1
|
Zhao W, Zhang Y, Lv T, He J, Zhu B. A case report of a novel HIST1H1E mutation and a review of the bibliography to evaluate the genotype-phenotype correlations. Mol Genet Genomic Med 2023; 11:e2273. [PMID: 37605493 PMCID: PMC10724515 DOI: 10.1002/mgg3.2273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/14/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND HIST1H1E is a member of the H1 gene family. Excess de novo likely gene-disruptive variants involving the C-terminal tail of HIST1H1E have been reported in neurodevelopmental disorders. Although clinical phenotypes in some patients have been described in single studies, few studies have reviewed the genotype and phenotype relationships using a relatively large cohort of patients with HIST1H1E variants. METHODS Whole-exome sequencing (WES) was performed on the proband. The variant was validated using Sanger sequencing in both proband and parents. Published HIST1H1E variants in neuropsychiatric disorders were reviewed. RESULTS Herein, we reported a new de novo frameshift mutation in HIST1H1E (NM_005321.2, c.416_419dupAGAA, p.Ala141GlufsTer56) in an individual with Rahman syndrome. To explore the genotype-phenotype correlations for HIST1H1E variants in neurodevelopmental disorders, we comprehensively curated and summarized 23 variants and the clinical features from 52 patients. Our findings revealed that likely gene-disrupting variants in HIST1H1E contribute to a wide range of neurodevelopmental phenotypes. We observed the common phenotypes including craniofacial features, ID, hypotonia, and autism/behavior problem in patients with HIST1H1E variants. While the different genotypes corresponding to different phenotypes or the same phenotype were also observed. CONCLUSION These data provide scientific evidence for the genetic diagnosis and precision clinical management.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| | - Yinhong Zhang
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| | - Tao Lv
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| | - Jing He
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| | - Baosheng Zhu
- Department of Medical Genetics, First People's Hospital of Yunnan ProvinceKunmingChina
- Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- National Health CommissionKey Laboratory of Preconception Health Birth in Western ChinaKunmingChina
| |
Collapse
|
2
|
Hao F, Mishra LN, Jaya P, Jones R, Hayes JJ. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure. Mol Cell Proteomics 2022; 21:100250. [PMID: 35618225 PMCID: PMC9243160 DOI: 10.1016/j.mcpro.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
As a key structural component of the chromatin of higher eukaryotes, linker histones (H1s) are involved in stabilizing the folding of extended nucleosome arrays into higher-order chromatin structures and function as a gene-specific regulator of transcription in vivo. The H1 C-terminal domain (CTD) is essential for high-affinity binding of linker histones to chromatin and stabilization of higher-order chromatin structure. Importantly, the H1 CTD is an intrinsically disordered domain that undergoes a drastic condensation upon binding to nucleosomes. Moreover, although phosphorylation is a prevalent post-translational modification within the H1 CTD, exactly where this modification is installed and how phosphorylation influences the structure of the H1 CTD remains unclear for many H1s. Using novel mass spectrometry techniques, we identified six phosphorylation sites within the CTD of the archetypal linker histone Xenopus H1.0. We then analyzed nucleosome-dependent CTD condensation and H1-dependent linker DNA organization for H1.0 in which the phosphorylated serine residues were replaced by glutamic acid residues (phosphomimics) in six independent mutants. We find that phosphomimetics at residues S117E, S155E, S181E, S188E, and S192E resulted in a significant reduction in nucleosome-bound H1.0 CTD condensation compared with unphosphorylated H1.0, whereas S130E did not alter CTD structure. Furthermore, we found distinct effects among the phosphomimetics on H1-dependent linker DNA trajectory, indicating unique mechanisms by which this modification can influence H1 CTD condensation. These results bring to light a novel role for linker histone phosphorylation in directly altering the structure of nucleosome-bound H1 and a potential novel mechanism for its effects on chromatin structure and function.
