1
|
Nivet C, Custovic I, Avoscan L, Bikker FJ, Bonnotte A, Bourillot E, Briand L, Brignot H, Heydel JM, Herrmann N, Lelièvre M, Lesniewska E, Neiers F, Piétrement O, Schwartz M, Belloir C, Canon F. Development of New Models of Oral Mucosa to Investigate the Impact of the Structure of Transmembrane Mucin-1 on the Mucosal Pellicle Formation and Its Physicochemical Properties. Biomedicines 2024; 12:139. [PMID: 38255244 PMCID: PMC10812975 DOI: 10.3390/biomedicines12010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The mucosal pellicle (MP) is a biological film protecting the oral mucosa. It is composed of bounded salivary proteins and transmembrane mucin MUC1 expressed by oral epithelial cells. Previous research indicates that MUC1 expression enhances the binding of the main salivary protein forming the MP, MUC5B. This study investigated the influence of MUC1 structure on MP formation. A TR146 cell line, which does not express MUC1 natively, was stably transfected with genes coding for three MUC1 isoforms differing in the structure of the two main extracellular domains: the VNTR domain, exhibiting a variable number of tandem repeats, and the SEA domain, maintaining the two bound subunits of MUC1. Semi-quantification of MUC1 using dot blot chemiluminescence showed comparable expression levels in all transfected cell lines. Semi-quantification of MUC5B by immunostaining after incubation with saliva revealed that MUC1 expression significantly increased MUC5B adsorption. Neither the VNTR domain nor the SEA domain was influenced MUC5B anchoring, suggesting the key role of the MUC1 N-terminal domain. AFM-IR nanospectroscopy revealed discernible shifts indicative of changes in the chemical properties at the cell surface due to the expression of the MUC1 isoform. Furthermore, the observed chemical shifts suggest the involvement of hydrophobic effects in the interaction between MUC1 and salivary proteins.
Collapse
Affiliation(s)
- Clément Nivet
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Irma Custovic
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Laure Avoscan
- Agroécologie, UMR1347 INRAE, ERL CNRS 6300, DimaCell Platform, Center of Microscopy INRAE, University of Bourgogne, 21000 Dijon, France; (L.A.); (A.B.)
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands;
| | - Aline Bonnotte
- Agroécologie, UMR1347 INRAE, ERL CNRS 6300, DimaCell Platform, Center of Microscopy INRAE, University of Bourgogne, 21000 Dijon, France; (L.A.); (A.B.)
| | - Eric Bourillot
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Loïc Briand
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Hélène Brignot
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Jean-Marie Heydel
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Noémie Herrmann
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Mélanie Lelièvre
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Eric Lesniewska
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Fabrice Neiers
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Olivier Piétrement
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Mathieu Schwartz
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Christine Belloir
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Francis Canon
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| |
Collapse
|
2
|
Kokubu R, Ohno S, Manabe N, Yamaguchi Y. Molecular Dynamics Simulation and Docking of MUC1 O-Glycopeptide. Methods Mol Biol 2024; 2763:373-379. [PMID: 38347427 DOI: 10.1007/978-1-0716-3670-1_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Advances in computer performance and computational simulations allow increasing sophistication in applications in biological systems. Molecular dynamics (MD) simulations are especially suitable for studying conformation, dynamics, and interaction of flexible biomolecules such as free glycans and glycopeptides. Computer simulations are best performed when the scope and limitations in performance have been thoroughly assessed. Proper outputs are obtained only under suitable parameter settings, and results need to be properly validated. In this chapter, we will introduce an example of molecular dynamics simulations of MUC1 O-glycopeptide and its docking to anti-MUC1 antibody Fv fragment.
