DNA structure and function, and highlights many of these new discoveries. Ongoing development and application of these novel, highly interdisciplinary SRM assays will continue to expand the toolbox available for research into the nanoscale genomic landscape.
Collapse
Affiliation(s)
| | | | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States of America
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Donna R Whelan
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
9
|
Xu J, Liu Y. A guide to visualizing the spatial epigenome with super-resolution microscopy. FEBS J 2019; 286:3095-3109. [PMID: 31127980 DOI: 10.1111/febs.14938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/24/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Genomic DNA in eukaryotic cells is tightly compacted with histone proteins into nucleosomes, which are further packaged into the higher-order chromatin structure. The physical structuring of chromatin is highly dynamic and regulated by a large number of epigenetic modifications in response to various environmental exposures, both in normal development and pathological processes such as aging and cancer. Higher-order chromatin structure has been indirectly inferred by conventional bulk biochemical assays on cell populations, which do not allow direct visualization of the spatial information of epigenomics (referred to as spatial epigenomics). With recent advances in super-resolution microscopy, the higher-order chromatin structure can now be visualized in vivo at an unprecedent resolution. This opens up new opportunities to study physical compaction of 3D chromatin structure in single cells, maintaining a well-preserved spatial context of tissue microenvironment. This review discusses the recent application of super-resolution fluorescence microscopy to investigate the higher-order chromatin structure of different epigenomic states. We also envision the synergistic integration of super-resolution microscopy and high-throughput genomic technologies for the analysis of spatial epigenomics to fully understand the genome function in normal biological processes and diseases.
Collapse
Affiliation(s)
- Jianquan Xu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Abstract
Fluorogenic probes efficiently reduce non-specific background signals, which often results in highly improved signal-to-noise ratios.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| | - Péter Kele
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| |
Collapse
|
11
|
de Morais CR, Travençolo BAN, Carvalho SM, Beletti ME, Vieira Santos VS, Campos CF, de Campos Júnior EO, Pereira BB, Carvalho Naves MP, de Rezende AAA, Spanó MA, Vieira CU, Bonetti AM. Ecotoxicological effects of the insecticide fipronil in Brazilian native stingless bees Melipona scutellaris (Apidae: Meliponini). CHEMOSPHERE 2018; 206:632-642. [PMID: 29778941 DOI: 10.1016/j.chemosphere.2018.04.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Melipona scutellaris Latreille, 1811 (Hymenoptera, Apidae) is a pollinator of various native and cultivated plants. Because of the expansion of agriculture and the need to ensure pest control, the use of insecticides such as fipronil (FP) has increased. This study aimed to evaluate the effects of sublethal doses of FP insecticide on M. scutellaris at different time intervals (6, 12, and 24 h) after exposure, via individually analyzed behavioral biomarkers (locomotor activity, behavioral change) as well as the effect of FP on different brain structures of bees (mushroom bodies, antennal cells, and optic cells), using sub-individual cell biomarkers (heterochromatin dispersion, total nuclear and heterochromatic volume). Forager bees were collected when they were returning to the nest and were exposed to three different concentrations of FP (0.40, 0.040, and 0.0040 ng a.i/bee) by topical application. The results revealed a reduction in the mean velocity, lethargy, motor difficulty, paralysis, and hyperexcitation in all groups of bees treated with FP. A modification of the heterochromatic dispersion pattern and changes in the total volume of the nucleus and heterochromatin were also observed in the mushroom bodies (6, 12, and 24 h of exposure) and antennal lobes (6 and 12 h) of bees exposed to 0.0040 ng a.i/bee (LD50/100). FP is toxic to M. scutellaris and impairs the essential functions required for the foraging activity.