Collapse
Affiliation(s)
- Fanfan Hao
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Laxmi N Mishra
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Prasoon Jaya
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
3
|
Zhao J, Lyu G, Ding C, Wang X, Li J, Zhang W, Yang X, Zhang VW. Expanding the mutational spectrum of Rahman syndrome: A rare disorder with severe intellectual disability and particular facial features in two Chinese patients. Mol Genet Genomic Med 2022; 10:e1825. [PMID: 35156329 PMCID: PMC8922969 DOI: 10.1002/mgg3.1825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
Background The study aimed to investigate the clinical and genetic features of Rahman syndrome caused by HIST1H1E gene mutations. Methods We retrospectively analyzed the clinical information and genetic testing results of a Rahman syndrome family in an outpatient clinic in August 2020 and summarized the clinical characteristics of the HIST1H1E gene mutations in conjunction with peer‐reviewed reports. Results A 4‐year‐old boy was diagnosed with severe developmental delay and with specific features (large head, full cheeks, high hairline, low‐set ear, sparse eyebrows, and short neck) similar to his mother (mild intellectual disability, high hairline, reduced hair, ptosis, sagging skin, and hyperkeratosis) and premature aging. Trio whole exome sequencing (WES) revealed a novel maternal c.368dup (p.G124Rfs*72) heterozygous mutation in the HIST1H1E gene. There have been only a few reported cases with mainly de novo mutations. Only six peer‐reviewed articles in English and one in Chinese have been published regarding this syndrome. From 48 children with Rahman syndrome, 21 were males and 27 were females encompassing 25 mutations in the HIST1H1E gene. All mutations located in C‐terminal tail were frameshift mutations leading to premature protein termination. Conclusion Rahman syndrome, caused by the HIST1H1E gene mutation, is a rare autosomal dominant disorder in which the patient has an unusual facial appearance with high hairline and full cheeks, and clinical manifestations of mild to severe intellectual disability, motor delay and speech delay. Genetic testing may assist in the diagnosis of these patients. This diagnosis will permit early speech rehabilitation to improve their quality of life.
Collapse
Affiliation(s)
- Jianbo Zhao
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | | | - Changhong Ding
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | - Xiaohui Wang
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | - Jiuwei Li
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | - Weihua Zhang
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | - Xinying Yang
- Department of Neurology Beijing Children’s Hospital National Center for Children’s Health Capital Medical University Beijing China
| | | |
Collapse
|
4
|
Saha A, Dalal Y. A glitch in the snitch: the role of linker histone H1 in shaping the epigenome in normal and diseased cells. Open Biol 2021; 11:210124. [PMID: 34343462 PMCID: PMC8331230 DOI: 10.1098/rsob.210124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone H1s or the linker histones are a family of dynamic chromatin compacting proteins that are essential for higher-order chromatin organization. These highly positively charged proteins were previously thought to function solely as repressors of transcription. However, over the last decade, there is a growing interest in understanding this multi-protein family, finding that not all variants act as repressors. Indeed, the H1 family members appear to have distinct affinities for chromatin and may potentially affect distinct functions. This would suggest a more nuanced contribution of H1 to chromatin organization. The advent of new technologies to probe H1 dynamics in vivo, combined with powerful computational biology, and in vitro imaging tools have greatly enhanced our knowledge of the mechanisms by which H1 interacts with chromatin. This family of proteins can be metaphorically compared to the Golden Snitch from the Harry Potter series, buzzing on and off several regions of the chromatin, in combat with competing transcription factors and chromatin remodellers, thereby critical to the epigenetic endgame on short and long temporal scales in the life of the nucleus. Here, we summarize recent efforts spanning structural, computational, genomic and genetic experiments which examine the linker histone as an unseen architect of chromatin fibre in normal and diseased cells and explore unanswered fundamental questions in the field.
Collapse
Affiliation(s)
- Ankita Saha
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Unraveling linker histone interactions in nucleosomes. Curr Opin Struct Biol 2021; 71:87-93. [PMID: 34246862 DOI: 10.1016/j.sbi.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
Considerable progress has been made recently in defining the interactions of linker histones (H1s) within nucleosomes. Major advancements include atomic resolution structures of the globular domain of full-length H1s in the context of nucleosomes containing full-length linker DNA. Although these studies have led to a detailed understanding of the interactions and dynamics of H1 globular domains in the canonical on-dyad nucleosome binding pocket, more information regarding the intrinsically disordered N-terminal and C-terminal domains is needed. In this review, we highlight studies supporting our current understanding of the structures and interactions of the N-terminal, globular, and C-terminal domains of linker histones within the nucleosome.
Collapse
|
6
|
Lyubitelev AV, Kirpichnikov MP, Studitsky VM. The Role of Linker Histones in Carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Duffney LJ, Valdez P, Tremblay MW, Cao X, Montgomery S, McConkie-Rosell A, Jiang YH. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:426-433. [PMID: 29704315 PMCID: PMC5980735 DOI: 10.1002/ajmg.b.32631] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/08/2018] [Accepted: 03/01/2018] [Indexed: 12/26/2022]
Abstract
Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p.Thr146Hisfs*50), encoding H1 histone linker protein H1.4, in a 10-year-old boy with autism and intellectual disability diagnosed through clinical whole exome sequencing. The c.435dupC at the 3' end of the mRNA leads to a frameshift and truncation of the positive charge in the carboxy-terminus of the protein. An expression study demonstrates the mutation leads to reduced protein expression, supporting haploinsufficiency of HIST1H1E protein and loss of function as an underlying mechanism of dysfunction in the brain. Taken together with other recent cases with mutations of HIST1H1E in intellectual disability, the evidence supporting the link to causality in disease is strong. Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development.
