1
|
Muranov KO, Poliansky NB, Borzova VA, Kleimenov SY. Refolding Increases the Chaperone-like Activity of α H-Crystallin and Reduces Its Hydrodynamic Diameter to That of α-Crystallin. Int J Mol Sci 2023; 24:13473. [PMID: 37686274 PMCID: PMC10487585 DOI: 10.3390/ijms241713473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
αH-Crystallin, a high molecular weight form of α-crystallin, is one of the major proteins in the lens nucleus. This high molecular weight aggregate (HMWA) plays an important role in the pathogenesis of cataracts. We have shown that the chaperone-like activity of HMWA is 40% of that of α-crystallin from the lens cortex. Refolding with urea significantly increased-up to 260%-the chaperone-like activity of α-crystallin and slightly reduced its hydrodynamic diameter (Dh). HMWA refolding resulted in an increase in chaperone-like activity up to 120% and a significant reduction of Dh of protein particles compared with that of α-crystallin. It was shown that the chaperone-like activity of HMWA, α-crystallin, and refolded α-crystallin but not refolded HMWA was strongly correlated with the denaturation enthalpy measured with differential scanning calorimetry (DSC). The DSC data demonstrated a significant increase in the native protein portion of refolded α-crystallin in comparison with authentic α-crystallin; however, the denaturation enthalpy of refolded HMWA was significantly decreased in comparison with authentic HMWA. The authors suggested that the increase in the chaperone-like activity of both α-crystallin and HMWA could be the result of the correction of misfolded proteins during renaturation and the rearrangement of protein supramolecular structures.
Collapse
Affiliation(s)
- Konstantin O. Muranov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia;
| | - Nicolay B. Poliansky
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia;
| | - Vera A. Borzova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119334, Russia;
| | - Sergey Y. Kleimenov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia;
| |
Collapse
|
2
|
Chebotareva NA, Eronina TB, Mikhaylova VV, Roman SG, Tugaeva KV, Kurganov BI. Effect of Trehalose on Oligomeric State and Anti-Aggregation Activity of αB-Crystallin. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:121-130. [PMID: 35508907 DOI: 10.1134/s0006297922020043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
αB-Crystallin (αB-Cr), one of the main crystalline lens proteins, along with other crystallins maintains lens transparency suppressing protein aggregation and thus preventing cataractogenesis. αB-Cr belongs to the class of molecular chaperones; being expressed in many tissues it has a dynamic quaternary structure, which is essential for its chaperone-like activity. Shift in the equilibrium between ensembles of oligomers of different size allows regulating the chaperone activity. Trehalose is known to inhibit protein aggregation in vivo and in vitro, and it is widely used in biotechnology. The results of studying the effect of trehalose on the chaperone-like activity of crystallins can serve as a basis for the design of drugs delaying cataractogenesis. We have studied the trehalose effect on the quaternary structure and anti-aggregation activity of αB-Cr using muscle glycogen phosphorylase b (Phb) as a target protein. According to the dynamic light scattering data, trehalose affects the nucleation stage of Phb thermal aggregation at 48°C, and an increase in the αB-Cr adsorption capacity (AC0) is the main effect of trehalose on the aggregation process in the presence of the protein chaperone (AC0 increases 1.5-fold in the presence of 66 mM trehalose). According to the sedimentation analysis data, trehalose stabilizes the dimeric form of Phb at the stages of denaturation and dissociation and enhances the interaction of αB-Cr with the target protein. Moreover, trehalose shifts the equilibrium between the αB-Cr oligomers towards the smaller forms. Thus, trehalose affects the quaternary structure of αB-Cr and increases its anti-aggregation activity at the nucleation stage.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Tatiana B Eronina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Svetlana G Roman
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Kristina V Tugaeva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
3
|
The mechanism of thermal aggregation of glutamate dehydrogenase. The effect of chemical chaperones. Biochimie 2022; 195:27-38. [PMID: 35041856 DOI: 10.1016/j.biochi.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/20/2022]
Abstract