Collapse
Affiliation(s)
- Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Bruno Augusto Nassif Travençolo
- Faculty of Computer Science, Federal University of Uberlândia, Campus Santa Mônica, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Stephan Malfitano Carvalho
- Departament of Entomology, Federal University of Lavras, PO Box 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Marcelo Emílio Beletti
- Institute of Biomedical Sciences, Federal University of Uberlândia, Campos Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Vanessa Santana Vieira Santos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Carlos Fernando Campos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | | | - Boscolli Barbosa Pereira
- Institute of Geography, Federal University of Uberlândia, Campus Santa Mônica, 38400-902, Uberlândia, Minas Gerais, Brazil.
| | - Maria Paula Carvalho Naves
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | | | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Carlos Ueira Vieira
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Ana Maria Bonetti
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
12
|
Park G, Chakkarapani SK, Ju S, Ahn S, Kang SH. Super-resolution morphological dissemination of intercalating dye in single DNA molecules via binding activated localization microscopy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Wang Y, Wang R, Imai Y, Hara N, Wan X, Nakano T. π-Stacked and unstacked aggregate formation of 3,3′-diethylthiatricarbocyanine iodide, a near-infrared dye. NEW J CHEM 2018. [DOI: 10.1039/c8nj02851f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
3,3′-Diethylthiatricarbocyanine iodide (DTCI) emits distinctive monomer and dimer emissions whose intensity ratio varied depending on concentration in methanol and water.
Collapse
Affiliation(s)
- Yue Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Rong Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
- College of Chemistry and Molecular Engineering
| | - Yoshitane Imai
- Graduate School of Science and Engineering
- Kindai University
- Higashiosaka City
- Japan
| | - Nobuyuki Hara
- Graduate School of Science and Engineering
- Kindai University
- Higashiosaka City
- Japan
| | - Xinhua Wan
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Tamaki Nakano
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 001-0021
- Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS)
| |
Collapse
|
14
|
Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast. Proc Natl Acad Sci U S A 2016; 113:9716-21. [PMID: 27535934 DOI: 10.1073/pnas.1602202113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visualizing the nanoscale intracellular structures formed by nucleic acids, such as chromatin, in nonperturbed, structurally and dynamically complex cellular systems, will help expand our understanding of biological processes and open the next frontier for biological discovery. Traditional superresolution techniques to visualize subdiffractional macromolecular structures formed by nucleic acids require exogenous labels that may perturb cell function and change the very molecular processes they intend to study, especially at the extremely high label densities required for superresolution. However, despite tremendous interest and demonstrated need, label-free optical superresolution imaging of nucleotide topology under native nonperturbing conditions has never been possible. Here we investigate a photoswitching process of native nucleotides and present the demonstration of subdiffraction-resolution imaging of cellular structures using intrinsic contrast from unmodified DNA based on the principle of single-molecule photon localization microscopy (PLM). Using DNA-PLM, we achieved nanoscopic imaging of interphase nuclei and mitotic chromosomes, allowing a quantitative analysis of the DNA occupancy level and a subdiffractional analysis of the chromosomal organization. This study may pave a new way for label-free superresolution nanoscopic imaging of macromolecular structures with nucleotide topologies and could contribute to the development of new DNA-based contrast agents for superresolution imaging.
Collapse
|
15
|
Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochem Soc Trans 2016; 43:139-45. [PMID: 26020443 DOI: 10.1042/bst20140253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA-interacting proteins have roles in multiple processes, many operating as molecular machines which undergo dynamic meta-stable transitions to bring about their biological function. To fully understand this molecular heterogeneity, DNA and the proteins that bind to it must ideally be interrogated at a single molecule level in their native in vivo environments, in a time-resolved manner, fast enough to sample the molecular transitions across the free-energy landscape. Progress has been made over the past decade in utilizing cutting-edge tools of the physical sciences to address challenging biological questions concerning the function and modes of action of several different proteins which bind to DNA. These physiologically relevant assays are technically challenging but can be complemented by powerful and often more tractable in vitro experiments which confer advantages of the chemical environment with enhanced detection signal-to-noise of molecular signatures and transition events. In the present paper, we discuss a range of techniques we have developed to monitor DNA-protein interactions in vivo, in vitro and in silico. These include bespoke single-molecule fluorescence microscopy techniques to elucidate the architecture and dynamics of the bacterial replisome and the structural maintenance of bacterial chromosomes, as well as new computational tools to extract single-molecule molecular signatures from live cells to monitor stoichiometry, spatial localization and mobility in living cells. We also discuss recent developments from our laboratory made in vitro, complementing these in vivo studies, which combine optical and magnetic tweezers to manipulate and image single molecules of DNA, with and without bound protein, in a new super-resolution fluorescence microscope.