Collapse
Affiliation(s)
- Lara J Duffney
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
- Department of Neurobiology, Duke University School of Medicine Durham NC 27710 US
| | - Purnima Valdez
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
| | - Martine W Tremblay
- Program in Genetics and Genomics, Duke University School of Medicine, Durham NC 27710 US
| | - Xinyu Cao
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
| | - Sarah Montgomery
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
| | | | - Yong-hui Jiang
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
- Department of Neurobiology, Duke University School of Medicine Durham NC 27710 US
- Program in Genetics and Genomics, Duke University School of Medicine, Durham NC 27710 US
| |
Collapse
|
8
|
Machha VR, Mikek CG, Wellman S, Lewis EA. Temperature and osmotic stress dependence of the thermodynamics for binding linker histone H1 0, Its carboxyl domain (H1 0-C) or globular domain (H1 0-G) to B-DNA. Biochem Biophys Rep 2017; 12:158-165. [PMID: 29090277 PMCID: PMC5645174 DOI: 10.1016/j.bbrep.2017.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
Linker histones (H1) are the basic proteins in higher eukaryotes that are responsible for the final condensation of chromatin. In contrast to the nucleosome core histone proteins, the role of H1 in compacting DNA is not clearly understood. In this study ITC was used to measure the binding constant, enthalpy change, and binding site size for the interactions of H10, or its C-terminal (H10-C) and globular (H10-G) domains to highly polymerized calf-thymus DNA at temperatures from 288 K to 308 K. Heat capacity changes, ΔCp, for these same H10 binding interactions were estimated from the temperature dependence of the enthalpy changes. The enthalpy changes for binding H10, H10-C, or H10-G to CT-DNA are all endothermic at 298 K, becoming more exothermic as the temperature is increased. The ΔH for binding H10-G to CT-DNA is exothermic at temperatures above approximately 300 K. Osmotic stress experiments indicate that the binding of H10 is accompanied by the release of approximately 35 water molecules. We estimate from our naked DNA titration results that the binding of the H10 to the nucleosome places the H10 protein in close contact with approximately 41 DNA bp. The breakdown is that the H10 carboxyl terminus interacts with 28 bp of linker DNA on one side of the nucleosome, the H10 globular domain binds directly to 7 bp of core DNA, and shields another 6 linker DNA bases, 3 bp on either side of the nucleosome where the linker DNA exits the nucleosome core.
Collapse
Affiliation(s)
- V R Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - C G Mikek
- Department of Chemistry, Mississippi State University, Mississippi, MS 39762, USA
| | - S Wellman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - E A Lewis
- Department of Chemistry, Mississippi State University, Mississippi, MS 39762, USA
| |
Collapse
|
9
|
Ponte I, Romero D, Yero D, Suau P, Roque A. Complex Evolutionary History of the Mammalian Histone H1.1-H1.5 Gene Family. Mol Biol Evol 2017; 34:545-558. [PMID: 28100789 PMCID: PMC5400378 DOI: 10.1093/molbev/msw241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
H1 is involved in chromatin higher-order structure and gene regulation. H1 has a tripartite structure. The central domain is stably folded in solution, while the N- and C-terminal domains are intrinsically disordered. The terminal domains are encoded by DNA of low sequence complexity, and are thus prone to short insertions/deletions (indels). We have examined the evolution of the H1.1-H1.5 gene family from 27 mammalian species. Multiple sequence alignment has revealed a strong preferential conservation of the number and position of basic residues among paralogs, suggesting that overall H1 basicity is under a strong purifying selection. The presence of a conserved pattern of indels, ancestral to the splitting of mammalian orders, in the N- and C-terminal domains of the paralogs, suggests that slippage may have favored the rapid divergence of the subtypes and that purifying selection has maintained this pattern because it is associated with function. Evolutionary analyses have found evidences of positive selection events in H1.1, both before and after the radiation of mammalian orders. Positive selection ancestral to mammalian radiation involved changes at specific sites that may have contributed to the low relative affinity of H1.1 for chromatin. More recent episodes of positive selection were detected at codon positions encoding amino acids of the C-terminal domain of H1.1, which may modulate the folding of the CTD. The detection of putative recombination points in H1.1-H1.5 subtypes suggests that this process may has been involved in the acquisition of the tripartite H1 structure.
Collapse
Affiliation(s)
- Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Devani Romero
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Daniel Yero
- Instituto de Biotecnología y de Biomedicina (IBB) y Departamento de Genética y Microbiología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Lyubitelev AV, Nikitin DV, Shaytan AK, Studitsky VM, Kirpichnikov MP. Structure and Functions of Linker Histones. BIOCHEMISTRY (MOSCOW) 2017; 81:213-23. [PMID: 27262190 DOI: 10.1134/s0006297916030032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.