Chemical chaperones are low-molecular compounds counteracting protein aggregation. Understanding of the mechanism of their effects is key to their potential use in biotechnology. The aggregation of bovine liver glutamate dehydrogenase (GDH) was studied at 40 °C and 50 °C using dynamic light scattering, analytical ultracentrifugation, size-exclusion chromatography and differential scanning calorimetry. At 40 °C the GDH aggregation proceeds through the slow stages of hexamer dissociation and formation of small oligomeric aggregates. At 50 °C these stages are transient. The rate-limiting stage of the overall aggregation process is unfolding of the protein molecule; the order of aggregation with respect to protein, n = 1. The test system based on GDH aggregation at 50 °C was used to quantify the anti-aggregation activity of chemical chaperones by comparing their half-saturation concentrations [L]0.5. Arginine ethyl ester had the highest anti-aggregation activity, with [L]0.5 = 4 ± 1 mM. For other additives, [L]0.5 was 22 ± 1 mM (arginine), 18 ± 1 mM (argininamide) and 95 ± 12 mM (proline). Arginine at concentrations up to 300 mM, argininamide at concentrations higher than 300 mM and arginine ethyl ester at concentrations higher than 500 mM enhance aggregate-aggregate sticking. These results explain the mechanism of heat-induced GDH aggregation and its peculiarities at different temperatures or in the presence of chemical chaperones.
Collapse
|
4
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Shubin VV, Kleymenov SY, Kurganov BI. Effect of arginine on stability and aggregation of muscle glycogen phosphorylase b. Int J Biol Macromol 2020; 165:365-374. [PMID: 32961195 DOI: 10.1016/j.ijbiomac.2020.09.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022]
Abstract
Arginine (Arg) is frequently used in biotechnology and pharmaceutics to stabilize protein preparations. When using charged ions like Arg, it is necessary to take into account their contribution to the increase in ionic strength, in addition to the effect of Arg on particular processes occurring under the conditions of constancy of ionic strength. Here, we examined contribution of ionic strength (0.15 and 0.5 M) to the effects of Arg on denaturation, thermal inactivation and aggregation of skeletal muscle glycogen phosphorylase b (Phb). Dynamic light scattering, analytical ultracentrifugation, differential scanning calorimetry, circular dichroism and enzymatic activity assay were used to assess the effects of Arg at constant ionic strength compared with the effects of ionic strength alone. We found that high ionic strength did not affect the secondary structure of Phb, but changed conformation of the protein. Such a destabilization of the enzyme causes an increase in the initial rate of aggregation and inactivation of Phb thereby affecting its denaturation. Binding of Arg causes additional changes in the protein conformation, weakening the bonds between monomers in the dimer. This causes the dimer to dissociate into monomers, which rapidly aggregate. Thus, Arg acts on these processes much stronger than just ionic strength.
Collapse
Affiliation(s)
- Tatiana B Eronina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Vladimir V Shubin
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Sergey Y Kleymenov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia; Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova 26, Moscow 119991, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|
5
|
Chebotareva NA, Roman SG, Borzova VA, Eronina TB, Mikhaylova VV, Kurganov BI. Chaperone-Like Activity of HSPB5: The Effects of Quaternary Structure Dynamics and Crowding. Int J Mol Sci 2020; 21:ijms21144940. [PMID: 32668633 PMCID: PMC7404038 DOI: 10.3390/ijms21144940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
Small heat-shock proteins (sHSPs) are ATP-independent molecular chaperones that interact with partially unfolded proteins, preventing their aberrant aggregation, thereby exhibiting a chaperone-like activity. Dynamics of the quaternary structure plays an important role in the chaperone-like activity of sHSPs. However, relationship between the dynamic structure of sHSPs and their chaperone-like activity remains insufficiently characterized. Many factors (temperature, ions, a target protein, crowding etc.) affect the structure and activity of sHSPs. The least studied is an effect of crowding on sHSPs activity. In this work the chaperone-like activity of HSPB5 was quantitatively characterized by dynamic light scattering using two test systems, namely test systems based on heat-induced aggregation of muscle glycogen phosphorylase b (Phb) at 48 °C and dithiothreitol-induced aggregation of α-lactalbumin at 37 °C. Analytical ultracentrifugation was used to control the oligomeric state of HSPB5 and target proteins. The possible anti-aggregation functioning of suboligomeric forms of HSPB5 is discussed. The effect of crowding on HSPB5 anti-aggregation activity was characterized using Phb as a target protein. The duration of the nucleation stage was shown to decrease with simultaneous increase in the relative rate of aggregation of Phb in the presence of HSPB5 under crowded conditions. Crowding may subtly modulate sHSPs activity.