Collapse
|
16
|
Rombouts K, Braeckmans K, Remaut K. Fluorescent Labeling of Plasmid DNA and mRNA: Gains and Losses of Current Labeling Strategies. Bioconjug Chem 2015; 27:280-97. [PMID: 26670733 DOI: 10.1021/acs.bioconjchem.5b00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Live-cell imaging has provided the life sciences with insights into the cell biology and dynamics. Fluorescent labeling of target molecules proves to be indispensable in this regard. In this Review, we focus on the current fluorescent labeling strategies for nucleic acids, and in particular mRNA (mRNA) and plasmid DNA (pDNA), which are of interest to a broad range of scientific fields. By giving a background of the available techniques and an evaluation of the pros and cons, we try to supply scientists with all the information needed to come to an informed choice of nucleic acid labeling strategy aimed at their particular needs.
Collapse
Affiliation(s)
- K Rombouts
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Braeckmans
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Remaut
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| |
Collapse
|
17
|
Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy. Angew Chem Int Ed Engl 2015; 55:174-8. [PMID: 26768820 DOI: 10.1002/anie.201507922] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Indexed: 12/16/2022]
Abstract
Fluorescent probes for detecting the physical properties of cellular structures have become valuable tools in life sciences. The fluorescence lifetime of molecular rotors can be used to report on variations in local molecular packing or viscosity. We used a nucleoside linked to a meso-substituted BODIPY fluorescent molecular rotor (dC(bdp)) to sense changes in DNA microenvironment both in vitro and in living cells. DNA incorporating dC(bdp) can respond to interactions with DNA-binding proteins and lipids by changes in the fluorescence lifetimes in the range 0.5-2.2 ns. We can directly visualize changes in the local environment of exogenous DNA during transfection of living cells. Relatively long fluorescence lifetimes and extensive contrast for detecting changes in the microenvironment together with good photostability and versatility for DNA synthesis make this probe suitable for analysis of DNA-associated processes, cellular structures, and also DNA-based nanomaterials.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic).
| |
Collapse
|
18
|
Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507922] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Cremer C, Reid G. A transient ischemic environment induces reversible compaction of chromatin. Genome Biol 2015; 16:246. [PMID: 26541514 PMCID: PMC4635527 DOI: 10.1186/s13059-015-0802-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. Results Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40–700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. Conclusions These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0802-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ina Kirmes
- Institute for Molecular Biology, 55128, Mainz, Germany
| | | | - Kirti Prakash
- Institute for Molecular Biology, 55128, Mainz, Germany.,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | | | | | | | | | - Karolina Fornalczyk
- Institute for Molecular Biology, 55128, Mainz, Germany.,Department of Molecular Biophysics, University of Łódź, Łódź, Poland
| | - Dongyu Ma
- Institute for Molecular Biology, 55128, Mainz, Germany.,Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, 68167, Mannheim, Germany
| | - Udo Birk
- Institute for Molecular Biology, 55128, Mainz, Germany
| | - Christoph Cremer
- Institute for Molecular Biology, 55128, Mainz, Germany. .,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany.
| | - George Reid
- Institute for Molecular Biology, 55128, Mainz, Germany.