Collapse
Affiliation(s)
- A V Lyubitelev
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
11
|
Staneva D, Georgieva M, Miloshev G. Kluyveromyces lactis genome harbours a functional linker histone encoding gene. FEMS Yeast Res 2016; 16:fow034. [PMID: 27189369 DOI: 10.1093/femsyr/fow034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2016] [Indexed: 11/14/2022] Open
Abstract
Linker histones are essential components of chromatin in eukaryotes. Through interactions with linker DNA and nucleosomes they facilitate folding and maintenance of higher-order chromatin structures and thus delicately modulate gene activity. The necessity of linker histones in lower eukaryotes appears controversial and dubious. Genomic data have shown that Schizosaccharomyces pombe does not possess genes encoding linker histones while Kluyveromyces lactis has been reported to have a pseudogene. Regarding this controversy, we have provided the first direct experimental evidence for the existence of a functional linker histone gene, KlLH1, in K. lactis genome. Sequencing of KlLH1 from both genomic DNA and copy DNA confirmed the presence of an intact open reading frame. Transcription and splicing of the KlLH1 sequence as well as translation of its mRNA have been studied. In silico analysis revealed homology of KlLH1p to the histone H1/H5 protein family with predicted three domain structure characteristic for the linker histones of higher eukaryotes. This strongly proves that the yeast K. lactis does indeed possess a functional linker histone gene thus entailing the evolutionary preservation and significance of linker histones. The nucleotide sequences of KlLH1 are deposited in the GenBank under accession numbers KT826576, KT826577 and KT826578.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology, Bulgarian Academy of Sciences, 'Acad. Roumen Tsanev', Sofia 1113, Bulgaria
| | - Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology, Bulgarian Academy of Sciences, 'Acad. Roumen Tsanev', Sofia 1113, Bulgaria
| | - George Miloshev
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology, Bulgarian Academy of Sciences, 'Acad. Roumen Tsanev', Sofia 1113, Bulgaria
| |
Collapse
|
12
|
Cutter AR, Hayes JJ. A brief review of nucleosome structure. FEBS Lett 2015; 589:2914-22. [PMID: 25980611 DOI: 10.1016/j.febslet.2015.05.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022]
Abstract
The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones.
Collapse
Affiliation(s)
- Amber R Cutter
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Jeffrey J Hayes
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States.
| |
Collapse
|
13
|
González-Romero R, Ausio J. dBigH1, a second histone H1 in Drosophila, and the consequences for histone fold nomenclature. Epigenetics 2014; 9:791-7. [PMID: 24622397 DOI: 10.4161/epi.28427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recently, Pérez-Montero and colleagues (Developmental cell, 26: 578-590, 2013) described the occurrence of a new histone H1 variant (dBigH1) in Drosophila. The presence of unusual acidic amino acid patches at the N-terminal end of dBigH1 is in contrast to the arginine patches that exist at the N- and C-terminal domains of other histone H1-related proteins found in the sperm of some organisms. This departure from the strictly lysine-rich composition of the somatic histone H1 raises a question about the true definition of its protein members. Their minimal essential requirements appear to be the presence of a lysine- and alanine-rich, intrinsically disordered C-terminal domain, with a highly helicogenic potential upon binding to the linker DNA regions of chromatin. In metazoans, specific targeting of these regions is further achieved by a linker histone fold domain (LHFD), distinctively different from the characteristic core histone fold domain (CHFD) of the nucleosome core histones.
Collapse
Affiliation(s)
| | - Juan Ausio
- Department of Biochemistry and Microbiology; University of Victoria; Victoria, BC, Canada
| |
Collapse
|
14
|
Machha VR, Jones SB, Waddle JR, Le VH, Wellman S, Lewis EA. Exploring the energetics of histone H1.1 and H1.4 duplex DNA interactions. Biophys Chem 2013; 185:32-8. [PMID: 24317196 DOI: 10.1016/j.bpc.2013.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/28/2013] [Accepted: 11/18/2013] [Indexed: 01/11/2023]
Abstract
H1.1 and H1.4 bind tightly to both short DNA oligomers and to CT-DNA (Ka≈1×10(7)). Binding is accompanied by an unfavorable enthalpy change (∆H≈+22 kcal/mol) and a favorable entropy change (-T∆S≈-30 kcal/mol). The Tm for the H1.4/CT-DNA complex is increased by 9 °C over the Tm for the free DNA. H1.4 titrations of the DNA oligomers yield stoichiometries (H1/DNA) of 0.64, 0.96, 1.29, and 2.04 for 24, 36, 48, and 72-bp DNA oligomers. The stoichiometries are consistent with a binding site size of 37±1 bp. CT-DNA titration data are consistent with binding site sizes of 32 bp for H1.1 and 36 bp for H1.4. The heat capacity changes, ΔCp, for formation of the H1.1 and H1.4/CT-DNA complexes are -160 cal mol(-1) K(-1) and -192 cal mol(-1)K(-1) respectively. The large negative ΔCp values indicate the loss of water from the protein DNA interface in the complex.