Collapse
Affiliation(s)
- Ryoka Kokubu
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| |
Collapse
|
3
|
Barik D, Shyamal S, Das K, Jena S, Dash M. Glycoprotein Injectable Hydrogels Promote Accelerated Bone Regeneration through Angiogenesis and Innervation. Adv Healthc Mater 2023; 12:e2301959. [PMID: 37712303 DOI: 10.1002/adhm.202301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/27/2023] [Indexed: 09/16/2023]
Abstract
Glycoproteins are gaining prominence as multifunctional biomaterials. The study reports development of glycoprotein mucin as biomaterial promoting bone regeneration. Mucin 1 deletion has resulted in stiffer femoral bones with scarce presence of osteoblasts in trabecular linings and its role has been established in determining bone mass and mineralization. Limited information about its structure limits its processability, exploration as biomaterial, which is discussed in this study. The role of mucin in ECM (extracellular cellular matrix) formation validated by RNA sequencing analysis of human bone marrow derived mesenchymal stem cells is reported. The structure and stability of mucins is dependent on the presence of glycans in its structure. A thermosensitive hydrogel acquired from thermosensitive Poly (N-isopropyl acrylamide)-(PNIPAM) modified mucin and collagen is developed. The hydrogel demonstrates porous structure and mechanical strength. Newly formed bone tissue is observed at 8 weeks post-implantation in the hydrogel treated groups. The formation of blood vessels, nerves, and bone is observed with upregulation of angiopoietin (ANG), neurofilament heavy chain (NF-H), and osteoadherin (OSAD) or osteocalcin (OCN) respectively in rat calvarial defects. The outcome demonstrates that the thermosensitive injectable hydrogel accelerates repair and healing in calvarial bone defects making it a promising biodegradable biomaterial capable of regenerating bone by promoting angiogenesis and innervation.
Collapse
Affiliation(s)
- Debyashreeta Barik
- Therapeutics Biomaterials Team, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Sharmistha Shyamal
- RNA Biology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Kapilash Das
- Therapeutics Biomaterials Team, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sarita Jena
- Animal House Facility, DBT-Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Mamoni Dash
- Therapeutics Biomaterials Team, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
4
|
Barchi JJ, Strain CN. The effect of a methyl group on structure and function: Serine vs. threonine glycosylation and phosphorylation. Front Mol Biosci 2023; 10:1117850. [PMID: 36845552 PMCID: PMC9950641 DOI: 10.3389/fmolb.2023.1117850] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
A variety of glycan structures cover the surface of all cells and are involved in myriad biological processes, including but not limited to, cell adhesion and communication, protein quality control, signal transduction and metabolism, while also being intimately involved in innate and adaptive immune functions. Immune surveillance and responses to foreign carbohydrate antigens, such as capsular polysaccharides on bacteria and surface protein glycosylation of viruses, are the basis of microbial clearance, and most antimicrobial vaccines target these structures. In addition, aberrant glycans on tumors called Tumor-Associated Carbohydrate Antigens (TACAs) elicit immune responses to cancer, and TACAs have been used in the design of many antitumor vaccine constructs. A majority of mammalian TACAs are derived from what are referred to as mucin-type O-linked glycans on cell-surface proteins and are linked to the protein backbone through the hydroxyl group of either serine or threonine residues. A small group of structural studies that have compared mono- and oligosaccharides attached to each of these residues have shown that there are distinct differences in conformational preferences assumed by glycans attached to either "unmethylated" serine or ß-methylated threonine. This suggests that the linkage point of antigenic glycans will affect their presentation to the immune system as well as to various carbohydrate binding molecules (e.g., lectins). This short review, followed by our hypothesis, will examine this possibility and extend the concept to the presentation of glycans on surfaces and in assay systems where recognition of glycans by proteins and other binding partners can be defined by different attachment points that allow for a range of conformational presentations.
Collapse
Affiliation(s)
| | - Caitlin N. Strain
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
5
|
Xu Y, Zhang H. Putting the pieces together: mapping the O-glycoproteome. Curr Opin Biotechnol 2021; 71:130-136. [PMID: 34358979 PMCID: PMC8629430 DOI: 10.1016/j.copbio.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Protein glycosylation is the most diverse and omnipresent protein modification. Glycosylation provides glycoproteins with important structural and functional properties to facilitate critical biological processes. Despite the significance of protein glycosylation, the investigation of glycoproteome, especially O-linked glycoproteome, remains elusive due to the lack of a comprehensive methodology to conform with the diversity of O-linked glycoforms of O-linked glycoproteins. In recent years, mass spectrometry has become an indispensable tool for the characterization of O-linked glycosylated proteins across biological systems. We herein highlight the recent developments in MS-based O-linked glycoproteomic technologies, quantitative data acquisition strategy and bioinformatic tools, with a special focus on mucin-type O-linked glycosylation.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
6
|
Nolen EG, Hornik ES, Jeans KB, Zhong W, LaPaglia DM. Synthesis of C-linked α-Gal and α-GalNAc-1'-hydroxyalkanes by way of C2 functionality transfer. Tetrahedron Lett 2021; 73. [PMID: 34393282 DOI: 10.1016/j.tetlet.2021.153109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inspired by reports of water sculpted Tn antigen (α-GalNAc-O-Ser/Thr) epitopes and our interest in producing metabolically more stable C-linked analogs of Tn, we explored the utility of C2 functionality on α-Gal-C-alkenes to deliver hydroxyl to the pendant alkenyl chain. Toward this end, a cyclic carbonate approach gave rise to a single C-linked α-Gal-1'(S)-hydroxyethane in 3 steps, and use of a 2-(hydroxyimino)galactoside cyclization transferred an oxygen to a pendant cis-substituted C-linked alkene affording the R-configuration at the newly formed stereocenter (7:1 dr). Reduction and acetylation of the resultant isoxazoline demonstrated this approach as a viable route to C-linked α-GalNAc-1'-hydroxyalkanes.