| |
Collapse
|
20
|
Bishop MM, Roscioli JD, Ghosh S, Mueller JJ, Shepherd NC, Beck WF. Vibrationally Coherent Preparation of the Transition State for Photoisomerization of the Cyanine Dye Cy5 in Water. J Phys Chem B 2015; 119:6905-15. [DOI: 10.1021/acs.jpcb.5b02391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael M. Bishop
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jerome D. Roscioli
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Soumen Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jenny Jo Mueller
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Nolan C. Shepherd
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Warren F. Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
21
|
Lakadamyali M, Cosma MP. Advanced microscopy methods for visualizing chromatin structure. FEBS Lett 2015; 589:3023-30. [PMID: 25896023 DOI: 10.1016/j.febslet.2015.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/29/2022]
Abstract
In the recent years it has become clear that our genome is not randomly organized and its architecture is tightly linked to its function. While genomic studies have given much insight into genome organization, they mostly rely on averaging over large populations of cells, are not compatible with living cells and have limited resolution. For studying genome organization in single living cells, microscopy is indispensable. In addition, the visualization of biological structures helps to understand their function. Up to now, fluorescence microscopy has allowed us to probe the larger scale organization of chromosome territories in the micron length scales, however, the smaller length scales remained invisible due to the diffraction limited spatial resolution of fluorescence microscopy. Thanks to the advent of super-resolution microscopy methods, we are finally starting to be able to probe the nanoscale organization of chromatin in vivo and these methods have the potential to greatly advance our knowledge about chromatin structure and function relationship.
Collapse
Affiliation(s)
- Melike Lakadamyali
- ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Barcelona, Spain.
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
22
|
Whelan DR, Bell TDM. Super-Resolution Single-Molecule Localization Microscopy: Tricks of the Trade. J Phys Chem Lett 2015; 6:374-382. [PMID: 26261950 DOI: 10.1021/jz5019702] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Application of single-molecule fluorescence detection has led to the development of light microscopy techniques that make it possible to study fluorescent samples at spatial resolutions significantly improved upon the diffraction limit of light. The biological and materials science applications of these "super-resolution" microscopy methods are vast, causing current demand for them to be high. However, implementation, execution, and interpretation of these techniques, particularly involving biological samples, require a broad interdisciplinary skillset, not often found in a single laboratory. Those already used to interdisciplinary work as well as navigating communication and collaboration between more pure forms of physics, chemistry, and biology are well-positioned to spearhead such efforts. In this Perspective, we describe various aspects of single-molecule super-resolution imaging, discussing, in particular, the role that physical chemistry has so far played in its development and establishment. We also highlight a selection of some of the remarkable recent research achievements in this vibrant field.
Collapse
Affiliation(s)
- Donna R Whelan
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Toby D M Bell
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
23
|
Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes. Methods 2015; 88:81-8. [PMID: 25637032 DOI: 10.1016/j.ymeth.2015.01.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023] Open
Abstract
As proof-of-principle for generating superresolution structural information from DNA we applied a method of localization microscopy utilizing photoblinking comparing intercalating dye YOYO-1 against minor groove binding dye SYTO-13, using a bespoke multicolor single-molecule fluorescence microscope. We used a full-length ∼49 kbp λ DNA construct possessing oligo inserts at either terminus allowing conjugation of digoxigenin and biotin at opposite ends for tethering to a glass coverslip surface and paramagnetic microsphere respectively. We observed stochastic DNA-bound dye photoactivity consistent with dye photoblinking as opposed to binding/unbinding events, evidenced through both discrete simulations and continuum kinetics analysis. We analyzed dye photoblinking images of immobilized DNA molecules using superresolution reconstruction software from two existing packages, rainSTORM and QuickPALM, and compared the results against our own novel home-written software called ADEMS code. ADEMS code generated lateral localization precision values of 30-40 nm and 60-70 nm for YOYO-1 and SYTO-13 respectively at video-rate sampling, similar to rainSTORM, running more slowly than rainSTORM and QuickPALM algorithms but having a complementary capability over both in generating automated centroid distribution and cluster analyses. Our imaging system allows us to observe dynamic topological changes to single molecules of DNA in real-time, such as rapid molecular snapping events. This will facilitate visualization of fluorescently-labeled DNA molecules conjugated to a magnetic bead in future experiments involving newly developed magneto-optical tweezers combined with superresolution microscopy.
