1
|
Han JS, Kim ES, Cho YB, Kim SY, Lee MK, Hwang BY, Lee JW. Cytotoxic Peptaibols from Trichoderma guizhouense, a Fungus Isolated from an Urban Soil Sample. JOURNAL OF NATURAL PRODUCTS 2024; 87:1994-2003. [PMID: 39102454 DOI: 10.1021/acs.jnatprod.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Soil sustains human life by nourishing crops, storing food sources, and housing microbes, which may affect the nutrition and biosynthesis of secondary metabolites, some of which are used as drugs. To identify lead compounds for a new class of drugs, we collected soil-derived fungal strains from various environments, including urban areas. As various human pathogens are assumed to influence the biosynthetic pathways of metabolites in soil fungi, leading to the production of novel scaffolds, we focused our work on densely populated urban areas and tourist attractions. A soil-derived fungal extract library was screened against MDA-MB-231 cells to derive their cytotoxic activity. Notably, 10 μg/mL of the extract of Trichoderma guizhouense (DS9-1) was found to exhibit an inhibitory effect of 71%. Fractionation, isolation, and structure elucidation efforts led to the identification of nine new peptaibols, trichoguizaibols A-I (1-9), comprising 14 amino acid residues (14-AA peptaibols), and three new peptaibols, trichoguizaibols J-L (10-12), comprising 18 amino acid residues (18-AA peptaibols). The chemical structures of 1-12 were determined based on their 1D and 2D NMR spectra, HRESIMS, electronic circular dichroism data, and results of the advanced Marfey's method. The 18-AA peptaibols were found to exhibit cytotoxicity against MDA-MB-231, SK-Hep1, SKOV3, DU145, and HCT116 cells greater than that of the 14-AA peptaibols. Among these compounds, 10-12 exhibited potent sub-micromolar IC50 values. These results are expected to shed light on a new direction for developing novel scaffolds as anticancer agents.
Collapse
Affiliation(s)
- Jae Sang Han
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Yong Beom Cho
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28610, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Bolzonello A, Morbiato L, Tundo S, Sella L, Baccelli I, Echeverrigaray S, Musetti R, De Zotti M, Favaron F. Peptide Analogs of a Trichoderma Peptaibol Effectively Control Downy Mildew in the Vineyard. PLANT DISEASE 2023; 107:2643-2652. [PMID: 36724095 DOI: 10.1094/pdis-09-22-2064-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmopara viticola, the agent of grapevine downy mildew, causes enormous economic damage, and its control is primarily based on the use of synthetic fungicides. The European Union policies promote reducing reliance on synthetic plant protection products. Biocontrol agents such as Trichoderma spp. constitute a resource for the development of biopesticides. Trichoderma spp. produce secondary metabolites such as peptaibols, but the poor water solubility of peptaibols limits their practical use as agrochemicals. To identify new potential bio-inspired molecules effective against P. viticola, various water-soluble peptide analogs of the peptaibol trichogin were synthesized. In grapevine leaf disk assays, the peptides analogs at a concentration of 50 μM completely prevented P. viticola infection after zoosporangia inoculation. Microscopic observations of one of the most effective peptides showed that it causes membrane lysis and cytoplasmic granulation in both zoosporangia and zoospores. Among the effective peptides, 4r was selected for a 2-year field trial experiment. In the vineyard, the peptide administered at 100 μM (equivalent to 129.3 g/ha) significantly reduced the disease incidence and severity on both leaves and bunches, with protection levels similar to those obtained using a cupric fungicide. In the second-year field trial, reduced dosages of the peptide were also tested, and even at the peptide concentration reduced by 50 or 75%, a significant decrease in the disease incidence and severity was obtained at the end of the trial. The peptide did not show any phytotoxic effect. Previously, peptide 4r had been demonstrated to be active against other fungal pathogens, including the grapevine fungus Botrytis cinerea. Thus, this peptide may be a candidate for a broad-spectrum fungicide whose biological properties deserve further investigation.