Collapse
Affiliation(s)
- Ernest G Nolen
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Ezra S Hornik
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Kendra B Jeans
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Weiyu Zhong
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Danielle M LaPaglia
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| |
Collapse
|
7
|
Gelli R, Martini F, Geppi M, Borsacchi S, Ridi F, Baglioni P. Exploring the interplay of mucin with biologically-relevant amorphous magnesium-calcium phosphate nanoparticles. J Colloid Interface Sci 2021; 594:802-811. [PMID: 33794402 DOI: 10.1016/j.jcis.2021.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS It has been recently shown that, in our organism, the secretions of Ca2+, Mg2+ and phosphate ions lead to the precipitation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in the small intestine, where the glycoprotein mucin is one of the most abundant proteins, being the main component of the mucus hydrogel layer covering gut epithelium. Since AMCPs precipitate in vivo in a mucin-rich environment, we aim at studying the effect of this glycoprotein on the formation and features of endogenous-like AMCPs. EXPERIMENTS AMCPs were synthesized from aqueous solution in the presence of different concentrations of mucin, and the obtained particles were characterised in terms of crystallinity, composition and morphology. Solid State NMR investigation was also performed in order to assess the interplay between mucin and AMCPs at a sub-nanometric level. FINDING Results show that AMCPs form in the presence of mucin and the glycoprotein is efficiently incorporated in the amorphous particles. NMR indicates the existence of interactions between AMCPs and mucin, revealing how AMCPs in mucin-hybrid nanoparticles affect the features of both proteic and oligosaccharidic portions of the glycoprotein. Considering that the primary function of mucin is the protection of the intestine from pathogens, we speculate that the nature of the interaction between AMCPs and mucin described in the present work might be relevant to the immune system, suggesting a novel type of scenario which could be investigated by combining physico-chemical and biomedical approaches.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Martini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Marco Geppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Silvia Borsacchi
- Institute for the Chemistry of OrganoMetallic Compounds, Italian National Council for Research, CNR-ICCOM Pisa, via G. Moruzzi 1, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy.
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Jančić NS, Žujović JT, Rančić IB, Krstić MS, Vukmirović FC, Milošević VS. CLINICAL SIGNIFICANCE OF HISTOCHEMICAL EXPRESSION OF MUCINS IN COLORECTAL ADENOCARCINOMA. ACTA MEDICA MEDIANAE 2019. [DOI: 10.5633/amm.2019.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018; 23:molecules23061326. [PMID: 29857542 PMCID: PMC6099590 DOI: 10.3390/molecules23061326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.
Collapse
Affiliation(s)
- Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, China.
| | - Lan Xu
- Laboratory of Antibody Structure, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201203, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and iHuman Institute, ShanghaiTech University, Shanghai 201203, China.
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, D-01307 Dresden, Germany.