Collapse
|
6
|
Effect of Arginine on Chaperone-Like Activity of HspB6 and Monomeric 14-3-3ζ. Int J Mol Sci 2020; 21:ijms21062039. [PMID: 32188159 PMCID: PMC7139691 DOI: 10.3390/ijms21062039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022] Open
Abstract
The effect of protein chaperones HspB6 and the monomeric form of the protein 14-3-3ζ (14-3-3ζm) on a test system based on thermal aggregation of UV-irradiated glycogen phosphorylase b (UV-Phb) at 37 °C and a constant ionic strength (0.15 M) was studied using dynamic light scattering. A significant increase in the anti-aggregation activity of HspB6 and 14-3-3ζm was demonstrated in the presence of 0.1 M arginine (Arg). To compare the effects of these chaperones on UV-Phb aggregation, the values of initial stoichiometry of the chaperone-target protein complex (S0) were used. The analysis of the S0 values shows that in the presence of Arg fewer chaperone subunits are needed to completely prevent aggregation of the UV-Phb subunit. The changes in the structures of HspB6 and 14-3-3ζm induced by binding of Arg were evaluated by the fluorescence spectroscopy and differential scanning calorimetry. It was suggested that Arg caused conformational changes in chaperone molecules, which led to a decrease in the thermal stability of protein chaperones and their destabilization.
Collapse
|
7
|
Chebotareva NA, Eronina TB, Roman SG, Mikhaylova VV, Sluchanko NN, Gusev NB, Kurganov BI. Oligomeric state of αB-crystallin under crowded conditions. Biochem Biophys Res Commun 2018; 508:1101-1105. [PMID: 30551876 DOI: 10.1016/j.bbrc.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones preventing protein aggregation. Dynamics of quaternary structure plays an important role in the chaperone-like activity of sHsps. However, an interrelation between the oligomeric state and chaperone-like activity of sHsps remains insufficiently characterized. Most of the accumulated data were obtained in dilute protein solutions, leaving the question of the oligomeric state of sHsps in crowded intracellular media largely unanswered. Here, we analyzed the effect of crowding on the oligomeric state of αB-crystallin (αB-Cr) using analytical ultracentrifugation. Marked increase in the sedimentation coefficient of αB-Cr was observed in the presence of polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and trimethylamine N-oxide (TMAO) at 48 °C. An especially pronounced effect was detected for the PEG and TMAO mixture, where the sedimentation coefficient (s20,w) of αB-Cr increased from 10.7 S in dilute solution up to 40.7 S in the presence of crowding agents. In the PEG + TMAO mixture, addition of model protein substrate (muscle glycogen phosphorylase b) induced dissociation of large αB-Cr oligomers and formation of complexes with smaller sedimentation coefficients, supporting the idea that, under crowding conditions, protein substrates can promote dissociation of large αB-Cr oligomers.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia.
