1
|
Jain R, Sharma D, Kumar R, Kumar R. Structural, kinetic and thermodynamic characterizations of SDS-induced molten globule state of a highly negatively charged cytochrome c. J Biochem 2019; 165:125-137. [PMID: 30371870 DOI: 10.1093/jb/mvy087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/26/2018] [Indexed: 11/14/2022] Open
Abstract
This study presents the structural, kinetic and thermodynamic characterizations of previously unknown submicellar concentrations of SDS-induced molten globule (MGSDS) state of a highly negatively charged base-denatured ferricytochrome c (UB-state) at pH ∼12.8 (±0.2). The far-UV CD, near-UV CD, ANS-fluorescence data of UB-state in the presence of different concentrations of SDS indicate that the submicellar concentrations of SDS (≤0.4 mM) transform the UB-state to MGSDS-state. The MGSDS-state has native-like α-helical secondary structure but lacks tertiary structure. The free energy change (ΔG°D) for UB→ MGSDS transition determined by far-UV CD (∼2.7 kcal mol-1) is slightly higher than those determined by fluorescence (∼2.0 kcal mol-1) at 25°C. At very low SDS and NaCl concentrations, the MGSDS-state undergoes cold denaturation. As SDS concentration is increased, the thermal denaturation temperature increases and the cold denaturation temperature decrease. Kinetic experiments involving the measurement of the CO-association rate to the base-denatured ferrocytochrome c at pH ≈12.8 (±0.2), 25°C indicate that the submicellar concentrations of SDS restrict the internal dynamics of base-denatured protein.
Collapse
Affiliation(s)
- Rishu Jain
- School of Chemistry and Biochemistry, Thapar University, Patiala, India.,Department of Chemistry, Gujranwala Guru Nanak Khalsa College, Ghumar Mandi, Civil Lines, Ludhiana, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Rakesh Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Rajesh Kumar
- School of Chemistry and Biochemistry, Thapar University, Patiala, India.,School of Basic and Applied Sciences, Department of Chemical Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Kumar R, Kumar R, Sharma D, Garg M, Kumar V, Agarwal MC. Macromolecular crowding-induced molten globule states of the alkali pH-denatured proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1102-1114. [DOI: 10.1016/j.bbapap.2018.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/07/2018] [Accepted: 08/30/2018] [Indexed: 11/26/2022]
|
3
|
Effects of lyotropic anions on thermodynamic stability and dynamics of horse cytochrome c. Biophys Chem 2018; 240:88-97. [DOI: 10.1016/j.bpc.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 11/19/2022]
|
4
|
Kumar R, Sharma D, Kumar V, Kumar R. Factors defining the effects of macromolecular crowding on dynamics and thermodynamic stability of heme proteins in-vitro. Arch Biochem Biophys 2018; 654:146-162. [DOI: 10.1016/j.abb.2018.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
|
5
|
Kumar R. Analysis of the pH-dependent thermodynamic stability, local motions, and microsecond folding kinetics of carbonmonoxycytochrome c. Arch Biochem Biophys 2016; 606:16-25. [DOI: 10.1016/j.abb.2016.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/11/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
|
6
|
Kumar R, Sharma D, Jain R, Kumar S, Kumar R. Role of macromolecular crowding and salt ions on the structural-fluctuation of a highly compact configuration of carbonmonoxycytochrome c. Biophys Chem 2015; 207:61-73. [DOI: 10.1016/j.bpc.2015.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 11/25/2022]
|
7
|
Jain R, Sharma D, Kumar S, Kumar R. Factor Defining the Effects of Glycine Betaine on the Thermodynamic Stability and Internal Dynamics of Horse Cytochrome c. Biochemistry 2014; 53:5221-35. [DOI: 10.1021/bi500356c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rishu Jain
- School
of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Deepak Sharma
- Council
of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Sandeep Kumar
- School
of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Rajesh Kumar
- School
of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| |
Collapse
|
8
|
Kumar S, Sharma D, Kumar R. Effect of urea and alkylureas on the stability and structural fluctuation of the M80-containing Ω-loop of horse cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:641-55. [DOI: 10.1016/j.bbapap.2014.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 11/27/2022]
|
9
|
Jain R, Sharma D, Kumar R. Effects of alcohols on the stability and low-frequency local motions that control the slow changes in structural dynamics of ferrocytochrome c. J Biochem 2013; 154:341-54. [DOI: 10.1093/jb/mvt059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Kumar R, Prabhu NP, Yadaiah M, Bhuyan AK. Protein stiffening and entropic stabilization in the subdenaturing limit of guanidine hydrochloride. Biophys J 2004; 87:2656-62. [PMID: 15454460 PMCID: PMC1304684 DOI: 10.1529/biophysj.104.044701] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 07/07/2004] [Indexed: 11/18/2022] Open
Abstract
Subdenaturing concentrations of guanidine hydrochloride (GdnHCl) stabilize proteins. For ferrocytochrome c the stabilization is detected at subglobal level with no measured change in global stability. These deductions are made by comparing observed rates of thermally driven ferrocytochrome cHCO reactions with global unfolding rates of ferrocytochrome c measured by stopped flow and NMR hydrogen exchange in the presence of a wide range of GdnHCl concentrations at pH 7, 22 degrees C.