Collapse
|
24
|
Szczurek AT, Prakash K, Lee HK, Żurek-Biesiada DJ, Best G, Hagmann M, Dobrucki JW, Cremer C, Birk U. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes. Nucleus 2014; 5:331-40. [PMID: 25482122 PMCID: PMC4152347 DOI: 10.4161/nucl.29564] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022] Open
Abstract
Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA minor groove binding dyes, such as Hoechst 33258, Hoechst 33342, and DAPI, can be effectively employed in single molecule localization microscopy (SMLM) with high optical and structural resolution. Upon illumination with low intensity 405 nm light, a small subpopulation of these molecules stochastically undergoes photoconversion from the original blue-emitting form to a green-emitting form. Using a 491 nm laser excitation, fluorescence of these green-emitting, optically isolated molecules was registered until "bleached". This procedure facilitated substantially the optical isolation and localization of large numbers of individual dye molecules bound to DNA in situ, in nuclei of fixed mammalian cells, or in mitotic chromosomes, and enabled the reconstruction of high-quality DNA density maps. We anticipate that this approach will provide new insights into DNA replication, DNA repair, gene transcription, and other nuclear processes.
Collapse
Affiliation(s)
| | - Kirti Prakash
- Institute of Molecular Biology; Mainz, Germany
- Institute for Pharmacy and Molecular Biotechnology; University of Heidelberg; Heidelberg, Germany
| | - Hyun-Keun Lee
- Institute of Molecular Biology; Mainz, Germany
- Department of Physics; University of Mainz; Mainz, Germany
| | | | - Gerrit Best
- Kirchhoff Institute for Physics; University of Heidelberg; Heidelberg, Germany
- University Hospital Heidelberg; University of Heidelberg; Heidelberg, Germany
| | - Martin Hagmann
- Kirchhoff Institute for Physics; University of Heidelberg; Heidelberg, Germany
- University Hospital Heidelberg; University of Heidelberg; Heidelberg, Germany
| | - Jurek W Dobrucki
- Faculty of Biochemistry, Biophysics, and Biotechnology; Jagiellonian University; Kraków, Poland
| | - Christoph Cremer
- Institute of Molecular Biology; Mainz, Germany
- Institute for Pharmacy and Molecular Biotechnology; University of Heidelberg; Heidelberg, Germany
- Department of Physics; University of Mainz; Mainz, Germany
- Kirchhoff Institute for Physics; University of Heidelberg; Heidelberg, Germany
| | - Udo Birk
- Institute of Molecular Biology; Mainz, Germany
- Department of Physics; University of Mainz; Mainz, Germany
- Kirchhoff Institute for Physics; University of Heidelberg; Heidelberg, Germany
| |
Collapse
|
25
|
Miao JT, Fan C, Shi XY, Sun R, Xu YJ, Ge JF. Colorimetric and ratiometric pH responses by the protonation of phenolate within hemicyanine. Analyst 2014; 139:6290-7. [DOI: 10.1039/c4an01505c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The indolium–phenol based tetramethylene hemicyanine has colorimetric and ratiometric optical responses under acidic and basic conditions.
Collapse
Affiliation(s)
- Jia-Tao Miao
- College of Chemistry
- Chemical Engineering and Material Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123, China
| | - Chen Fan
- School of Radiation Medicine and Protection
- Medicinal College of Soochow University
- Suzhou 215123, China
| | - Xiao-Yu Shi
- College of Chemistry
- Chemical Engineering and Material Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123, China
| | - Ru Sun
- College of Chemistry
- Chemical Engineering and Material Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123, China
| | - Yu-Jie Xu
- School of Radiation Medicine and Protection
- Medicinal College of Soochow University
- Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry
- Chemical Engineering and Material Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123, China
| |
Collapse
|
26
|
Miao JT, Fan C, Sun R, Xu YJ, Ge JF. Optical properties of hemicyanines with terminal amino groups and their applications in near-infrared fluorescent imaging of nucleoli. J Mater Chem B 2014; 2:7065-7072. [DOI: 10.1039/c4tb01218f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cellular dye with properties of long-wave emission, large Stokes shift, water solubility, low cytotoxicity, and good photostability is reported.