| | - Tatiana B Eronina
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Svetlana G Roman
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Valeriya V Mikhaylova
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Nikolai N Sluchanko
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia; Department of Biophysics, School of Biology, M.V. Lomonosov Moscow State University, Lenin Hills 1, Building 24, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Lenin Hills 1, Building 12, Moscow, 119991, Russia
| | - Boris I Kurganov
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| |
Collapse
|
8
|
Oki S, Nishinami S, Shiraki K. Arginine suppresses opalescence and liquid–liquid phase separation in IgG solutions. Int J Biol Macromol 2018; 118:1708-1712. [DOI: 10.1016/j.ijbiomac.2018.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/07/2023]
|
9
|
Kurganov BI. Quantification of anti-aggregation activity of chaperones. Int J Biol Macromol 2017; 100:104-117. [DOI: 10.1016/j.ijbiomac.2016.07.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
|
10
|
The effects of crowding agents Dextran-70k and PEG-8k on actin structure and unfolding reaction. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Fonin AV, Silonov SA, Sitdikova AK, Kuznetsova IM, Uversky VN, Turoverov KK. Structure and Conformational Properties of d-Glucose/d-Galactose-Binding Protein in Crowded Milieu. Molecules 2017; 22:molecules22020244. [PMID: 28178192 PMCID: PMC6155729 DOI: 10.3390/molecules22020244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022] Open
Abstract
Conformational changes of d-glucose/d-galactose-binding protein (GGBP) were studied under molecular crowding conditions modeled by concentrated solutions of polyethylene glycols (PEG-12000, PEG-4000, and PEG-600), Ficoll-70, and Dextran-70, addition of which induced noticeable structural changes in the GGBP molecule. All PEGs promoted compaction of GGBP and lead to the increase in ordering of its structure. Concentrated solutions of PEG-12000 and PEG-4000 caused GGBP aggregation. Although Ficoll-70 and Dextran-70 also promoted increase in the GGBP ordering, the structural outputs were different for different crowders. For example, in comparison with the GGBP in buffer, the intrinsic fluorescence spectrum of this protein was shifted to short-wave region in the presence of PEGs but was red-shifted in the presence of Ficoll-70 and Dextran-70. It was hypothesized that this difference could be due to the specific interaction of GGBP with the sugar-based polymers (Ficoll-70 and Dextran-70), indicating that protein can adopt different conformations in solutions containing molecular crowders of different chemical nature. It was also shown that all tested crowding agents were able to stabilize GGBP structure shifting the GGBP guanidine hydrochloride (GdnHCl)-induced unfolding curves to higher denaturant concentrations, but their stabilization capabilities did not depend on the hydrodynamic dimensions of the polymers molecules. Refolding of GGBP was complicated by protein aggregation in all tested solutions of crowding agents. The lowest yield of refolded protein was achieved in the highly concentrated solutions of PEG-12000. These data support the previous notion that the influence of macromolecular crowders on proteins is rather complex phenomenon that extends beyond the excluded volume effects.
Collapse
Affiliation(s)
- Alexander V Fonin
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, St. Petersburg 197046, Russia.
| | - Sergey A Silonov
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, St. Petersburg 197046, Russia.
- Saint-Petersburg Technological Institute (Technical University), Moskovsky av. 26, Saint-Petersburg 190013, Russia.
| | - Asiya K Sitdikova
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, St. Petersburg 197046, Russia.
- Department of Biophysics, St. Petersburg State Polytechnical University, Polytechnicheskaya av. 29, St. Petersburg 195251, Russia.
| | - Irina M Kuznetsova
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, St. Petersburg 197046, Russia.
| | - Vladimir N Uversky
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, St. Petersburg 197046, Russia.
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Konstantin K Turoverov
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, St. Petersburg 197046, Russia.
- Department of Biophysics, St. Petersburg State Polytechnical University, Polytechnicheskaya av. 29, St. Petersburg 195251, Russia.
| |
Collapse
|
12
|
Khan MV, Ishtikhar M, Rabbani G, Zaman M, Abdelhameed AS, Khan RH. Polyols (Glycerol and Ethylene glycol) mediated amorphous aggregate inhibition and secondary structure restoration of metalloproteinase-conalbumin (ovotransferrin). Int J Biol Macromol 2016; 94:290-300. [PMID: 27744055 PMCID: PMC7112414 DOI: 10.1016/j.ijbiomac.2016.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/24/2022]
Abstract
Conalbumin aggregates at 65 °C and denaturation occur at above this temperature. The nature of aggregates was identified as amorphous. The polyols inhibits the aggregation of conalbumin via protecting the secondary structure. Glycerol is found to be more protective than ethylene glycol.