Collapse
Affiliation(s)
- V R Machha
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA
| | - S B Jones
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA
| | - J R Waddle
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA
| | - V H Le
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA
| | - S Wellman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | - E A Lewis
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA.
| |
Collapse
|
15
|
Machha VR, Waddle JR, Turner AL, Wellman S, Le VH, Lewis EA. Calorimetric studies of the interactions of linker histone H1(0) and its carboxyl (H1(0)-C) and globular (H1(0)-G) domains with calf-thymus DNA. Biophys Chem 2013; 184:22-8. [PMID: 24036047 DOI: 10.1016/j.bpc.2013.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/04/2023]
Abstract
Histone H1 is a chromatin protein found in most eukaryotes. ITC and CD have been used to study the binding of H1(0) and its C-terminal, H1(0)-C, and globular, H1(0)-G, domains to a highly polymerized DNA. ITC results indicate that H1(0) and H1(0)-C bind tightly to DNA (Ka≈1×10(7)), with an unfavorable ΔH (ΔH≈+22kcal/mol) and a favorable ΔS (-TΔS≈-30kcal/mol). Binding H1(0)-G to DNA at 25°C is calorimetrically silent. A multiple independent site model fits the ITC data, with the anomaly in the data near saturation attributed to rearrangement of bound H1, maximizing the number of binding sites. CD experiments indicate that H1(0)/DNA and H1(0)-C/DNA complexes form with little change in protein structure but with some DNA restructuring. Salt dependent ITC experiments indicate that the electrostatic contribution to binding H1(0) or H1(0)-C is small ranging from 6% to 17% of the total ΔG.
Collapse
Affiliation(s)
- V R Machha
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, United States
| | | | | | | | | | | |
Collapse
|
16
|
Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res 2013; 41:9593-609. [PMID: 23945933 PMCID: PMC3834806 DOI: 10.1093/nar/gkt700] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Members of histone H1 family bind to nucleosomal and linker DNA to assist in stabilization of higher-order chromatin structures. Moreover, histone H1 is involved in regulation of a variety of cellular processes by interactions with cytosolic and nuclear proteins. Histone H1, composed of a series of subtypes encoded by distinct genes, is usually differentially expressed in specialized cells and frequently non-randomly distributed in different chromatin regions. Moreover, a role of specific histone H1 subtype might be also modulated by post-translational modifications and/or presence of polymorphic isoforms. While the significance of covalently modified histone H1 subtypes has been partially recognized, much less is known about the importance of histone H1 polymorphic variants identified in various plant and animal species, and human cells as well. Recent progress in elucidating amino acid composition-dependent functioning and interactions of the histone H1 with a variety of molecular partners indicates a potential role of histone H1 polymorphic variation in adopting specific protein conformations essential for chromatin function. The histone H1 allelic variants might affect chromatin in order to modulate gene expression underlying some physiological traits and, therefore could modify the course of diverse histone H1-dependent biological processes. This review focuses on the histone H1 allelic variability, and biochemical and genetic aspects of linker histone allelic isoforms to emphasize their likely biological relevance.
Collapse
|
18
|
Dynamic Fuzziness During Linker Histone Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:15-26. [DOI: 10.1007/978-1-4614-0659-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Fang H, Clark DJ, Hayes JJ. DNA and nucleosomes direct distinct folding of a linker histone H1 C-terminal domain. Nucleic Acids Res 2011; 40:1475-84. [PMID: 22021384 PMCID: PMC3287190 DOI: 10.1093/nar/gkr866] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously documented condensation of the H1 CTD consistent with adoption of a defined structure upon nucleosome binding using a bulk FRET assay, supporting proposals that the CTD behaves as an intrinsically disordered domain. In the present study, by determining the distances between two different pairs of sites in the C-terminal domain of full length H1 by FRET, we confirm that nucleosome binding directs folding of the disordered H1 C-terminal domain and provide additional distance constraints for the condensed state. In contrast to nucleosomes, FRET observed upon H1 binding to naked DNA fragments includes both intra- and inter-molecular resonance energy transfer. By eliminating inter-molecular transfer, we find that CTD condensation induced upon H1-binding naked DNA is distinct from that induced by nucleosomes. Moreover, analysis of fluorescence quenching indicates that H1 residues at either end of the CTD experience distinct environments when bound to nucleosomes, and suggest that the penultimate residue in the CTD (K195) is juxtaposed between the two linker DNA helices, proposed to form a stem structure in the H1-bound nucleosome.