Collapse
Affiliation(s)
- Angela Bolzonello
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Laura Morbiato
- Department of Chemistry, University of Padova, Padova I-35131, Italy
| | - Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino I-50019, Italy
| | - Sergio Echeverrigaray
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS 95070-560, Brazil
| | - Rita Musetti
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Marta De Zotti
- Department of Chemistry, University of Padova, Padova I-35131, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| |
Collapse
|
3
|
Morbiato L, Quaggia C, Menilli L, Dalla Torre C, Barbon A, De Zotti M. Synthesis, Conformational Analysis and Antitumor Activity of the Naturally Occurring Antimicrobial Medium-Length Peptaibol Pentadecaibin and Spin-Labeled Analogs Thereof. Int J Mol Sci 2023; 24:13396. [PMID: 37686199 PMCID: PMC10487733 DOI: 10.3390/ijms241713396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Peptaibols are proteolysis-resistant, membrane-active peptides. Their remarkably stable helical 3D-structures are key for their bioactivity. They can insert themselves into the lipid bilayer as barrel staves, or lay on its surface like carpets, depending on both their length and the thickness of the lipid bilayer. Medium-length peptaibols are of particular interest for studying the peptide-membrane interaction because their length allows them to adopt either orientation as a function of the membrane thickness, which, in turn, might even result in an enhanced selectivity. Electron paramagnetic resonance (EPR) is the election technique used to this aim, but it requires the synthesis of spin-labeled medium-length peptaibols, which, in turn, is hampered by the poor reactivity of the Cα-tetrasubstituted residues featured in their sequences. After several years of trial and error, we are now able to give state-of-the-art advice for a successful synthesis of nitroxide-containing peptaibols, avoiding deleted sequences, side reactions and difficult purification steps. Herein, we describe our strategy and itsapplication to the synthesis of spin-labeled analogs of the recently discovered, natural, medium-length peptaibol pentadecaibin. We studied the antitumor activity of pentadecaibin and its analogs, finding potent cytotoxicity against human triple-negative breast cancer and ovarian cancer. Finally, our analysis of the peptide conformational preferences and membrane interaction proved that pentadecaibinspin-labeling does not alter the biological features of the native sequence and is suitable for further EPR studies. The nitroxide-containing pentadecaibins, and their synthetic strategy described herein, will help to shed light on the mechanism of the peptide-membrane interaction of medium-length peptaibols.
Collapse
Affiliation(s)
- Laura Morbiato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| | - Celeste Quaggia
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| | - Luca Menilli
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Chiara Dalla Torre
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (C.Q.); (C.D.T.); (A.B.)
| |
Collapse
|
4
|
Awasthi MK, Kumar V, Hellwig C, Wikandari R, Harirchi S, Sar T, Wainaina S, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Filamentous fungi for sustainable vegan food production systems within a circular economy: Present status and future prospects. Food Res Int 2023; 164:112318. [PMID: 36737911 DOI: 10.1016/j.foodres.2022.112318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Filamentous fungi serve as potential candidates in the production of different value-added products. In the context of food, there are several advantages of using filamentous fungi for food. Among the main advantages is that the fungal biomass used food not only meets basic nutritional requirements but that it is also rich in protein, low in fat, and free of cholesterol. This speaks to the potential of filamentous fungi in the production of food that can substitute animal-derived protein sources such as meat. Moreover, life-cycle analyses and techno-economic analyses reveal that fungal proteins perform better than animal-derived proteins in terms of land use efficiency as well as global warming. The present article provides an overview of the potential of filamentous fungi as a source of food and food supplements. The commercialization potential as well as social, legal and safety issues of fungi-based food products are discussed.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam 602105, India
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Rachma Wikandari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Jalan Flora, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
5
|
Morbiato L, Haneen DSA, Formaggio F, De Zotti M. Total synthesis of the natural, medium-length, peptaibol pentadecaibin and study of the chemical features responsible for its membrane activity. J Pept Sci 2023:e3479. [PMID: 36652104 DOI: 10.1002/psc.3479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Peptaibols are naturally occurring, antimicrobial peptides endowed with well-defined helical conformations and resistance to proteolysis. Both features stem from the presence in their sequence of several, Cα -tetrasubstituted, α-aminoisobutyric acid (Aib) residues. Peptaibols interact with biological membranes, usually causing their leakage. All of the peptaibol-membrane interaction mechanisms proposed so far begin with peptide aggregation or accumulation. The long-length alamethicin, the most studied peptaibol, acts by forming pores in the membranes. Conversely, the carpet mechanism has been claimed for short-length peptaibols, such as trichogin. The mechanism of medium-length peptaibols is far less studied, and this is partly due to the difficulties of their synthesis. They are believed to perturb membrane permeability in different ways, depending on the membrane properties. The present work focuses on pentadecaibin, a recently discovered, medium-length peptaibol. In contrast to the majority of its family members, its sequence does not comprise hydroxyprolines or prolines, and its helix is not kinked. A reliable and effective synthesis procedure is described that allowed us to produce also two shorter analogs. By a combination of techniques, we were able to establish a 3D-structure-activity relationship. In particular, the membrane activity of pentadecaibin heavily depends on the presence of three consecutive Aib residues that are responsible for the clear, albeit modest, amphiphilic character of its helix. The shortest analog, devoid of two of these three Aib residues, preserves a well-defined helical conformation, but not its amphipathicity, and loses almost completely the ability to cause membrane leakage. We conclude that pentadecaibin amphiphilicity is probably needed for the peptide ability to perturb model membranes.