Under physical or chemical stress, proteins tend to form aggregates either highly ordered (amyloid) or unordered (amorphous) causing many pathological disorders in human and loss of proteins functionality in both laboratory conditions and industries during production and storage at commercial level. We investigated the effect of increasing temperature on Conalbumin (CA) and induced aggregation at 65 °C. The enhanced Thioflavin T (ThT) and ANS (1-anilinonaphtalene 8-sulfonic acid) fluorescence intensity, show no shift on Congo red binding, additionally, transmission and scanning electron microscopy (TEM) (SEM) reveal amorphous morphology of the aggregate. Our investigation clearly demonstrated that polyols namely Glycerol (GL) and Ethylene glycol (EG) are so staunch to inhibit amorphous aggregates via restoring secondary conformation. Addition of polyols (15% GL and 35% EG) significantly decrease the turbidity, Rayleigh scattering ThT and ANS fluorescence intensity. The dynamic light scattering (DLS) data show that hydrodynamic radii (Rh) of the aggregates is ∼20 times higher than native CA while nearly similar for GL and EG protected CA due to condensation of core size with little difference.
Collapse
Affiliation(s)
- Mohsin Vahid Khan
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Ishtikhar
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Gulam Rabbani
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Masihuz Zaman
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rizwan Hasan Khan
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
13
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Kurganov BI. Kinetic regime of thermal aggregation of holo- and apoglycogen phosphorylases b. Int J Biol Macromol 2016; 92:1252-1257. [PMID: 27527690 DOI: 10.1016/j.ijbiomac.2016.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/23/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
Abstract
To characterize the role of pyridoxal 5'-phosphate in stabilization of the conformation of muscle glycogen phosphorylase b (Phb), the mechanism of thermal aggregation for holo- and apoforms of Phb has been studied using dynamic light scattering. The order of aggregation with respect to the protein (n) for aggregation of holoPhb at 48°C is equal to 0.5 suggesting that the dissociative mechanism of denaturation is operative and denaturation is followed by rapid aggregation stage. In the case of aggregation of apoPhb at 37°C n=2 and the rate-limiting stage is aggregation of unfolded protein molecules.
Collapse
Affiliation(s)
- Tatiana B Eronina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia.
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
14
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Makeeva VF, Kurganov BI. Checking for reversibility of aggregation of UV-irradiated glycogen phosphorylase b under crowding conditions. Int J Biol Macromol 2016; 86:829-39. [DOI: 10.1016/j.ijbiomac.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
|
15
|
Chebotareva NA, Filippov DO, Kurganov BI. Effect of crowding on several stages of protein aggregation in test systems in the presence of α-crystallin. Int J Biol Macromol 2015; 80:358-65. [PMID: 26144909 DOI: 10.1016/j.ijbiomac.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
Abstract
Macromolecular crowding can facilitate protein-protein interactions in the cell, in particular aggregation processes. To characterize the anti-aggregation activity of chaperones under conditions mimicking the crowded environment in the cell, two basic test systems are used. Test systems of the first type are based on aggregation of target proteins undergoing unfolding under different factors. Dithithreitol-induced aggregation of α-lactalbumin is used as such a system. The increase in the duration of lag phase after the addition of the crowder (polyethylene glycol; PEG) to the system containing α-crystallin has been interpreted as a retardation of the stages that are the rate-limiting stages of the general process of aggregation (the nucleation stage and the stages of clusterization of nuclei). Test systems of the second type are based on aggregation of UV-irradiated proteins. Such test systems permit investigating the effects of different agents directly on the stages of aggregation of unfolded protein. UV-irradiated glycogen phosphorylase b (Phb) is used as a target protein. Analysis of the initial rate of aggregation after the addition of PEG at different points in time to the mixture of UV-irradiated Phb and α-crystallin allowed estimating the time of half-conversion for the structural rearrangement of the primary UV-irradiated Phb-α-crystallin complex.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| | - Dmitrii O Filippov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|