Collapse
Affiliation(s)
- He Fang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14625, USA
| | | | | |
Collapse
|
20
|
Dootz R, Toma AC, Pfohl T. Structural and dynamic properties of linker histone H1 binding to DNA. BIOMICROFLUIDICS 2011; 5:24104. [PMID: 21629560 PMCID: PMC3104041 DOI: 10.1063/1.3587096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/15/2011] [Indexed: 05/11/2023]
Abstract
Found in all eukaryotic cells, linker histones H1 are known to bind to and rearrange nucleosomal linker DNA. In vitro, the fundamental nature of H1∕DNA interactions has attracted wide interest among research communities-from biologists to physicists. Hence, H1∕DNA binding processes and structural and dynamical information about these self-assemblies are of broad importance. Targeting a quantitative understanding of H1 induced DNA compaction mechanisms, our strategy is based on using small-angle x-ray microdiffraction in combination with microfluidics. The usage of microfluidic hydrodynamic focusing devices facilitates a microscale control of these self-assembly processes, which cannot be achieved using conventional bulk setups. In addition, the method enables time-resolved access to structure formation in situ, in particular, to transient intermediate states. The observed time dependent structure evolution shows that the H1∕DNA interaction can be described as a two-step process: an initial unspecific binding of H1 to DNA is followed by a rearrangement of molecules within the formed assemblies. The second step is most likely induced by interactions between the DNA and the H1's charged side chains. This leads to an increase in lattice spacing within the DNA∕protein assembly and induces a decrease in the correlation length of the mesophases, probably due to a local bending of the DNA.
Collapse
|
21
|
Caterino TL, Hayes JJ. Structure of the H1 C-terminal domain and function in chromatin condensation. Biochem Cell Biol 2011; 89:35-44. [PMID: 21326361 DOI: 10.1139/o10-024] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linker histones are multifunctional proteins that are involved in a myriad of processes ranging from stabilizing the folding and condensation of chromatin to playing a direct role in regulating gene expression. However, how this class of enigmatic proteins binds in chromatin and accomplishes these functions remains unclear. Here we review data regarding the H1 structure and function in chromatin, with special emphasis on the C-terminal domain (CTD), which typically encompasses approximately half of the mass of the linker histone and includes a large excess of positively charged residues. Owing to its amino acid composition, the CTD was previously proposed to function in chromatin as an unstructured polycation. However, structural studies have shown that the CTD adopts detectable secondary structure when interacting with DNA and macromolecular crowding agents. We describe classic and recent experiments defining the function of this domain in chromatin folding and emerging data indicating that the function of this protein may be linked to intrinsic disorder.
Collapse
Affiliation(s)
- Tamara L Caterino
- Department of Biochemistry and Biophysics, Box 712, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
22
|
Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain. Mol Cell Biol 2011; 31:2341-8. [PMID: 21464206 DOI: 10.1128/mcb.05145-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Linker histones play essential roles in the chromatin structure of higher eukaryotes. While binding to the surface of nucleosomes is directed by an ∼ 80-amino-acid-residue globular domain, the structure and interactions of the lysine-rich ∼ 100-residue C-terminal domain (CTD), primarily responsible for the chromatin-condensing functions of linker histones, are poorly understood. By quantitatively analyzing binding of a set of H1 CTD deletion mutants to nucleosomes containing various lengths of linker DNA, we have identified interactions between distinct regions of the CTD and nucleosome linker DNA at least 21 bp from the edge of the nucleosome core. Importantly, partial CTD truncations caused increases in H1 binding affinity, suggesting that significant entropic costs are incurred upon binding due to CTD folding. van't Hoff entropy/enthalpy analysis and intramolecular fluorescent resonance energy transfer (FRET) studies indicate that the CTD undergoes substantial nucleosome-directed folding, in a manner that is distinct from that which occurs upon H1 binding to naked DNA. In addition to defining critical interactions between the H1 CTD and linker DNA, our data indicate that the H1 CTD is an intrinsically disordered domain and provide important insights into the biological function of this protein.
Collapse
|
23
|
Richard D, Bartfai R, Volz J, Ralph SA, Muller S, Stunnenberg HG, Cowman AF. A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria parasite Plasmodium falciparum. J Biol Chem 2011; 286:11746-55. [PMID: 21282103 PMCID: PMC3064226 DOI: 10.1074/jbc.m110.198499] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/13/2011] [Indexed: 11/16/2022] Open
Abstract
Malaria parasites are subjected to high levels of oxidative stress during their development inside erythrocytes and the ability of the parasite to defend itself against this assault is critical to its survival. Therefore, Plasmodium possesses an effective antioxidant defense system that could potentially be used as a target for the development of inhibitor-based therapy. We have identified an unusual peroxiredoxin protein that localizes to the nucleus of Plasmodium falciparum and have renamed it PfnPrx (PF10_0268, earlier called MCP1). Our work reveals that PfnPrx has a broad specificity of substrate being able to utilize thioredoxin and glutaredoxin as reductants and having the ability to reduce simple and complex peroxides. Intriguingly, chromatin immunoprecipitation followed by deep sequencing reveals that the enzyme associates with chromatin in a genome-wide manner with a slight enrichment in coding regions. Our results represent the first description of a dedicated chromatin-associated peroxiredoxin and potentially represent an ingenious way by which the parasite can survive the highly oxidative environment within its human host.