Collapse
Affiliation(s)
- Laura Morbiato
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - David S A Haneen
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Abbassia, 11566, Egypt
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, Padova, Italy.,Padova Unit, CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Padova, Italy.,Padova Unit, CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Zhang YQ, Zhang S, Sun ML, Su HN, Li HY, Kun-Liu, Zhang YZ, Chen XL, Cao HY, Song XY. Antibacterial activity of peptaibols from Trichoderma longibrachiatum SMF2 against gram-negative Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight on rice. Front Microbiol 2022; 13:1034779. [PMID: 36304956 PMCID: PMC9595671 DOI: 10.3389/fmicb.2022.1034779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial leaf blight caused by Gram-negative pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive bacterial diseases on rice. Due to the resistance, toxicity and environmental issues of chemical bactericides, new biological strategies are still in need. Although peptaibols produced by Trichoderma spp. can inhibit the growth of several Gram-positive bacteria and plant fungal pathogens, it still remains unclear whether peptaibols have anti-Xoo activity to control bacterial leaf blight on rice. In this study, we evaluated the antibacterial effects of Trichokonins A (TKA), peptaibols produced by Trichoderma longibrachiatum SMF2, against Xoo. The in vitro antibacterial activity analysis showed that the growth of Xoo was significantly inhibited by TKA, with a minimum inhibitory concentration of 54 μg/mL and that the three TKs in TKA all had remarkable anti-Xoo activity. Further inhibitory mechanism analyses revealed that TKA treatments resulted in the damage of Xoo cell morphology and the release of intracellular substances, such as proteins and nucleic acids, from Xoo cells, suggesting the damage of the permeability of Xoo cell membrane by TKA. Pathogenicity analyses showed that the lesion length on rice leaf was significantly reduced by 82.2% when treated with 27 μg/mL TKA. This study represents the first report of the antibacterial activity of peptaibols against a Gram-negative bacterium. Thus, TKA can be of a promising agent in controlling bacterial leaf blight on rice.
Collapse
|
7
|
A Peptide-Based Trap for Metal Ions Studied by Electron Paramagnetic Resonance. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Peptide-based materials provide a versatile platform for sensing and ion sequestration since peptides are endowed with stimuli-responsive properties. The mechanism of molecular sensing is often based on peptide structural changes (or switching), caused by the binding of the target molecule. One scope of sensing applications is the selection of a specific analyte, which may be achieved by adjusting the structure of the peptide binding site. Therefore, exact knowledge of peptide properties and 3D-structure in the ‘switched’ state is desirable for tuning the detection and for further molecular construction. Hence, here we demonstrate the performance of Electron Paramagnetic Resonance (EPR) spectroscopy in the identification of metal ion binding by the antimicrobial peptide trichogin GA IV. Na(I), Ca(II), and Cu(II) ions were probed as analytes to evaluate the impact of coordination number, ionic radii, and charge. Conclusions drawn by EPR are in line with literature data, where other spectroscopic techniques were exploited to study peptide-ion interactions for trichogin GA IV, and the structural switch from an extended helix to a hairpin structure, wrapped around the metal ion upon binding of divalent cations was proposed.
Collapse
|
8
|
Trichoderma and Its Products From Laboratory to Patient Bedside in Medical Science: An Emerging Aspect. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Lam YTH, Ricardo MG, Rennert R, Frolov A, Porzel A, Brandt W, Stark P, Westermann B, Arnold N. Rare Glutamic Acid Methyl Ester Peptaibols from Sepedonium ampullosporum Damon KSH 534 Exhibit Promising Antifungal and Anticancer Activity. Int J Mol Sci 2021; 22:ijms222312718. [PMID: 34884518 PMCID: PMC8657771 DOI: 10.3390/ijms222312718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/29/2023] Open
Abstract
Fungal species of genus Sepedonium are rich sources of diverse secondary metabolites (e.g., alkaloids, peptaibols), which exhibit variable biological activities. Herein, two new peptaibols, named ampullosporin F (1) and ampullosporin G (2), together with five known compounds, ampullosporin A (3), peptaibolin (4), chrysosporide (5), c(Trp-Ser) (6) and c(Trp-Ala) (7), have been isolated from the culture of Sepedonium ampullosporum Damon strain KSH534. The structures of 1 and 2 were elucidated based on ESI-HRMSn experiments and intense 1D and 2D NMR analyses. The sequence of ampullosporin F (1) was determined to be Ac-Trp1-Ala2-Aib3-Aib4-Leu5-Aib6-Gln7-Aib8-Aib9-Aib10-GluOMe11-Leu12-Aib13-Gln14-Leuol15, while ampullosporin G (2) differs from 1 by exchanging the position of Gln7 with GluOMe11. Furthermore, the total synthesis of 1 and 2 was carried out on solid-phase to confirm the absolute configuration of all chiral amino acids as L. In addition, ampullosporin F (1) and G (2) showed significant antifungal activity against B. cinerea and P. infestans, but were inactive against S. tritici. Cell viability assays using human prostate (PC-3) and colorectal (HT-29) cancer cells confirmed potent anticancer activities of 1 and 2. Furthermore, a molecular docking study was performed in silico as an attempt to explain the structure-activity correlation of the characteristic ampullosporins (1–3).