Collapse
Affiliation(s)
- Rajesh Kumar
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | |
Collapse
|
11
|
LeMaster DM. NMR Relaxation Order Parameter Analysis of the Dynamics of Protein Side Chains. J Am Chem Soc 1999. [DOI: 10.1021/ja982988r] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David M. LeMaster
- Contribution from the Chemical Science and Technology Group 4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|
12
|
Abstract
Molecular dynamics (MD) simulations have been carried out for 62.5 ps on crystal structures of deoxy sickle cell hemoglobin (HbS) and normal deoxy hemoglobin (HbA) using the CHARMM MD algorithm, with a time step of 0.001 ps. In the trajectory analysis of the 12.5-62.5 (50 ps) simulation, oscillations of the radius of gyration and solvent-accessible surface area were calculated. HbS exhibited a general contraction during the simulation, while HbA exhibited a nearly constant size. The average deviations of simulated structures from the starting structures were found to be 1.8 A for HbA and 2.3 A for HbS. The average rms amplitudes of atomic motions (atomic flexibility) were about 0.7 A HbA and about 1.0 A for HbS. The amplitudes of backbone motion correlate well with temperature factors derived from x-ray crystallography. A comparison of flexibility between the alpha- and beta-chains in both HbA and HbS indicates that the beta-chains generally exhibited greater flexibility than the alpha-chains, and that the HbS beta-chains exhibit greater flexibility in the N-terminal and D- and F-helix regions than do those of HbA. The average amplitude of backbone torsional oscillations was about 9 degrees, a value comparable with that of other simulations, with enhanced torsional oscillation occurring primarily at the ends of helices or in loop regions between helices. Comparison of atomic flexibility and torsional oscillation results suggests that the increased beta-chain flexibility results from relatively concerted motions of secondary structure elements. The increased flexibility may play an important role in HbS polymerization.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Prabhakaran
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago 60680
| | | |
Collapse
|
13
|
Perahia D, Levy RM, Karplus M. Motions of an ?-helical polypeptide: Comparison of molecular and harmonic dynamics. Biopolymers 1990. [DOI: 10.1002/bip.360290402] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Wong C, Zheng C, McCammon J. Glass transition in SPC/E water and in a protein solution: A molecular dynamics simulation study. Chem Phys Lett 1989. [DOI: 10.1016/s0009-2614(89)87278-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Post CB, Brooks BR, Karplus M, Dobson CM, Artymiuk PJ, Cheetham JC, Phillips DC. Molecular dynamics simulations of native and substrate-bound lysozyme. A study of the average structures and atomic fluctuations. J Mol Biol 1986; 190:455-79. [PMID: 3783708 DOI: 10.1016/0022-2836(86)90015-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular dynamics simulations of hen egg-white lysozyme in the free and substrate-bound states are reported and the nature of the average structures and atomic fluctuations are analyzed. Crystallographic water molecules of structural importance, as determined by hydrogen-bonding, were included in the simulations. Comparisons are made between the dynamics and the X-ray results for the atomic positions, the main-chain and side-chain dihedral angles, and the hydrogen-bonding geometry. Improvements over earlier simulations in the potential energy function and methodology resulted in stable trajectories with the C alpha co-ordinates within 1.5 A of the starting X-ray structure. Structural features analyzed in the simulations agreed well with the X-ray results except for some surface residues. The Asx chi 2 dihedral distribution and the geometry of hydrogen bonding at reverse turns show differences; possible causes are discussed. The relation between the magnitudes and time-scales of the residue fluctuations and secondary structural features, such as helices beta-sheets and coiled loops, is examined. Significant differences in the residue mobilities between the simulations of the free and substrate-bound states were found in a region of the enzyme that is in direct contact with the substrate and in a region that is distant from the active-site cleft. The dynamic behavior of the structural water molecules is analyzed by examining the correlation between the fluctuations of the water oxygens and the lysozyme heavy-atoms to which they are hydrogen-bonded.