Collapse
Affiliation(s)
- Dave Richard
- From The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Richard Bartfai
- the Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen 6525 GA, The Netherlands
| | - Jennifer Volz
- From The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Stuart A. Ralph
- the Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne 3052, Australia
| | - Sylke Muller
- the Division of Infection & Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom, and
| | - Hendrik G. Stunnenberg
- the Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen 6525 GA, The Netherlands
| | - Alan F. Cowman
- From The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- the Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
24
|
Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell Res 2010; 20:519-28. [PMID: 20309017 DOI: 10.1038/cr.2010.35] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Linker histones, e.g., H1, are best known for their ability to bind to nucleosomes and stabilize both nucleosome structure and condensed higher-order chromatin structures. However, over the years many investigators have reported specific interactions between linker histones and proteins involved in important cellular processes. The purpose of this review is to highlight evidence indicating an important alternative mode of action for H1, namely protein-protein interactions. We first review key aspects of the traditional view of linker histone action, including the importance of the H1 C-terminal domain. We then discuss the current state of knowledge of linker histone interactions with other proteins, and, where possible, highlight the mechanism of linker histone-mediated protein-protein interactions. Taken together, the data suggest a combinatorial role for the linker histones, functioning both as primary chromatin architectural proteins and simultaneously as recruitment hubs for proteins involved in accessing and modifying the chromatin fiber.
Collapse
|
25
|
Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 2010; 28:3785-98. [PMID: 19927119 DOI: 10.1038/emboj.2009.340] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/19/2009] [Indexed: 11/09/2022] Open
Abstract
The nucleus of eukaryotes is organized into functional compartments, the two most prominent being heterochromatin and nucleoli. These structures are highly enriched in DNA, proteins or RNA, and thus thought to be crowded. In vitro, molecular crowding induces volume exclusion, hinders diffusion and enhances association, but whether these effects are relevant in vivo remains unclear. Here, we establish that volume exclusion and diffusive hindrance occur in dense nuclear compartments by probing the diffusive behaviour of inert fluorescent tracers in living cells. We also demonstrate that chromatin-interacting proteins remain transiently trapped in heterochromatin due to crowding induced enhanced affinity. The kinetic signatures of these crowding consequences allow us to derive a fractal model of chromatin organization, which explains why the dynamics of soluble nuclear proteins are affected independently of their size. This model further shows that the fractal architecture differs between heterochromatin and euchromatin, and predicts that chromatin proteins use different target-search strategies in the two compartments. We propose that fractal crowding is a fundamental principle of nuclear organization, particularly of heterochromatin maintenance.
Collapse
|
26
|
Raghuram N, Carrero G, Th’ng J, Hendzel MJ. Molecular dynamics of histone H1This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:189-206. [DOI: 10.1139/o08-127] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The histone H1 family of nucleoproteins represents an important class of structural and architectural proteins that are responsible for maintaining and stabilizing higher-order chromatin structure. Essential for mammalian cell viability, they are responsible for gene-specific regulation of transcription and other DNA-dependent processes. In this review, we focus on the wealth of information gathered on the molecular kinetics of histone H1 molecules using novel imaging techniques, such as fluorescence recovery after photobleaching. These experiments have shed light on the effects of H1 phosphorylation and core histone acetylation in influencing chromatin structure and dynamics. We also delineate important concepts surrounding the C-terminal domain of H1, such as the intrinsic disorder hypothesis, and how it affects H1 function. Finally, we address the biochemical mechanisms behind low-affinity H1 binding.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Gustavo Carrero
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - John Th’ng
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Michael J. Hendzel
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
27
|
Lu X, Hamkalo B, Parseghian MH, Hansen JC. Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 2009; 48:164-72. [PMID: 19072710 DOI: 10.1021/bi801636y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Linker histones bind to the nucleosomes and linker DNA of chromatin fibers, causing changes in linker DNA structure and stabilization of higher order folded and oligomeric chromatin structures. Linker histones affect chromatin structure acting primarily through their approximately 100-residue C-terminal domain (CTD). We have previously shown that the ability of the linker histone H1 degrees to alter chromatin structure was localized to two discontinuous 24-/25-residue CTD regions (Lu, X., and Hansen, J. C. (2004) J. Biol. Chem. 279, 8701-8707). To determine the biochemical basis for these results, we have characterized chromatin model systems assembled with endogenous mouse somatic H1 isoforms or recombinant H1 degrees CTD mutants in which the primary sequence has been scrambled, the amino acid composition mutated, or the location of various CTD regions swapped. Our results indicate that specific amino acid composition plays a fundamental role in molecular recognition and function by the H1 CTD. Additionally, these experiments support a new molecular model for CTD function and provide a biochemical basis for the redundancy observed in H1 isoform knockout experiments in vivo.