Collapse
Affiliation(s)
- Yen T. H. Lam
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Organic Chemistry, Faculty of Chemistry, Hanoi National University of Education, Hanoi 100000, Vietnam
| | - Manuel G. Ricardo
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Biochemistry, Faculty of Biology, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Pauline Stark
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Correspondence: ; Tel.: +49-345-5582-1310
| |
Collapse
|
10
|
Rosa S, Pesaresi P, Mizzotti C, Bulone V, Mezzetti B, Baraldi E, Masiero S. Game-changing alternatives to conventional fungicides: small RNAs and short peptides. Trends Biotechnol 2021; 40:320-337. [PMID: 34489105 DOI: 10.1016/j.tibtech.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
Fungicide use is one of the core elements of intensive agriculture because it is necessary to fight pathogens that would otherwise cause large production losses. Oomycete and fungal pathogens are kept under control using several active compounds, some of which are predicted to be banned in the near future owing to serious concerns about their impact on the environment, non-targeted organisms, and human health. To avoid detrimental repercussions for food security, it is essential to develop new biomolecules that control existing and emerging pathogens but are innocuous to human health and the environment. This review presents and discusses the use of novel low-risk biological compounds based on small RNAs and short peptides that are attractive alternatives to current contentious fungicides.
Collapse
Affiliation(s)
- Stefano Rosa
- Department of Biosciences, University of Milano, I-20133, Milano, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, I-20133, Milano, Italy
| | - Chiara Mizzotti
- Department of Biosciences, University of Milano, I-20133, Milano, Italy
| | - Vincent Bulone
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, I-60131, Ancona, Italy
| | - Elena Baraldi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, I-40126 Bologna, Italy.
| | - Simona Masiero
- Department of Biosciences, University of Milano, I-20133, Milano, Italy.
| |
Collapse
|
11
|
Golysheva EA, Boyle AL, Biondi B, Ruzza P, Kros A, Raap J, Toniolo C, Formaggio F, Dzuba SA. Probing the E/K Peptide Coiled-Coil Assembly by Double Electron-Electron Resonance and Circular Dichroism. Biochemistry 2020; 60:19-30. [PMID: 33320519 DOI: 10.1021/acs.biochem.0c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Double electron-electron resonance (DEER, also known as PELDOR) and circular dichroism (CD) spectroscopies were explored for the purpose of studying the specificity of the conformation of peptides induced by their assembly into a self-recognizing system. The E and K peptides are known to form a coiled-coil heterodimer. Two paramagnetic TOAC α-amino acid residues were incorporated into each of the peptides (denoted as K** and E**), and a three-dimensional structural investigation in the presence or absence of their unlabeled counterparts E and K was performed. The TOAC spin-labels, replacing two Ala residues in each compound, are covalently and quasi-rigidly connected to the peptide backbone. They are known not to disturb the native structure, so that any conformational change can easily be monitored and assigned. DEER spectroscopy enables the measurement of the intramolecular electron spin-spin distance distribution between the two TOAC labels, within a length range of 1.5-8 nm. This method allows the individual conformational changes for the K**, K**/E, E**, and E**/K molecules to be investigated in glassy frozen solutions. Our data reveal that the conformations of the E** and K** peptides are strongly influenced by the presence of their counterparts. The results are discussed with those from CD spectroscopy and with reference to the already reported nuclear magnetic resonance data. We conclude that the combined DEER/TOAC approach allows us to obtain accurate and reliable information about the conformation of the peptides before and after their assembly into coiled-coil heterodimers. Applications of this induced fit method to other two-component, but more complex, systems, like a receptor and antagonists, a receptor and a hormone, and an enzyme and a ligand, are discussed.