Collapse
Affiliation(s)
- Jia-Tao Miao
- College of Chemistry
- Chemical Engineering and Material Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123, People's Republic of China
| | - Chen Fan
- School of Radiation Medicine and Protection
- Soochow University
- Suzhou 215123, People's Republic of China
| | - Ru Sun
- College of Chemistry
- Chemical Engineering and Material Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123, People's Republic of China
| | - Yu-Jie Xu
- School of Radiation Medicine and Protection
- Soochow University
- Suzhou 215123, People's Republic of China
| | - Jian-Feng Ge
- College of Chemistry
- Chemical Engineering and Material Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123, People's Republic of China
| |
Collapse
|
27
|
Computational Models of Large-Scale Genome Architecture. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:275-349. [DOI: 10.1016/b978-0-12-800046-5.00009-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Han R, Li Z, Fan Y, Jiang Y. Recent Advances in Super-Resolution Fluorescence Imaging and Its Applications in Biology. J Genet Genomics 2013; 40:583-95. [DOI: 10.1016/j.jgg.2013.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022]
|
29
|
Alonso-Sarduy L, Longo G, Dietler G, Kasas S. Time-lapse AFM imaging of DNA conformational changes induced by daunorubicin. NANO LETTERS 2013; 13:5679-5684. [PMID: 24125039 DOI: 10.1021/nl403361f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cancer is a major health issue that absorbs the attention of a large part of the biomedical research. Intercalating agents bind to DNA molecules and can inhibit their synthesis and transcription; thus, they are increasingly used as drugs to fight cancer. In this work, we show how atomic force microscopy in liquid can characterize, through time-lapse imaging, the dynamical influence of intercalating agents on the supercoiling of DNA, improving our understanding of the drug's effect.
Collapse
Affiliation(s)
- Livan Alonso-Sarduy
- Laboratoire de Physique de la Matière Vivante, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
30
|
van de Linde S, Aufmkolk S, Franke C, Holm T, Klein T, Löschberger A, Proppert S, Wolter S, Sauer M. Investigating cellular structures at the nanoscale with organic fluorophores. ACTA ACUST UNITED AC 2013; 20:8-18. [PMID: 23352135 DOI: 10.1016/j.chembiol.2012.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 09/10/2012] [Accepted: 11/02/2012] [Indexed: 01/31/2023]
Abstract
Super-resolution fluorescence imaging can provide insights into cellular structure and organization with a spatial resolution approaching virtually electron microscopy. Among all the different super-resolution methods single-molecule-based localization microscopy could play an exceptional role in the future because it can provide quantitative information, for example, the absolute number of biomolecules interacting in space and time. Here, small organic fluorophores are a decisive factor because they exhibit high fluorescence quantum yields and photostabilities, thus enabling their localization with nanometer precision. Besides past progress, problems with high-density and specific labeling, especially in living cells, and the lack of suited standards and long-term continuous imaging methods with minimal photodamage render the exploitation of the full potential of the method currently challenging.
Collapse
Affiliation(s)
- Sebastian van de Linde
- Department of Biotechnology and Biophysics, Biozentrum, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fluorescence nanoscopy. Methods and applications. J Chem Biol 2013; 6:97-120. [PMID: 24432127 DOI: 10.1007/s12154-013-0096-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022] Open
Abstract
Fluorescence nanoscopy refers to the experimental techniques and analytical methods used for fluorescence imaging at a resolution higher than conventional, diffraction-limited, microscopy. This review explains the concepts behind fluorescence nanoscopy and focuses on the latest and promising developments in acquisition techniques, labelling strategies to obtain highly detailed super-resolved images and in the quantitative methods to extract meaningful information from them.
Collapse
|
32
|
FLORS C. Super-resolution fluorescence imaging of directly labelled DNA: from microscopy standards to living cells. J Microsc 2013; 251:1-4. [DOI: 10.1111/jmi.12054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/24/2013] [Indexed: 01/28/2023]
Affiliation(s)
- C. FLORS
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience); Madrid Spain
| |
Collapse
|
33
|
Hensel Z, Xiao J. Single-molecule methods for studying gene regulation in vivo. Pflugers Arch 2013; 465:383-95. [PMID: 23430319 PMCID: PMC3595547 DOI: 10.1007/s00424-013-1243-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 01/25/2023]
Abstract
The recent emergence of new experimental tools employing sensitive fluorescence detection in vivo has made it possible to visualize various aspects of gene regulation at the single-molecule level in the native, intracellular context. In this review, we will first describe general considerations for in vivo, single-molecule fluorescence detection of DNA, mRNA, and protein molecules involved in gene regulation. We will then give an overview of the rapidly evolving suite of molecular tools available for observing gene regulation in vivo and discuss new insights they have brought into gene regulation.