Collapse
|
16
|
|
17
|
Abstract
Properly carried out, high-resolution X-ray diffraction data collection followed by careful least-squares refinement can give the spatial distribution of the high-frequency mean-square displacements in a protein. These displacements reflect both individual atomic fluctuations in hard variables (bond lengths and bond angles) and collective motions involving soft variables (torsion angles, nonbonded interactions). Lower frequency, large amplitude motions and rapid but improbable motions are not quantifiable, but they may lead to such complete disorder that their existence can at least be inferred from the absence of interpretable electron density for some sections of the structure. Interior residues are more rigid than groups on the surface, and structural constraints are reflected in restricted motion even for surface residues. Amplitudes of motion of 0.5 A or greater are not uncommon. The temperature dependence of these fast motions varies considerably over the structure. In general, large [chi 2] values have large temperature dependence, while small displacements are less affected by temperature; however, exceptions are common. Significant reduction in [chi 2] on cooling establishes that proteins are mobile even in the crystalline state, and that static disorder is not the dominant contributor to the individual mean square displacements. Disordered regions in electron density maps are no longer automatically taken as signs of errors in structure determination. It is now recognized that the absence of strong electron density is often an indicator of conformational flexibility. Some of the functional roles for protein dynamics are beginning to be understood. Missing from these results are the physicochemical details that can be extracted from thermal motion analysis of small molecule crystal structures. Application of these methods to protein data is very difficult, but it is well to remember that just over 10 years ago it was commonly felt that protein structures could not even be refined. Certainly some small, well-diffracting proteins should be amenable to many of the sophisticated small-molecule analyses, as they yield X-ray data to resolutions comparable to simple organic structures. The most important type of analysis that awaits is anisotropic B factor refinement, which would give the principal directions of motion added to the amplitude information now obtained. Unfortunately, refinement of unrestrained anisotropic thermal elipsoids requires six parameters for each atom instead of a single isotropic B parameter, and even 1.5 A resolution data do not provide enough overdeterminacy.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
18
|
Prabhakaran M, Harvey SC, McCammon JA. Molecular-dynamics simulation of phenylalanine transfer RNA. II. Amplitudes, anisotropies, and anharmonicities of atomic motions. Biopolymers 1985; 24:1189-204. [PMID: 2992621 DOI: 10.1002/bip.360240707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Brooks CL, Brünger A, Karplus M. Active site dynamics in protein molecules: a stochastic boundary molecular-dynamics approach. Biopolymers 1985; 24:843-65. [PMID: 2410050 DOI: 10.1002/bip.360240509] [Citation(s) in RCA: 305] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Ringe D, Petsko GA. Mapping protein dynamics by X-ray diffraction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1985; 45:197-235. [PMID: 3892584 DOI: 10.1016/0079-6107(85)90002-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Levy RM, Srinivasan AR, Olson WK, McCammon JA. Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers 1984; 23:1099-112. [PMID: 6733249 DOI: 10.1002/bip.360230610] [Citation(s) in RCA: 189] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|