Collapse
Affiliation(s)
- Elena A Golysheva
- Novosibirsk State University, Novosibirsk 630090, Russian Federation.,V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russian Federation
| | - Aimee L Boyle
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy.,Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy.,Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Alexander Kros
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Claudio Toniolo
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy.,Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.,Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy.,Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Sergei A Dzuba
- Novosibirsk State University, Novosibirsk 630090, Russian Federation.,V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russian Federation
| |
Collapse
|
12
|
De Zotti M, Sella L, Bolzonello A, Gabbatore L, Peggion C, Bortolotto A, Elmaghraby I, Tundo S, Favaron F. Targeted Amino Acid Substitutions in a Trichoderma Peptaibol Confer Activity against Fungal Plant Pathogens and Protect Host Tissues from Botrytis cinerea Infection. Int J Mol Sci 2020; 21:E7521. [PMID: 33053906 PMCID: PMC7589190 DOI: 10.3390/ijms21207521] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Fungal species belonging to the Trichoderma genus are commonly used as biocontrol agents against several crop pathogens. Among their secondary metabolites, peptaibols are helical, antimicrobial peptides, which are structurally stable even under extreme pH and temperature conditions. The promise of peptaibols as agrochemicals is, however, hampered by poor water solubility, which inhibits efficient delivery for practical use in crop protection. Using a versatile synthetic strategy, based on green chemistry procedures, we produced water-soluble analogs of the short-length peptaibol trichogin. Although natural trichogin was inactive against the tested fungal plant pathogens (Botrytis cinerea, Bipolaris sorokiniana, Fusarium graminearum, and Penicillium expansum), three analogs completely inhibited fungal growth at low micromolar concentrations. The most effective peptides significantly reduced disease symptoms by B. cinerea on common bean and grapevine leaves and ripe grape berries without visible phytotoxic effects. An in-depth conformational analysis featuring a 3D-structure-activity relationship study indicated that the relative spatial position of cationic residues is crucial for increasing peptide fungicidal activity.
Collapse
Affiliation(s)
- Marta De Zotti
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (L.G.); (C.P.); (A.B.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro (Padova), Italy; (L.S.); (A.B.); (I.E.); (S.T.); (F.F.)
| | - Angela Bolzonello
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro (Padova), Italy; (L.S.); (A.B.); (I.E.); (S.T.); (F.F.)
| | - Laura Gabbatore
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (L.G.); (C.P.); (A.B.)
| | - Cristina Peggion
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (L.G.); (C.P.); (A.B.)
| | - Alessandro Bortolotto
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (L.G.); (C.P.); (A.B.)
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro (Padova), Italy; (L.S.); (A.B.); (I.E.); (S.T.); (F.F.)
| | - Ibrahim Elmaghraby
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro (Padova), Italy; (L.S.); (A.B.); (I.E.); (S.T.); (F.F.)
- Agricultural Research Center, Central Laboratory of Organic Agriculture 9, Cairo Univ. St., Giza 12619, Egypt
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro (Padova), Italy; (L.S.); (A.B.); (I.E.); (S.T.); (F.F.)
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro (Padova), Italy; (L.S.); (A.B.); (I.E.); (S.T.); (F.F.)
| |
Collapse
|
13
|
De Zotti M, Syryamina VN, Hussain R, Longo E, Siligardi G, Dzuba SA, Stella L, Formaggio F. A Temperature-Driven, Reversible, Helical-Handedness Inversion in Peptaibol Analogues Tuned by the C-Terminal Capping Moiety. Chembiochem 2019; 20:2125-2132. [PMID: 31095838 DOI: 10.1002/cbic.201900235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 11/07/2022]
Abstract
Trichogin is a natural peptide endowed with antimicrobial and antitumor activity. A member of the peptaibol family, trichogin possesses a C-terminal amino alcohol. In the past, this moiety was substituted for a methyl ester for synthetic purposes and it was observed that this apparently slight modification caused significant changes in the peptide bioactivity. With the aim of understanding the reasons behind such observations, a detailed spectroscopic study on a number of trichogin analogues has been performed. Herein, data obtained from synchrotron radiation circular dichroism, NMR spectroscopy, and fluorescence spectroscopy in organic solvents at cryogenic temperatures are compared with those independently acquired by means of EPR spectroscopy at 80 K. It is unambiguously revealed that the presence of a reversible, temperature-driven, screw-sense interconversion from a right- to left-handed helix is determined by the C-terminal capping moiety. Data demonstrate, for the first time, the key role of a C-terminal methyl ester in promoting peptide screw-sense inversion.