- Medical Faculty, Carl Gustav Carus Technical University Dresden, D-01307 Dresden, Germany.
| |
Collapse
|
10
|
Minniti G, Hagen LH, Porcellato D, Jørgensen SM, Pope PB, Vaaje-Kolstad G. The Skin-Mucus Microbial Community of Farmed Atlantic Salmon ( Salmo salar). Front Microbiol 2017; 8:2043. [PMID: 29104567 PMCID: PMC5655796 DOI: 10.3389/fmicb.2017.02043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/06/2017] [Indexed: 01/07/2023] Open
Abstract
The skin of the teleost is a flexible and scaled structure that protects the fish toward the external environment. The outermost surface of the skin is coated with mucus, which is believed to be colonized by a diverse bacterial community (commensal and/or opportunistic). Little is known about such communities and their role in fish welfare. In aquaculture, fish seem to be more susceptible to pathogens compared to wild fish. Indeed common fish farming practices may play important roles in promoting their vulnerability, possibly by causing changes to their microbiomes. In the present study, 16S rRNA gene amplicon sequencing was employed to analyze the composition of the farmed Salmo salar skin-mucus microbiome before and after netting and transfer. The composition of the bacterial community present in the rearing water was also investigated in order to evaluate its correlation with the community present on the fish skin. Our results reveal variability of the skin-mucus microbiome among the biological replicates before fish handling. On the contrary, after fish handling, the skin-mucus community exhibited structural similarity among the biological replicates and significant changes were observed in the bacterial composition compared to the fish analyzed prior to netting and transfer. Limited correlation was revealed between the skin-mucus microbiome and the bacterial community present in the rearing water. Finally, analysis of skin-mucus bacterial biomasses indicated low abundance for some samples, highlighting the need of caution when interpreting community data due to the possible contamination of water-residing bacteria.
Collapse
Affiliation(s)
- Giusi Minniti
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Live Heldal Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sven Martin Jørgensen
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Phillip B. Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
11
|
Chaffey PK, Guan X, Chen C, Ruan Y, Wang X, Tran AH, Koelsch TN, Cui Q, Feng Y, Tan Z. Structural Insight into the Stabilizing Effect of O-Glycosylation. Biochemistry 2017; 56:2897-2906. [DOI: 10.1021/acs.biochem.7b00195] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick K. Chaffey
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Chao Chen
- Shandong
Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory
of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yuan Ruan
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Amy H. Tran
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Theo N. Koelsch
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Qiu Cui
- Shandong
Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory
of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yingang Feng
- Shandong
Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory
of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhongping Tan
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
12
|
Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Adv 2017; 1:429-442. [PMID: 29296958 DOI: 10.1182/bloodadvances.2016002121] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/17/2017] [Indexed: 01/26/2023] Open
Abstract
The hemostatic system comprises platelet aggregation, coagulation, and fibrinolysis, and is critical to the maintenance of vascular integrity. Multiple studies indicate that glycans play important roles in the hemostatic system; however, most investigations have focused on N-glycans because of the complexity of O-glycan analysis. Here we performed the first systematic analysis of native-O-glycosylation using lectin affinity chromatography coupled to liquid chromatography mass spectrometry (LC-MS)/MS to determine the precise location of O-glycans in human plasma, platelets, and endothelial cells, which coordinately regulate hemostasis. We identified the hitherto largest O-glycoproteome from native tissue with a total of 649 glycoproteins and 1123 nonambiguous O-glycosites, demonstrating that O-glycosylation is a ubiquitous modification of extracellular proteins. Investigation of the general properties of O-glycosylation established that it is a heterogeneous modification, frequently occurring at low density within disordered regions in a cell-dependent manner. Using an unbiased screen to identify associations between O-glycosites and protein annotations we found that O-glycans were over-represented close (± 15 amino acids) to tandem repeat regions, protease cleavage sites, within propeptides, and located on a select group of protein domains. The importance of O-glycosites in proximity to proteolytic cleavage sites was further supported by in vitro peptide assays demonstrating that proteolysis of key hemostatic proteins can be inhibited by the presence of O-glycans. Collectively, these data illustrate the global properties of native O-glycosylation and provide the requisite roadmap for future biomarker and structure-function studies.