Collapse
Affiliation(s)
- Zach Hensel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
| | | |
Collapse
|
34
|
Abstract
![]()
We describe the engineering of reversible fluorescence
photoswitching
in DNA with high-density substitution, and its applications in advanced
fluorescence microscopy methods. High-density labeling of DNA with
cyanine dyes can be achieved by polymerase chain reaction using a
modified DNA polymerase that has been evolved to efficiently incorporate
Cy3- and Cy5-labeled cytosine base analogues into double-stranded
DNA. The resulting biopolymer, “CyDNA”, displays hundreds
of fluorophores per DNA strand and is strongly colored and highly
fluorescent, although previous observations suggest that fluorescence
quenching at such high density might be a concern, especially for
Cy5. Herein, we first investigate the mechanisms of fluorescence quenching
in CyDNA and we suggest that two different mechanisms, aggregate formation
and resonance energy transfer, are responsible for fluorescence quenching
at high labeling densities. Moreover, we have been able to re-engineer
CyDNA into a reversible fluorescence photoswitchable biopolymer by
using the properties of the Cy3–Cy5 pair. This novel biopolymer
constitutes a new class of photoactive DNA-based nanomaterial and
is of great interest for advanced microscopy applications. We show
that reversible fluorescence photoswitching in CyDNA can be exploited
in optical lock-in detection imaging. It also lays the foundations
for improved and sequence-specific super-resolution fluorescence microscopy
of DNA.
Collapse
Affiliation(s)
- Darren A Smith
- EaStChem School of Chemistry, University of Edinburgh , Joseph Black Building, The King's Buildings, West Mains Rd, Edinburgh EH9 3JJ, United Kingdom
| | | | | |
Collapse
|
35
|
Cusido J, Battal M, Deniz E, Yildiz I, Sortino S, Raymo FM. Fast Fluorescence Switching within Hydrophilic Supramolecular Assemblies. Chemistry 2012; 18:10399-407. [DOI: 10.1002/chem.201201184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Indexed: 11/07/2022]
|
36
|
Polymethine dyes as spectral-fluorescent probes for biomacromolecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2012. [DOI: 10.1016/j.jphotochemrev.2011.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Winkler DD, Luger K, Hieb AR. Quantifying chromatin-associated interactions: the HI-FI system. Methods Enzymol 2012; 512:243-74. [PMID: 22910210 DOI: 10.1016/b978-0-12-391940-3.00011-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chromatin plays a vital role in regulating cellular processes that occur on the DNA. Modulation of chromatin structure is conducted through interactions with binding factors that direct critical actions such as posttranslational modifications, nucleosome remodeling, and incorporation of histone variants. Specific factors recognize and act upon the various physical states of chromatin to modulate DNA accessibility. The ability to quantitatively characterize these interactions in vitro can provide valuable insight into the mechanisms that dictate chromatin architecture. Here, we describe in detail fluorescence methodologies for quantifying the thermodynamic principles that guide interactions between nucleosomal arrays, mononucleosomes, or nucleosome components and chromatin-associated factors through application of the HI-FI (High-throughput Interactions by Fluorescence Intensity) system. These measurements utilize fluorescence (de)quenching and FRET assays performed in 384-well microplates, making the assays suitable for high-throughput characterization of interactions at low concentrations. Further, this system can be used to determine the stoichiometric composition of complexes and specific sites of interaction. After quantification on a plate reader or similar instrument, the solution-based assays can be directly transferred to native gels for visualization of interaction(s). We also highlight procedural details on the efficient attachment of fluorescent dyes to histones and DNA. In all, the HI-FI system of assays can be used to elucidate mechanistic details of how specific chromatin-associated factors function at the molecular level.
