1
|
Spontaneous and Electrically Induced Anisotropy of Composite Agarose Gels. Gels 2022; 8:gels8110753. [DOI: 10.3390/gels8110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
Agarose gels containing and not bacteriorhodopsin purple membranes (incorporated before gelling) manifest spontaneous optical anisotropy. The dependencies of the anisotropy on the agarose concentration and time have been studied. The rise in the anisotropy is explained by the predominant orientation of the agarose fibers during the gelling and subsequent deformation of the gel net. In the electric field, additional optical anisotropy rises, which is caused by the orientation of the membranes. A procedure has been developed to separate electrically induced and spontaneous anisotropy in composite gels. The isoelectric points and surface electric potential of bacteriorhodopsin trimer and purple membranes are calculated by the method of protein electrostatics to explain their electric asymmetry, which leads to perpendicular orientation in the direct electric field and longitudinal in the kilohertz sinusoidal field. The results allow for an increase in the separation capability of composite gels of electrophoresis for macromolecules with different sizes by applying an appropriate electric field to modulate the effective pore size.
Collapse
|
2
|
Serwer P, Wright ET. In-Gel Isolation and Characterization of Large (and Other) Phages. Viruses 2020; 12:v12040410. [PMID: 32272774 PMCID: PMC7232213 DOI: 10.3390/v12040410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
We review some aspects of the rapid isolation of, screening for and characterization of jumbo phages, i.e., phages that have dsDNA genomes longer than 200 Kb. The first aspect is that, as plaque-supporting gels become more concentrated, jumbo phage plaques become smaller. Dilute agarose gels are better than conventional agar gels for supporting plaques of both jumbo phages and, prospectively, the even larger (>520 Kb genome), not-yet-isolated mega-phages. Second, dilute agarose gels stimulate propagation of at least some jumbo phages. Third, in-plaque techniques exist for screening for both phage aggregation and high-in-magnitude, negative average electrical surface charge density. The latter is possibly correlated with high phage persistence in blood. Fourth, electron microscopy of a thin section of a phage plaque reveals phage type, size and some phage life cycle information. Fifth, in-gel propagation is an effective preparative technique for at least some jumbo phages. Sixth, centrifugation through sucrose density gradients is a relatively non-destructive jumbo phage purification technique. These basics have ramifications in the development of procedures for (1) use of jumbo phages for phage therapy of infectious disease, (2) exploration of genomic diversity and evolution and (3) obtaining accurate metagenomic analyses.
Collapse
|
3
|
Obitayo W, Luo S, Xiao Z, Liu T, Guan J. Gel electrophoresis and Raman mapping for determining the length distribution of SWCNTs. RSC Adv 2014. [DOI: 10.1039/c4ra05885b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple method (GEP-SRSPL) combines gel electrophoresis and simultaneous Raman scattering and photoluminescence spectroscopy for length distribution measurements of SWCNTs.
Collapse
Affiliation(s)
- Waris Obitayo
- High-Performance Materials Institute
- Florida State University
- Tallahassee, USA
| | - Sida Luo
- High-Performance Materials Institute
- Florida State University
- Tallahassee, USA
| | - Zhiwei Xiao
- High-Performance Materials Institute
- Florida State University
- Tallahassee, USA
| | - Tao Liu
- High-Performance Materials Institute
- Florida State University
- Tallahassee, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering
- FAMU-FSU College of Engineering
- Florida State University
- Tallahassee, USA
| |
Collapse
|
4
|
Serwer P, Wright ET. Agarose gel electrophoresis reveals structural fluidity of a phage T3 DNA packaging intermediate. Electrophoresis 2012; 33:352-65. [PMID: 22222979 DOI: 10.1002/elps.201100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (i) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for the stabilization of structure and then (ii) determining effective radius by two-dimensional agarose gel electrophoresis (2D-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase the production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2D-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when the ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
5
|
Tietz D. An innovative method for quality control of conjugated Haemophilus influenzae vaccines: A short review of two-dimensional nanoparticle electrophoresis. J Chromatogr A 2009; 1216:9028-33. [DOI: 10.1016/j.chroma.2009.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/26/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022]
|
6
|
Tietz D. Computer-assisted 2-D agarose electrophoresis ofHaemophilus influenzae type B meningitis vaccines and analysis of polydisperse particle populations in the size range of viruses: A review. Electrophoresis 2007; 28:512-24. [PMID: 17304485 DOI: 10.1002/elps.200600532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
When protein-polysaccharide conjugated vaccines were first developed for the immunization of small children against meningitis caused by infection with Haemophilus influenzae type b (Hib), the vaccine preparations varied in immunogenicity. Testing for immunogenicity was time-consuming and alternative analytical procedures for determining vaccine quality were unsatisfactory. For example, due to the very high molecular weight of the vaccine particles, immunogens could only be physically characterized as a fraction in the void volume of Sepharose gel filtration. In search of better analytical methods, a computer-assisted electrophoretic technique for analyzing such vaccines was developed in the period from 1983 to 1995. This new approach made it possible to analyze highly negatively charged particles as large as or larger than intact viruses. 2-D gel patterns were generated that varied depending on the conditions of the particular vaccine preparation and were therefore characteristic of each vaccine sample. Thus, vaccine particle populations with a continuous size variation over a wide range (polydisperse) could be characterized according to size and free mobility (related to particle surface net charge density). These advances are reviewed in this article, since the developed methods are still a promising tool for vaccine quality control and for predicting immunogen effectiveness in the production of vaccines. The technique is potentially beneficial for Hib immunogens and other high-molecular-mass vaccines. Additional biomedical applications for this nondenaturing electrophoretic technique are briefly discussed and detailed information about computational and mathematical procedures and theoretical aspects is provided in the Appendices.