Collapse
Affiliation(s)
- Marta De Zotti
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Victoria N Syryamina
- Institute of Chemical Kinetics and Combustion, RAS, Ulitsa Institutskaya 3, Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, Ulitsa Pirogova 2, Novosibirsk, 630090, Russian Federation
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Innovation Campus, Chilton, Didcot, Oxfordshire, UK
| | - Edoardo Longo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bozen-Bolzano, Italy
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Innovation Campus, Chilton, Didcot, Oxfordshire, UK
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, RAS, Ulitsa Institutskaya 3, Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, Ulitsa Pirogova 2, Novosibirsk, 630090, Russian Federation
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della ricerca scientifica 1, 00133, Rome, Italy
| | - Fernando Formaggio
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
14
|
Zhao P, Xue Y, Li X, Li J, Zhao Z, Quan C, Gao W, Zu X, Bai X, Feng S. Fungi-derived lipopeptide antibiotics developed since 2000. Peptides 2019; 113:52-65. [PMID: 30738838 DOI: 10.1016/j.peptides.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Lipopeptide antibiotics have linear or cyclic structures with one or more hydrocarbon tails linked to the N-terminus of a short oligopeptide that may be chemically modified and/or contain unusual amino acid residues in their structures. They possess huge potential as pharmaceutical drugs and biocontrol agents, and ˜30 representative genera of fungi are known to produce them. Some chemically synthesised derivatives have already been developed into commercial products or subjected to clinical trials, including cilofungin, caspofungin, micafungin, anidulafungin, rezafungin, emodepside, fusafungine and destruxins. This review summarizes 200 fungi-derived compounds reported since 2000, including 95 cyclic depsipeptides, 67 peptaibiotics (including 35 peptaibols, eight lipoaminopeptides, and five lipopeptaibols), and 38 non-depsipeptide and non-peptaibiotic lipopeptides. Their sources, structural sequences, antibiotic activities (e.g. antibacterial, antifungal, antiviral, antimycobacterial, antimycoplasmal, antimalarial, antileishmanial, insecticidal, antitrypanosomal and nematicidal), structure-activity relationships, mechanisms of action, and specific relevance are discussed. These compounds have attracted considerable interest within the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Xin Li
- Life Science College, Yuncheng University, Yuncheng, 044000, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
15
|
Das S, Ben Haj Salah K, Djibo M, Inguimbert N. Peptaibols as a model for the insertions of chemical modifications. Arch Biochem Biophys 2018; 658:16-30. [DOI: 10.1016/j.abb.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
16
|
Rein S, Lewe P, Andrade SL, Kacprzak S, Weber S. Global analysis of complex PELDOR time traces. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 295:17-26. [PMID: 30092553 DOI: 10.1016/j.jmr.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 05/24/2023]
Abstract
Pulsed electron-electron double resonance (PELDOR, alternatively called DEER for double electron-electron resonance) pulse sequences allow for the detection of echo decay curves that are modulated by dipole-dipole-coupling frequencies of interacting electron spins. With increasing distance between them, the echo decay needs to be monitored over a progressively extended time period. However, since the echo intensity typically falls off exponentially with increasing time, this might be problematic with respect to the minimum signal-to-noise ratio required for a sound data analysis. In this contribution we present the new PELDOR analysis tool GloPel (Global analysis of PELDOR data), an open-source Python-based application, that allows to extract improved-quality distance distributions from PELDOR data for which no ideal signal-to-noise ratio can be achieved for a very long observation window. By using Tikhonov regularization, GloPel allows for the simultaneous analysis of two time traces acquired for a sample in two different observation time windows, thus taking advantage of both, the typically high signal-to-noise ratio of the time trace acquired at early times of the echo decay, and the best possible background function fitted for the decay at later times, which is in most cases superimposed with considerable noise. In this way, short distances are not overseen in the higher noise of the longer time traces while long distances are not artificially shortened by limiting the observation time window of the experiment. Following our suggested data acquisition procedure, a significant reduction of the measurement time may also be achieved.