Collapse
Affiliation(s)
- Duane D Winkler
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | | |
Collapse
|
38
|
Super-resolution fluorescence imaging of chromosomal DNA. J Struct Biol 2011; 177:344-8. [PMID: 22226957 DOI: 10.1016/j.jsb.2011.12.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/04/2011] [Accepted: 12/21/2011] [Indexed: 12/14/2022]
Abstract
Super-resolution microscopy is a powerful tool for understanding cellular function. However one of the most important biomolecules - DNA - remains somewhat inaccessible because it cannot be effectively and appropriately labeled. Here, we demonstrate that robust and detailed super-resolution images of DNA can be produced by combining 5-ethynyl-2'-deoxyuridine (EdU) labeling using the 'click chemistry' approach and direct stochastic optical reconstruction microscopy (dSTORM). This method can resolve fine chromatin structure, and - when used in conjunction with pulse labeling - can reveal the paths taken by individual fibers through the nucleus. This technique should provide a useful tool for the study of nuclear structure and function.
Collapse
|
39
|
Flors C, Earnshaw WC. Super-resolution fluorescence microscopy as a tool to study the nanoscale organization of chromosomes. Curr Opin Chem Biol 2011; 15:838-44. [DOI: 10.1016/j.cbpa.2011.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/27/2011] [Accepted: 10/17/2011] [Indexed: 01/26/2023]
|
40
|
Schoen I, Ries J, Klotzsch E, Ewers H, Vogel V. Binding-activated localization microscopy of DNA structures. NANO LETTERS 2011; 11:4008-11. [PMID: 21838238 DOI: 10.1021/nl2025954] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many nucleic acid stains show a strong fluorescence enhancement upon binding to double-stranded DNA. Here we exploit this property to perform superresolution microscopy based on the localization of individual binding events. The dynamic labeling scheme and the optimization of fluorophore brightness yielded a resolution of ∼14 nm (fwhm) and a spatial sampling of 1/nm. We illustrate our approach with two different DNA-binding dyes and apply it to visualize the organization of the bacterial chromosome in fixed Escherichia coli cells. In general, the principle of binding-activated localization microscopy (BALM) can be extended to other dyes and targets such as protein structures.
Collapse
Affiliation(s)
- Ingmar Schoen
- Laboratory for Biologically Oriented Materials, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
Persson F, Bingen P, Staudt T, Engelhardt J, Tegenfeldt JO, Hell SW. Fluorescence nanoscopy of single DNA molecules by using stimulated emission depletion (STED). Angew Chem Int Ed Engl 2011; 50:5581-3. [PMID: 21557413 PMCID: PMC3229986 DOI: 10.1002/anie.201100371] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Indexed: 11/29/2022]
Affiliation(s)
- F Persson
- Department of Physics, University of GothenburgFysikgränd 3, 412 96 Gothenburg (Sweden)
| | - P Bingen
- Optical Nanoscopy Division, German Cancer Research Center (DKFZ)Im Neuenheimer Feld 280, 69120 Heidelberg (Germany), Fax: (+49) 6221-54-51210
| | - T Staudt
- Optical Nanoscopy Division, German Cancer Research Center (DKFZ)Im Neuenheimer Feld 280, 69120 Heidelberg (Germany), Fax: (+49) 6221-54-51210
| | - J Engelhardt
- Optical Nanoscopy Division, German Cancer Research Center (DKFZ)Im Neuenheimer Feld 280, 69120 Heidelberg (Germany), Fax: (+49) 6221-54-51210
| | - J O Tegenfeldt
- Department of Physics, University of GothenburgFysikgränd 3, 412 96 Gothenburg (Sweden)
| | - Stefan W Hell
- Optical Nanoscopy Division, German Cancer Research Center (DKFZ)Im Neuenheimer Feld 280, 69120 Heidelberg (Germany), Fax: (+49) 6221-54-51210
| |
Collapse
|
42
|
Persson F, Bingen P, Staudt T, Engelhardt J, Tegenfeldt JO, Hell SW. Fluoreszenznanoskopie einzelner DNA-Moleküle mit Fluoreszenzverhinderung durch stimulierte Emission (STED). Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
|