Collapse
|
7
|
Sanandaji N, Carlsson N, Voinova M, Akerman B. Comparison of oligonucleotide migration in a bicontinuous cubic phase of monoolein and water and in a fibrous agarose hydrogel. Electrophoresis 2006; 27:3007-17. [PMID: 16807936 DOI: 10.1002/elps.200500812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Porous hydrogels such as agarose are commonly used to analyze DNA and water-soluble proteins by electrophoresis. More recently lyotropic liquid crystals, such as the diamond cubic phase formed by the lipid monoolein and water, has become a new type of well-defined porous structure of interest for both hydrophilic and amphiphilic analytes. Here we compare these two types of matrixes by investigating the nature of retardation they confer to an oligonucleotide that migrates in their respective aqueous phases. The retardation for a 25-mer oligonucleotide was found to be about 35-fold stronger in the cubic phase than in an agarose hydrogel modified to have the same average pore size. According to modelling, the strong retardation is primarily due to the fact that hydrodynamic interaction with the continuous monoolein membrane is a stronger source of friction than the steric interactions (collisions) with discrete gel fibres. A secondary effect is that the regular liquid crystal has a narrower pore-size distribution than the random network of the agarose gel. In agreement with experiments, these two effects together predict that the retardation in the cubic phase is a 30-fold stronger than in an agarose gel with the same average pore radius.
Collapse
Affiliation(s)
- Nima Sanandaji
- Department of Chemistry and Bioscience, Chalmers University of Technology, S-41296 Göteborg, Sweden
| | | | | | | |
Collapse
|
8
|
Serwer P, Griess GA. Advances in the separation of bacteriophages and related particles. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 722:179-90. [PMID: 10068140 DOI: 10.1016/s0378-4347(98)00404-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nondenaturing gel electrophoresis is used to both characterize multimolecular particles and determine the assembly pathways of these particles. Characterization of bacteriophage-related particles has yielded strategies for characterizing multimolecular particles in general. Previous studies have revealed means for using nondenaturing gel electrophoresis to determine both the effective radius and the average electrical surface charge density of any particle. The response of electrophoretic mobility to increasing the magnitude of the electrical field is used to detect rod-shaped particles. To increase the capacity of nondenaturing gel electrophoresis to characterize comparatively large particles, some current research is directed towards either determining the structure of gels used for electrophoresis or inducing steric trapping of particles in dead-end regions within the fibrous network that forms a gel. A trapping-dependent technique of pulsed-field gel electrophoresis is presented with which a DNA-protein complex can be made to electrophoretically migrate in a direction opposite to the direction of migration of protein-free DNA.