Collapse
|
13
|
Orii R, Izumi M, Kajihara Y, Okamoto R. Efficient Synthesis of L-galactose from D-galactose. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1115514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ryo Orii
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043 Japan
| | - Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043 Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043 Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043 Japan
| |
Collapse
|
14
|
Martínez-Sáez N, Castro-López J, Valero-González J, Madariaga D, Compañón I, Somovilla VJ, Salvadó M, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Bernardes GJL, Peregrina JM, Hurtado-Guerrero R, Corzana F. Deciphering the Non-Equivalence of Serine and Threonine O-Glycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an anti-MUC1 Antibody. Angew Chem Int Ed Engl 2015; 54:9830-4. [PMID: 26118689 PMCID: PMC4552995 DOI: 10.1002/anie.201502813] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/06/2015] [Indexed: 11/11/2022]
Abstract
The structural features of MUC1-like glycopeptides bearing the Tn antigen (α-O-GalNAc-Ser/Thr) in complex with an anti MUC-1 antibody are reported at atomic resolution. For the α-O-GalNAc-Ser derivative, the glycosidic linkage adopts a high-energy conformation, barely populated in the free state. This unusual structure (also observed in an α-S-GalNAc-Cys mimic) is stabilized by hydrogen bonds between the peptidic fragment and the sugar. The selection of a particular peptide structure by the antibody is thus propagated to the carbohydrate through carbohydrate/peptide contacts, which force a change in the orientation of the sugar moiety. This seems to be unfeasible in the α-O-GalNAc-Thr glycopeptide owing to the more limited flexibility of the side chain imposed by the methyl group. Our data demonstrate the non-equivalence of Ser and Thr O-glycosylation points in molecular recognition processes. These features provide insight into the occurrence in nature of the APDTRP epitope for anti-MUC1 antibodies.
Collapse
Affiliation(s)
- Nuria Martínez-Sáez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain).,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain)
| | - Jessika Valero-González
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain).,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain)
| | - David Madariaga
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Víctor J Somovilla
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Míriam Salvadó
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcellí Domingo s/n, 43007 Tarragona (Spain)
| | - Juan L Asensio
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia Building 801 A, 48160 Derio (Spain).,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain).,Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Jesús H Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa (Portugal)
| | - Jesús M Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain). .,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain).
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).
| |
Collapse
|
15
|
Martínez-Sáez N, Castro-López J, Valero-González J, Madariaga D, Compañón I, Somovilla VJ, Salvadó M, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Bernardes GJL, Peregrina JM, Hurtado-Guerrero R, Corzana F. Deciphering the Non-Equivalence of Serine and ThreonineO-Glycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an anti-MUC1 Antibody. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Biswas S, Medina SH, Barchi JJ. Synthesis and cell-selective antitumor properties of amino acid conjugated tumor-associated carbohydrate antigen-coated gold nanoparticles. Carbohydr Res 2015; 405:93-101. [PMID: 25556664 PMCID: PMC4354769 DOI: 10.1016/j.carres.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
Abstract
The Thomsen Friedenreich antigen (TFag) disaccharide is a tumor-associated carbohydrate antigen (TACA) found primarily on carcinoma cells and rarely expressed in normal tissue. The TFag has been shown to interact with Galectin-3 (Gal-3), one in a family of β-galactoside binding proteins. Galectins have a variety of cellular functions, and Gal-3 has been shown to be the sole galectin with anti-apoptotic activity. We have previously prepared gold nanoparticles (AuNP) coated with the TFag in various presentations as potential anti-adhesive therapeutic tools or antitumor vaccine platforms. Here we describe the synthesis of TFag-glycoamino acid conjugates attached to gold nanoparticles through a combined alkane/PEG linker, where the TFag was attached to either a serine or threonine amino acid. Particles were fully characterized by a host of biophysical techniques, and along with a control particle carrying hydroxyl-terminated linker units, were evaluated in both Gal-3 positive and negative cell lines. We show that the particles bearing the saccharides selectively inhibited tumor cell growth of the Gal-3 positive cells significantly more than the Gal-3 negative cells. In addition, the threonine-attached TF particles were more potent than the serine-attached constructs. These results support the use of AuNP as antitumor therapeutic platforms, targeted against cell lines that express specific lectins that interact with TFag.
