1
|
Marabelli C, Santiago DJ, Priori SG. The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications. Biomolecules 2023; 13:1693. [PMID: 38136565 PMCID: PMC10741413 DOI: 10.3390/biom13121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Calsequestrin (CASQ) is a key intra-sarcoplasmic reticulum Ca2+-handling protein that plays a pivotal role in the contraction of cardiac and skeletal muscles. Its Ca2+-dependent polymerization dynamics shape the translation of electric excitation signals to the Ca2+-induced contraction of the actin-myosin architecture. Mutations in CASQ are linked to life-threatening pathological conditions, including tubular aggregate myopathy, malignant hyperthermia, and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The variability in the penetrance of these phenotypes and the lack of a clear understanding of the disease mechanisms associated with CASQ mutations pose a major challenge to the development of effective therapeutic strategies. In vitro studies have mainly focused on the polymerization and Ca2+-buffering properties of CASQ but have provided little insight into the complex interplay of structural and functional changes that underlie disease. In this review, the biochemical and structural natures of CASQ are explored in-depth, while emphasizing their direct and indirect consequences for muscle Ca2+ physiology. We propose a novel functional classification of CASQ pathological missense mutations based on the structural stability of the monomer, dimer, or linear polymer conformation. We also highlight emerging similarities between polymeric CASQ and polyelectrolyte systems, emphasizing the potential for the use of this paradigm to guide further research.
Collapse
Affiliation(s)
- Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Demetrio J. Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Silvia G. Priori
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| |
Collapse
|
2
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
3
|
Wang Q, Paskevicius T, Filbert A, Qin W, Kim HJ, Chen XZ, Tang J, Dacks JB, Agellon LB, Michalak M. Phylogenetic and biochemical analysis of calsequestrin structure and association of its variants with cardiac disorders. Sci Rep 2020; 10:18115. [PMID: 33093545 PMCID: PMC7582152 DOI: 10.1038/s41598-020-75097-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Calsequestrin is among the most abundant proteins in muscle sarcoplasmic reticulum and displays a high capacity but a low affinity for Ca2+ binding. In mammals, calsequestrin is encoded by two genes, CASQ1 and CASQ2, which are expressed almost exclusively in skeletal and cardiac muscles, respectively. Phylogenetic analysis indicates that calsequestrin is an ancient gene in metazoans, and that the duplication of the ancestral calsequestrin gene took place after the emergence of the lancelet. CASQ2 gene variants associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) in humans are positively correlated with a high degree of evolutionary conservation across all calsequestrin homologues. The mutations are distributed in diverse locations of the calsequestrin protein and impart functional diversity but remarkably manifest in a similar phenotype in humans.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Tautvydas Paskevicius
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Alexander Filbert
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Wenying Qin
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Hyeong Jin Kim
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Xing-Zhen Chen
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China.,Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Jingfeng Tang
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada.
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada. .,Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Wang Q, Michalak M. Calsequestrin. Structure, function, and evolution. Cell Calcium 2020; 90:102242. [PMID: 32574906 DOI: 10.1016/j.ceca.2020.102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada.