Collapse
Affiliation(s)
- P Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio 78284-7760, USA.
| | | |
Collapse
|
9
|
|
10
|
Tse C, Fletcher TM, Hansen JC. Enhanced transcription factor access to arrays of histone H3/H4 tetramer.DNA complexes in vitro: implications for replication and transcription. Proc Natl Acad Sci U S A 1998; 95:12169-73. [PMID: 9770458 PMCID: PMC22803 DOI: 10.1073/pnas.95.21.12169] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defined model systems consisting of physiologically spaced arrays of H3/H4 tetramer.5S rDNA complexes have been assembled in vitro from pure components. Analytical hydrodynamic and electrophoretic studies have revealed that the structural features of H3/H4 tetramer arrays closely resemble those of naked DNA. The reptation in agarose gels of H3/H4 tetramer arrays is essentially indistinguishable from naked DNA, the gel-free mobility of H3/H4 tetramer arrays relative to naked DNA is reduced by only 6% compared with 20% for nucleosomal arrays, and H3/H4 tetramer arrays are incapable of folding under ionic conditions where nucleosomal arrays are extensively folded. We further show that the cognate binding sites for transcription factor TFIIIA are significantly more accessible when the rDNA is complexed with H3/H4 tetramers than with histone octamers. These results suggest that the processes of DNA replication and transcription have evolved to exploit the unique structural properties of H3/H4 tetramer arrays.
Collapse
Affiliation(s)
- C Tse
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284-7760, USA
| | | | | |
Collapse
|
11
|
Serwer P, Griess GA. Adaptation of pulsed-field gel electrophoresis for the improved fractionation of spheres. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(98)00341-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Hansen JC, Kreider JI, Demeler B, Fletcher TM. Analytical ultracentrifugation and agarose gel electrophoresis as tools for studying chromatin folding in solution. Methods 1997; 12:62-72. [PMID: 9169196 DOI: 10.1006/meth.1997.0448] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Analytical ultracentrifugation and agarose gel electrophoresis each can be used to accurately quantify changes in structure that accompany chromatin folding in solution. Analytical ultracentrifugation directly measures the extent of compaction of each species present in a chromatin sample under a wide range of solution conditions. Agarose gel electrophoresis yields information about changes in the average surface charge density, size and/or shape, and conformational flexibility during chromatin folding. When used together, these methodologies are particularly powerful. Protocols for the characterization of chromatin folding by analytical ultracentrifugation and agarose gel electrophoresis are described. Discussion focuses on analysis and interpretation of experimental chromatin folding data.
Collapse
Affiliation(s)
- J C Hansen
- Department of Biochemistry, University of Texas Health Science Center at San Antonio
| | | | | | | |
Collapse
|
13
|
Serwer P, Harris RA, Miller MM, Griess GA. Use of excluded volume to increase the heterogeneity of pore size in agarose gels. Electrophoresis 1996; 17:971-6. [PMID: 8832161 DOI: 10.1002/elps.1150170603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
When testing theoretical models that quantitatively describe the sieving of macromolecules during gel electrophoresis, investigators have been limited by absence of control of the heterogeneity of the size of pores in the gel. In a recent study performed by electron microscopy of thin sections (G. A. Griess et al., J. Struct. Biol. 1993, III, 39-47), pore size heterogeneity has been increased for agarose gels by a combination of both derivatization and molecular weight reduction of the polysaccharide chains of agarose. In the present study, pore size heterogeneity is increased by a mechanism that appears to have an origin different from the origin of this previously observed increase in heterogeneity: Pore size heterogeneity is increased by addition of a polyethylene glycol (PEG) of high molecular weight (18,500) to molten agarose before gelation. In contrast, the use of a lower molecular weight PEG (either 4,000 or 7,500) causes the formation of micron-sized precipitates within a gelled network of agarose fibers. Thus far, the PEG-induced heterogeneity of pore size occurs primarily in 100-1,000 microns scale zones separated from each other by interzone regions of decreased agarose fiber density. More uniform gels are needed for the study of sieving.
Collapse
Affiliation(s)
- P Serwer
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760, USA.
| | | | | | | |
Collapse
|
14
|
Ferdows MS, Serwer P, Griess GA, Norris SJ, Barbour AG. Conversion of a linear to a circular plasmid in the relapsing fever agent Borrelia hermsii. J Bacteriol 1996; 178:793-800. [PMID: 8550515 PMCID: PMC177727 DOI: 10.1128/jb.178.3.793-800.1996] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Spirochetes of the genus Borrelia have genomes composed of both linear and circular replicons. We characterized the genomic organization of B. burgdorferi, B. hermsii, B. turicatae, and B. anserina with pulsed-field gel electrophoresis. All four species contained a linear chromosome approximately 1 Mb in size and multiple linear plasmids in the 16- to 200-kb size range. Plasmids 180 and 170 kb in size, present in the relapsing fever agents B. hermsii and B. turicatae but not in the other two species, behaved as linear duplex DNA molecules under different electrophoretic conditions. A variant of strain HSI of B. hermsii had a 180-kb circular instead of linear plasmid. There were no detectable differences in the growth rates or in the expression of cellular proteins between cells bearing linear forms and those bearing circular forms of the plasmid. The conversion to a circular conformation of monomeric length was demonstrated by the introduction of strand breaks with irradiation, restriction endonuclease analysis, and direct observation of the DNA molecules by fluorescent microscopy. Consideration of different models for the replication of linear DNA suggests that circular intermediates may be involved in the replication of linear replicons in Borrelia spp.