Collapse
Affiliation(s)
- Souvik Biswas
- Chemical Biology Laboratory, The Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Scott H Medina
- Chemical Biology Laboratory, The Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Joseph J Barchi
- Chemical Biology Laboratory, The Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|
17
|
Haugstad KE, Stokke BT, Brewer CF, Gerken TA, Sletmoen M. Single molecule study of heterotypic interactions between mucins possessing the Tn cancer antigen. Glycobiology 2014; 25:524-34. [PMID: 25527429 DOI: 10.1093/glycob/cwu183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mucins are linear, heavily O-glycosylated proteins with physiological roles that include cell signaling, cell adhesion, inflammation, immune response and tumorgenesis. Cancer-associated mucins often differ from normal mucins by presenting truncated carbohydrate chains. Characterization of the binding properties of mucins with truncated carbohydrate side chains could thus prove relevant for understanding their role in cancer mechanisms such as metastasis and recognition by the immune system. In this work, heterotypic interactions of model mucins that possess the Tn (GalNAcαThr/Ser) and T (Galβ1-3GalNAcαThr/Ser) cancer antigens derived from porcine submaxillary mucin (PSM) were studied using atomic force microscopy. PSM possessing only the Tn antigen (Tn-PSM) was found to bind to PSM analogs possessing a combination of T, Tn and STn antigens as well as biosynthetic analogs of the core 1 blood group A tetrasaccharide (GalNAcα1-3[Fucα1-2] Galβ1-3GalNAcαSer/Thr). The rupture forces for the heterotypic interactions ranged from 18- to 31 pN at a force-loading rate of ∼0.5 nN/s. The thermally averaged distance from the bound complex to the transition state (xβ) was estimated to be in the range 0.37-0.87 nm for the first barrier of the Bell Evans analysis and within 0.34-0.64 nm based on a lifetime analysis. These findings reveal that the binding strength and energy landscape for heterotypic interactions of Tn-PSM with the above mucins, resemble homotypic interactions of Tn-PSM. This suggests common carbohydrate epitope interactions for the Tn cancer antigen with the above mucin analogs, a finding that may be important to the role of the Tn antigen in cancer cells.
Collapse
Affiliation(s)
- Kristin E Haugstad
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T Stokke
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - C Fred Brewer
- Department of Molecular Pharmacology Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas A Gerken
- W.A. Bernbaum Center for Cystic Fibrosis Research, Departments of Pediatrics, Biochemistry and Chemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4948, USA
| | - Marit Sletmoen
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| |
Collapse
|
18
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, García-García L, Berbis MÁ, Valero-Gónzalez J, Martín-Santamaría S, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Corzana F, Peregrina JM. Serine versus Threonine Glycosylation with α-O-GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chemistry 2014; 20:12616-27. [DOI: 10.1002/chem.201403700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/17/2022]
|
19
|
Sheikh MO, Schafer C, Powell JT, Rodgers KK, Mooers BHM, West CM. Glycosylation of Skp1 affects its conformation and promotes binding to a model f-box protein. Biochemistry 2014; 53:1657-69. [PMID: 24506136 PMCID: PMC3985704 DOI: 10.1021/bi401707y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/09/2014] [Indexed: 01/08/2023]
Abstract
In the social amoeba Dictyostelium, Skp1 is hydroxylated on proline 143 and further modified by three cytosolic glycosyltransferases to yield an O-linked pentasaccharide that contributes to O2 regulation of development. Skp1 is an adapter in the Skp1/cullin1/F-box protein family of E3 ubiquitin ligases that targets specific proteins for polyubiquitination and subsequent proteasomal degradation. To investigate the biochemical consequences of glycosylation, untagged full-length Skp1 and several of its posttranslationally modified isoforms were expressed and purified to near homogeneity using recombinant and in vitro strategies. Interaction studies with the soluble mammalian F-box protein Fbs1/Fbg1/OCP1 revealed preferential binding to the glycosylated isoforms of Skp1. This difference correlated with the increased α-helical and decreased β-sheet content of glycosylated Skp1s based on circular dichroism and increased folding order based on small-angle X-ray scattering. A comparison of the molecular envelopes of fully glycosylated Skp1 and the apoprotein indicated that both isoforms exist as an antiparallel dimer that is more compact and extended in the glycosylated state. Analytical gel filtration and chemical cross-linking studies showed a growing tendency of less modified isoforms to dimerize. Considering that regions of free Skp1 are intrinsically disordered and Skp1 can adopt distinct folds when bound to F-box proteins, we propose that glycosylation, which occurs adjacent to the F-box binding site, influences the spectrum of energetically similar conformations that vary inversely in their propensity to dock with Fbs1 or another Skp1. Glycosylation may thus influence Skp1 function by modulating F-box protein binding in cells.
Collapse
Affiliation(s)
- M. Osman Sheikh
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Christopher
M. Schafer
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - John T. Powell
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Karla K. Rodgers
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Blaine H. M. Mooers
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Christopher M. West
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|