Collapse
Affiliation(s)
- Stephan Rein
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Philipp Lewe
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Susana L Andrade
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Sylwia Kacprzak
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| |
Collapse
|
17
|
Kumar P, van Son M, Zheng T, Valdink D, Raap J, Kros A, Huber M. Coiled-coil formation of the membrane-fusion K/E peptides viewed by electron paramagnetic resonance. PLoS One 2018; 13:e0191197. [PMID: 29351320 PMCID: PMC5774749 DOI: 10.1371/journal.pone.0191197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
The interaction of the complementary K (Ac-(KIAALKE)3-GW-NH2) and E (Ac-(EIAALEK)3-GY-NH2) peptides, components of the zipper of an artificial membrane fusion system (Robson Marsden H. et al. Angew Chemie Int Ed. 2009) is investigated by electron paramagnetic resonance (EPR). By frozen solution continuous-wave EPR and double electron-electron resonance (DEER), the distance between spin labels attached to the K- and to the E-peptide is measured. Three constructs of spin-labelled K- and E-peptides are used in five combinations for low temperature investigations. The K/E heterodimers are found to be parallel, in agreement with previous studies. Also, K homodimers in parallel orientation were observed, a finding that was not reported before. Comparison to room-temperature, solution EPR shows that the latter method is less specific to detect this peptide-peptide interaction. Combining frozen solution cw-EPR for short distances (1.8 nm to 2.0 nm) and DEER for longer distances thus proves versatile to detect the zipper interaction in membrane fusion. As the methodology can be applied to membrane samples, the approach presented suggests itself for in-situ studies of the complete membrane fusion process, opening up new avenues for the study of membrane fusion.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Martin van Son
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Tingting Zheng
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dayenne Valdink
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jan Raap
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Adam C, Peters AD, Lizio MG, Whitehead GFS, Diemer V, Cooper JA, Cockroft SL, Clayden J, Webb SJ. The Role of Terminal Functionality in the Membrane and Antibacterial Activity of Peptaibol-Mimetic Aib Foldamers. Chemistry 2018; 24:2249-2256. [PMID: 29210477 DOI: 10.1002/chem.201705299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 01/04/2023]
Abstract
Peptaibols are peptide antibiotics that typically feature an N-terminal acetyl cap, a C-terminal aminoalcohol, and a high proportion of α-aminoisobutyric acid (Aib) residues. To establish how each feature might affect the membrane-activity of peptaibols, biomimetic Aib foldamers with different lengths and terminal groups were synthesised. Vesicle assays showed that long foldamers (eleven Aib residues) with hydrophobic termini had the highest ionophoric activity. C-terminal acids or primary amides inhibited activity, while replacement of an N-terminal acetyl with an azide group made little difference. Crystallography showed that N3 Aib11 CH2 OTIPS folded into a 310 helix 2.91 nm long, which is close to the bilayer hydrophobic width. Planar bilayer conductance assays showed discrete ion channels only for N-acetylated foldamers. However long foldamers with hydrophobic termini had the highest antibacterial activity, indicating that ionophoric activity in vesicles was a better indicator of antibacterial activity than the observation of discrete ion channels.
Collapse
Affiliation(s)
- Catherine Adam
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Anna D Peters
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - M Giovanna Lizio
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - George F S Whitehead
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Vincent Diemer
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - James A Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Simon J Webb
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| |
Collapse
|
19
|
Syryamina VN, De Zotti M, Toniolo C, Formaggio F, Dzuba SA. Alamethicin self-assembling in lipid membranes: concentration dependence from pulsed EPR of spin labels. Phys Chem Chem Phys 2018; 20:3592-3601. [DOI: 10.1039/c7cp07298h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial action of the peptide antibiotic alamethicin (Alm) is commonly related to peptide self-assembling resulting in the formation of voltage-dependent channels in bacterial membranes, which induces ion permeation.
Collapse
Affiliation(s)
- Victoria N. Syryamina
- Institute of Chemical Kinetics and Combustion
- RAS
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| | - Marta De Zotti
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Claudio Toniolo
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Institute of Biomolecular Chemistry
| | - Fernando Formaggio
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Institute of Biomolecular Chemistry
| | - Sergei A. Dzuba
- Institute of Chemical Kinetics and Combustion
- RAS
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| |
Collapse
|
20
|
De Zotti M, Wright K, d’Aboville E, Toffoletti A, Toniolo C, Longhi G, Mazzeo G, Abbate S, Formaggio F. Synthesis of Intrinsically Blue-Colored bis-Nitronyl Nitroxide Peptidomimetic Templates and Their Conformational Preferences as Revealed by a Combined Spectroscopic Analysis. J Org Chem 2017; 82:10033-10042. [DOI: 10.1021/acs.joc.7b01498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marta De Zotti
- Department
of Chemistry, University of Padova, 35131 Padova, Italy
| | - Karen Wright
- Institute
Lavoisier de Versailles, UMR 8180, University of Versailles St-Quentin en Yvelines, 78035 Versailles, France
| | - Edouard d’Aboville
- Institute
Lavoisier de Versailles, UMR 8180, University of Versailles St-Quentin en Yvelines, 78035 Versailles, France
| | | | - Claudio Toniolo
- Department
of Chemistry, University of Padova, 35131 Padova, Italy