Collapse
Affiliation(s)
- M S Ferdows
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284, USA
| | | | | | | | | |
Collapse
|
15
|
Serwer P, Khan SA, Griess GA. Non-denaturing gel electrophoresis of biological nanoparticles: viruses. J Chromatogr A 1995; 698:251-61. [PMID: 7773365 DOI: 10.1016/0021-9673(94)01259-h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although gel electrophoresis is usually used for the fractionation of monomolecular particles, it is also applicable to the fractionation of the multimolecular complexes produced during both cellular metabolism and assembly of viruses in virus-infected cells. Gel electrophoretic procedures have been developed for determining both the size of a spherical particle and some aspects of the shape of a non-spherical particle. Capsids bound to DNA outside of the capsid can also be both fractionated and characterized. The procedures developed will be used for screening viral mutants; they also can potentially be used for diagnostic virology. Sensitivity of detection, the major current limitation, is being improved by use of both improved stains and scanning fluorimetry. The gels used for fractionation sometimes approximate random straight fiber gels, but become increasingly biphasic as the gel concentration is decreased.
Collapse
Affiliation(s)
- P Serwer
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760, USA
| | | | | |
Collapse
|
16
|
Fletcher TM, Serwer P, Hansen JC. Quantitative analysis of macromolecular conformational changes using agarose gel electrophoresis: application to chromatin folding. Biochemistry 1994; 33:10859-63. [PMID: 8086402 DOI: 10.1021/bi00202a002] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Quantitative analysis of chromatin electrophoretic mobility (mu) in agarose gels provides a measure of three structural parameters: average surface electrical charge density, which is proportional to the gel-free mu (mu 0), effective radius (Re), and particle deformability [Fletcher, T. M., Krishnan, U., Serwer, P., & Hansen, J. C. (1994) Biochemistry 33, 2226-2233]. To determine whether the intramolecular conformational changes associated with salt-dependent chromatin folding influence these electrophoretic parameters, defined oligonucleosomes were reconstituted from monodisperse tandemly repeated 5S DNA and varying amounts of histone octamers. These oligonucleosomes were subjected to both quantitative agarose gel electrophoresis and analytical velocity ultracentrifugation in buffers containing 0-2 mM MgCl2. Ionic conditions that caused a 40% increase in the oligonucleosome sedimentation coefficient (s20,w) also caused both a 30% decrease in Re and a 60% decrease in the magnitude of the mu 0. Furthermore, the Mg(2+)-dependent changes in s20,w, Re, and mu 0 each exhibited the same nonlinear dependence on the degree of nucleosome saturation of the DNA. These data demonstrate that quantitative agarose gel electrophoresis can be used to detect and characterize the process of chromatin folding. In addition, they suggest that this approach can be used for characterization of the conformational dynamics of many other types of macromolecular assemblies, including those systems that are not yet amenable for study by more traditional quantitative biophysical techniques.
Collapse
Affiliation(s)
- T M Fletcher
- Department of Biochemistry, University of Texas Health Science Center at San Antonio 78284-7760
| | | | | |
Collapse
|
17
|
Nordén B, Elvingson C, Jonsson M, Akerman B. Microscopic behaviour of DNA during electrophoresis: electrophoretic orientation. Q Rev Biophys 1991; 24:103-64. [PMID: 1924681 DOI: 10.1017/s0033583500003395] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The study of the behaviour of DNA when subjected to electric fields poses several intriguing problems of fundamental physico-chemical importance. Electric field (Kerr effect) orientation of DNA in free solution as well as migration of DNA in gel electrophoresis are two well-established, but so far rather separate, research fields. Whereas the first one has been generally concerned with basic structural and dynamical properties of DNA (Charney, 1988), the second is closely related to techniques of molecular biology (for a review on DNA electrophoresis, see stellwagen 1987).
Collapse
Affiliation(s)
- B Nordén
- Department of Physical Chemistry, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | |
Collapse
|
18
|
|