| |
Collapse
|
5
|
Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V. Calsequestrin, a key protein in striated muscle health and disease. J Muscle Res Cell Motil 2020; 42:267-279. [PMID: 32488451 DOI: 10.1007/s10974-020-09583-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Calsequestrin (CASQ) is the most abundant Ca2+ binding protein localized in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. The genome of vertebrates contains two genes, CASQ1 and CASQ2. CASQ1 and CASQ2 have a high level of homology, but show specific patterns of expression. Fast-twitch skeletal muscle fibers express only CASQ1, both CASQ1 and CASQ2 are present in slow-twitch skeletal muscle fibers, while CASQ2 is the only protein present in cardiomyocytes. Depending on the intraluminal SR Ca2+ levels, CASQ monomers assemble to form large polymers, which increase their Ca2+ binding ability. CASQ interacts with triadin and junctin, two additional SR proteins which contribute to localize CASQ to the junctional region of the SR (j-SR) and also modulate CASQ ability to polymerize into large macromolecular complexes. In addition to its ability to bind Ca2+ in the SR, CASQ appears also to be able to contribute to regulation of Ca2+ homeostasis in muscle cells. Both CASQ1 and CASQ2 are able to either activate and inhibit the ryanodine receptors (RyRs) calcium release channels, likely through their interactions with junctin and triadin. Additional evidence indicates that CASQ1 contributes to regulate the mechanism of store operated calcium entry in skeletal muscle via a direct interaction with the Stromal Interaction Molecule 1 (STIM1). Mutations in CASQ2 and CASQ1 have been identified, respectively, in patients with catecholamine-induced polymorphic ventricular tachycardia and in patients with some forms of myopathy. This review will highlight recent developments in understanding CASQ1 and CASQ2 in health and diseases.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Alessandra Gamberucci
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Caterina Amato
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Loredana Migliore
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| |
Collapse
|
6
|
Wang WA, Agellon LB, Michalak M. Organellar Calcium Handling in the Cellular Reticular Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a038265. [PMID: 31358518 DOI: 10.1101/cshperspect.a038265] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ is an important intracellular messenger affecting diverse cellular processes. In eukaryotic cells, Ca2+ is handled by a myriad of Ca2+-binding proteins found in organelles that are organized into the cellular reticular network (CRN). The network is comprised of the endoplasmic reticulum, Golgi apparatus, lysosomes, membranous components of the endocytic and exocytic pathways, peroxisomes, and the nuclear envelope. Membrane contact sites between the different components of the CRN enable the rapid movement of Ca2+, and communication of Ca2+ status, within the network. Ca2+-handling proteins that reside in the CRN facilitate Ca2+ sensing, buffering, and cellular signaling to coordinate the many processes that operate within the cell.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| |
Collapse
|
7
|
Chakravarty H, Bal C, Yadav M, Jena N, Bal NC, Sharon A. First Insight on Small Molecules as Cardiac Calsequestrin Stabilizers. ACS OMEGA 2019; 4:11508-11514. [PMID: 31460256 PMCID: PMC6682146 DOI: 10.1021/acsomega.9b01113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is caused by mutations of cardiac calsequestrin (CASQ2) that impair its characteristic ability of Ca2+-induced polymerization-depolymerization. However, stabilizing the CASQ2 polymer by pharmacological agents to treat CPVT has not been reported so far. Here, we tested whether small molecules can stabilize CASQ2 polymers. We synthesized 24 glycinate/alaninate/acetate α-pyranone analogs and conducted the CASQ2 depolymerization assay. Most of the molecules of this class of compounds inhibited the depolymerization of the protein upon Ca2+ chelation by ethylene glycol tetraacetic acid. Structure-activity relationship studies revealed that the compounds with the 4-fluoro-phenyl group at the C-6 position of the pyranone ring and open-chain primary amine at C-4 are the most active of the class. This is the first report of an α-pyranone class of compounds with the ability to stabilize CASQ2 polymers and opens up the possibility to target Ca2+-release disorders via modulation of CASQ2 polymerization.
Collapse
Affiliation(s)
| | - Chandralata Bal
- Department
of Chemistry, Birla Institute of Technology,
Mesra, Ranchi 835215, India
| | - Monika Yadav
- Department
of Chemistry, Birla Institute of Technology,
Mesra, Ranchi 835215, India
| | - Nivedita Jena
- KIIT Technology Business Incubator and KIIT School of Biotechnology, KIIT University, Bhubaneswar 751021 India
| | - Naresh C. Bal
- KIIT Technology Business Incubator and KIIT School of Biotechnology, KIIT University, Bhubaneswar 751021 India
| | - Ashoke Sharon
- Department
of Chemistry, Birla Institute of Technology,
Mesra, Ranchi 835215, India
| |
Collapse
|
8
|
Calcium-Binding Proteins with Disordered Structure and Their Role in Secretion, Storage, and Cellular Signaling. Biomolecules 2018; 8:biom8020042. [PMID: 29921816 PMCID: PMC6022996 DOI: 10.3390/biom8020042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Calcium is one of the most important second messengers and its intracellular signaling regulates many aspects of cell physiology. Calcium ions, like phosphate ions, are highly charged and thus are able to alter protein conformation upon binding; thereby they constitute key factors in signal transduction. One of the most common calcium-binding structural motifs is the EF-hand, a well-defined helix-loop-helix structural domain, present in many calcium-binding proteins (CBPs). Nonetheless, some CBPs contain non-canonical, disordered motifs, which usually bind calcium with high capacity and low affinity, and which represent a subset of proteins with specific functions, but these functions rarely involve signaling. When compared with phosphorylation-mediated signal transduction, the role of intrinsic disorder in calcium signaling is significantly less prominent and not direct. The list of known examples of intrinsically disordered CBPs is relatively short and the disorder in these examples seems to be linked to secretion and storage. Calcium-sensitive phosphatase calcineurin is an exception, but it represents an example of transient disorder, which is, nevertheless, vital to the functioning of this protein. The underlying reason for the different role of disordered proteins in the two main cellular signaling systems appears to be linked to the gradient of calcium concentration, present in all living cells.