- ICB,
Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Giovanna Longhi
- Department
of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giuseppe Mazzeo
- Department
of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sergio Abbate
- Department
of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Fernando Formaggio
- Department
of Chemistry, University of Padova, 35131 Padova, Italy
- ICB,
Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| |
Collapse
|
21
|
Matveeva AG, Yushkova YV, Morozov SV, Grygor’ev IA, Dzuba SA. Multi-Gaussian Monte Carlo Analysis of PELDOR Data in the Frequency Domain. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/zpch-2016-0830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pulsed double electron–electron resonance technique (PELDOR or DEER) is often applied to study conformations and aggregation of spin-labelled macromolecules. Because of the ill-posed nature of the integral equation determining the distance distribution function, a regularization procedure is required to restrict the smoothness of the solution. In this work, we performed PELDOR measurements for new flexible nitroxide biradicals based on trolox, which is the synthetic analogue of α-tocopherol; spin-labelled trolox derivatives are investigated as potential anti-cancer drugs. We use regularization by an approximation of the solution with a sum of limited number of Gaussians, by varying their positions, widths and amplitudes. Their best-fitted values were found by a completely random Monte Carlo process. The use of the frequency-domain PELDOR data allowed diminution of the artifacts induced by spin–spin electron–nuclear and intermolecular electron–electron interactions. It was found that for the all biradicals studied, the use of three Gaussians was enough for good agreement with the experiments. The number of trials for obtaining satisfactory result was found to be quite reasonable, which is explained by presence of the singularity in the core of integral equation. The maxima of inter-spin distance distribution for different biradicals were found to vary between 1.5 and 2.3 nm, depending on the linkers between the Trolox core and nitroxides. The distance distributions around these positions reflect flexibility of the biradicals.
Collapse
Affiliation(s)
- Anna G. Matveeva
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Yulia V. Yushkova
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russian Federation
| | - Sergei V. Morozov
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russian Federation
| | - Igor A. Grygor’ev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russian Federation
| | - Sergei A. Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| |
Collapse
|
22
|
Schmidt T, Ghirlando R, Baber J, Clore GM. Quantitative Resolution of Monomer-Dimer Populations by Inversion Modulated DEER EPR Spectroscopy. Chemphyschem 2016; 17:2987-2991. [PMID: 27442455 PMCID: PMC5590656 DOI: 10.1002/cphc.201600726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 12/13/2022]
Abstract
A simple method, based on inversion modulated double electron-electron resonance electron paramagnetic resonance (DEER EPR) spectroscopy, is presented for determining populations of monomer and dimer in proteins (as well as any other biological macromolecules). The method is based on analysis of modulation depth versus electron double resonance (ELDOR) pulse flip angle. High accuracy is achieved by complete deuteration, extensive sampling of a large number of ELDOR pulse flip angle values, and combined analysis of differently labeled spin samples. We demonstrate the method using two different proteins: an obligate monomer exemplified by the small immunoglobulin binding B domain of protein A, and the p66 subunit of HIV-1 reverse transcriptase which exists as an equilibrium mixture of monomer and dimer species whose relative populations are affected by glycerol content. This information is crucial for quantitative analysis of distance distributions involving proteins that may exist as mixtures of monomer, dimer and high order multimers under the conditions of the DEER EPR experiment.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Rodolfo Ghirlando
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - James Baber
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
23
|
Dzuba SA. The determination of pair-distance distribution by double electron-electron resonance: regularization by the length of distance discretization with Monte Carlo calculations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:113-119. [PMID: 27289419 DOI: 10.1016/j.jmr.2016.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 05/24/2023]
Abstract
Pulsed double electron-electron resonance technique (DEER, or PELDOR) is applied to study conformations and aggregation of peptides, proteins, nucleic acids, and other macromolecules. For a pair of spin labels, experimental data allows for the determination of their distance distribution function, P(r). P(r) is derived as a solution of a first-kind Fredholm integral equation, which is an ill-posed problem. Here, we suggest regularization by increasing the distance discretization length to its upper limit where numerical integration still provides agreement with experiment. This upper limit is found to be well above the lower limit for which the solution instability appears because of the ill-posed nature of the problem. For solving the integral equation, Monte Carlo trials of P(r) functions are employed; this method has an obvious advantage of the fulfillment of the non-negativity constraint for P(r). The regularization by the increasing of distance discretization length for the case of overlapping broad and narrow distributions may be employed selectively, with this length being different for different distance ranges. The approach is checked for model distance distributions and for experimental data taken from literature for doubly spin-labeled DNA and peptide antibiotics.
Collapse
Affiliation(s)
- Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation.
| |
Collapse
|