16
|
Borzova VA, Markossian KA, Kara DA, Kurganov B. Kinetic regime of dithiothreitol-induced aggregation of bovine serum albumin. Int J Biol Macromol 2015; 80:130-8. [PMID: 26116389 DOI: 10.1016/j.ijbiomac.2015.06.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 12/25/2022]
Abstract
A search for agents, which are capable of effectively suppressing protein aggregation, and elaboration of the appropriate test systems, are among important problems of modern biochemistry and biotechnology. One such test system is based on dithiothreitol (DTT)-induced aggregation of bovine serum albumin (BSA). Study of the kinetics of DTT-induced aggregation of BSA by asymmetric flow field flow fractionation showed that a decrease in the portion of the non-aggregated protein in time followed the exponential law, the rate constant of the first order remaining unchanged at varying protein concentration (0.1M Na-phosphate buffer, pH 7.0; 45 °C). The obtained results indicate that the rate-limiting stage of the general aggregation process is that of unfolding of the protein molecule. When studying the kinetics of DTT-induced aggregation of BSA by dynamic light scattering, we proposed to use parameter K(LS) as a measure of the initial rate of aggregation. Parameter K(LS) corresponds to the initial slope of the dependence of (I-I0)(0.5) on time (I0 and I are the initial and current values of the light scattering intensity, respectively). The K(LS) value has been applied to estimate anti-aggregation activity of chemical chaperones (arginine, its derivatives and proline).
Collapse
Affiliation(s)
- Vera A Borzova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Kira A Markossian
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Dmitriy A Kara
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|
17
|
Chebotareva NA, Eronina TB, Sluchanko NN, Kurganov BI. Effect of Ca2+ and Mg2+ ions on oligomeric state and chaperone-like activity of αB-crystallin in crowded media. Int J Biol Macromol 2015; 76:86-93. [DOI: 10.1016/j.ijbiomac.2015.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/12/2022]
|
18
|
Dual effect of arginine on aggregation of phosphorylase kinase. Int J Biol Macromol 2014; 68:225-32. [DOI: 10.1016/j.ijbiomac.2014.04.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 01/20/2023]
|
19
|
Relationship between the initial rate of protein aggregation and the lag period for amorphous aggregation. Int J Biol Macromol 2014; 68:144-50. [PMID: 24794200 DOI: 10.1016/j.ijbiomac.2014.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 01/21/2023]
Abstract
Lag period is an inherent characteristic of the kinetic curves registered for protein aggregation. The appearance of a lag period is connected with the nucleation stage and the stages of the formation of folding or unfolding intermediates prone to aggregation (for example, the stage of protein unfolding under stress conditions). Discovering the kinetic regularities essential for elucidation of the protein aggregation mechanism comprises deducing the relationship between the lag period and aggregation rate. Fändrich proposed the following equation connecting the duration of the lag phase (tlag) and the aggregate growth rate (kg) in the amyloid fibrillation: kg=const/tlag. To establish the relationship between the initial rate of protein aggregation (v) and the lag period (t0) in the case of amorphous aggregation, the kinetics of dithithreitol-induced aggregation of holo-α-lactalbumin from bovine milk was studied (0.1M Na-phosphate buffer, pH 6.8; 37°C). The order of aggregation with respect to protein (n) was calculated from the dependence of the initial rate of protein aggregation on the α-lactalbumin concentration (n=5.3). The following equation connecting v and t0 has been proposed: v(1/n)=const/(t0-t0,lim), where t0,lim is the limiting value of t0 at high concentrations of the protein.
Collapse
|