Collapse
|
9
|
Basaki M, Asasi K, Tabandeh MR, Aminlari M. Polymorphism identification and cardiac gene expression analysis of the calsequestrin 2 gene in broiler chickens with sudden death syndrome. Br Poult Sci 2016; 57:151-60. [DOI: 10.1080/00071668.2015.1099615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, Nori A. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil 2015; 37:27-39. [PMID: 26585961 DOI: 10.1007/s10974-015-9432-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/07/2015] [Indexed: 12/13/2022]
Abstract
Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located.
Collapse
Affiliation(s)
- Sandra Furlan
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Viale G. Colombo 3, 35121, Padua, Italy
| | - Simone Mosole
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Francesco Argenton
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121, Padua, Italy
| | - Pompeo Volpe
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Viale G. Colombo 3, 35121, Padua, Italy
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy.
| |
Collapse
|
11
|
Beard NA, Dulhunty AF. C-terminal residues of skeletal muscle calsequestrin are essential for calcium binding and for skeletal ryanodine receptor inhibition. Skelet Muscle 2015; 5:6. [PMID: 25861445 PMCID: PMC4389316 DOI: 10.1186/s13395-015-0029-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/14/2015] [Indexed: 02/05/2023] Open
Abstract
Background Skeletal muscle function depends on calcium signaling proteins in the sarcoplasmic reticulum (SR), including the calcium-binding protein calsequestrin (CSQ), the ryanodine receptor (RyR) calcium release channel, and skeletal triadin 95 kDa (trisk95) and junctin, proteins that bind to calsequestrin type 1 (CSQ1) and ryanodine receptor type 1 (RyR1). CSQ1 inhibits RyR1 and communicates store calcium load to RyR1 channels via trisk95 and/or junctin. Methods In this manuscript, we test predictions that CSQ1’s acidic C-terminus contains binding sites for trisk95 and junctin, the major calcium binding domain, and that it determines CSQ1’s ability to regulate RyR1 activity. Results Progressive alanine substitution of C-terminal acidic residues of CSQ1 caused a parallel reduction in the calcium binding capacity but did not significantly alter CSQ1’s association with trisk95/junctin or influence its inhibition of RyR1 activity. Deletion of the final seven residues in the C-terminus significantly hampered calcium binding, significantly reduced CSQ’s association with trisk95/junctin and decreased its inhibition of RyR1. Deletion of the full C-terminus further reduced calcium binding to CSQ1 altered its association with trisk95 and junctin and abolished its inhibition of RyR1. Conclusions The correlation between the number of residues mutated/deleted and binding of calcium, trisk95, and junctin suggests that binding of each depends on diffuse ionic interactions with several C-terminal residues and that these interactions may be required for CSQ1 to maintain normal muscle function.
Collapse
Affiliation(s)
- Nicole A Beard
- John Curtin School of Medical Research, Australian National University, Garran Road, Canberra, ACT 2601 Australia ; Discipline of Biomedical Sciences, Centre for Research in Therapeutic Solutions, Faculty of Education Science, Technology and Maths, University of Canberra, Kirinari Street, Bruce, ACT 2601 Australia
| | - Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Garran Road, Canberra, ACT 2601 Australia
| |
Collapse
|
12
|
Uversky VN. Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J 2015; 282:1182-9. [DOI: 10.1111/febs.13202] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa FL USA
- Department of Biological Science; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Laboratory of Structural Dynamics; Stability and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St Petersburg Russia
| |
Collapse
|