Collapse
Affiliation(s)
- Xu Lu
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | |
Collapse
|
28
|
Rundquist I, Lindner HH. Analyses of linker histone--chromatin interactions in situ. Biochem Cell Biol 2007; 84:427-36. [PMID: 16936816 DOI: 10.1139/o06-071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies, using cytometric techniques based on fluorescence microscopy, have provided new information on how linker histones interact with chromatin in vivo or in situ. In particular, the use of green fluorescent proteins (GFPs) has enabled detailed studies of how individual H1 subtypes, and specific motifs in them, interact with chromatin in vivo. Furthermore, the development of cytochemical methods to study the interaction between linker histones and chromatin using DNA-binding fluorochromes as indirect probes for linker histone affinity in situ, in combination with highly sensitive and specific analytical methods, has provided additional information on the interactions between linker histones and chromatin in several cell systems. Such results verified that linker histones have a substantially higher affinity for chromatin in mature chicken erythrocytes than in frog erythrocytes, and they also indicated that the affinity decreased during differentiation of the frog erythrocytes. Furthermore, in cultured human fibroblasts, the linker histones showed a relatively high affinity for chromatin in interphase, whereas it showed a significantly lower affinity in highly condensed metaphase chromosomes. This method also enables the analysis of linker histone affinity for chromatin in H1-depleted fibroblasts reconstituted with purified linker histones. No consistent correlation between linker histone affinity and chromatin condensation has so far been detected.
Collapse
Affiliation(s)
- Ingemar Rundquist
- Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health Sciences, Linköpings universitet, SE-58185 Linköping, Sweden.
| | | |
Collapse
|
29
|
Roque A, Iloro I, Ponte I, Arrondo JLR, Suau P. DNA-induced secondary structure of the carboxyl-terminal domain of histone H1. J Biol Chem 2005; 280:32141-7. [PMID: 16006555 DOI: 10.1074/jbc.m505636200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the secondary structure of the carboxyl-terminal domains of linker histone H1 subtypes H1(0) (C-H1(0)) and H1t (C-H1t), free in solution and bound to DNA, by IR spectroscopy. The carboxyl-terminal domain has little structure in aqueous solution but becomes extensively folded upon interaction with DNA. The secondary structure elements present in the bound carboxyl-terminal domain include the alpha-helix, beta-structure, turns, and open loops. The structure of the bound domain shows a significant dependence on salt concentration. In low salt (10 mm NaCl), there is a residual amount of random coil, 7% in C-H1(0) and 12% in C-H1t. In physiological salt concentrations (140 mm NaCl), the carboxyl termini become fully structured. Under these conditions, C-H1(0) contained 24% alpha-helix, 25% beta-structure, 17% open loops, and 33% turns. The latter component could include a substantial proportion of the 3(10) helix. Despite their low sequence identity (approximately 30%), the representation of the different structural motifs in C-H1t was similar to that in C-H1(0). Examination of the changes in the amide I components in the 20-80 degrees C temperature interval showed that the secondary structure of the DNA-bound C-H1t is for the most part extremely stable. The H1 carboxyl-terminal domain appears to belong to the so-called disordered proteins, undergoing coupled binding and folding.
Collapse
Affiliation(s)
- Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
30
|
Roque A, Orrego M, Ponte I, Suau P. The preferential binding of histone H1 to DNA scaffold-associated regions is determined by its C-terminal domain. Nucleic Acids Res 2004; 32:6111-9. [PMID: 15562002 PMCID: PMC534626 DOI: 10.1093/nar/gkh945] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 10/29/2004] [Accepted: 10/29/2004] [Indexed: 01/11/2023] Open
Abstract
Histone H1 preferentially binds and aggregates scaffold-associated regions (SARs) via the numerous homopolymeric oligo(dA).oligo(dT) tracts present within these sequences. Here we show that the mammalian somatic subtypes H1a,b,c,d,e and H1 degrees and the male germline-specific subtype H1t, all preferentially bind to the Drosophila histone SAR. Experiments with the isolated domains show that whilst the C-terminal domain maintains strong and preferential binding, the N-terminal and globular domains show weak binding and poor specificity for the SAR. The preferential binding of SAR by the H1 molecule thus appears to be determined by its highly basic C-terminal domain. Salmine, a typical fish protamine, which could have its evolutionary origin in histone H1, also shows preferential binding to the SAR. The interaction of distamycin, a minor groove binder with high affinity for homopolymeric oligo(dA).oligo(dT) tracts, abolishes preferential binding of the C-terminal domain of histone H1 and protamine to the SAR, suggesting the involvement of the DNA minor groove in the interaction.
Collapse
Affiliation(s)
- Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
31
|
Lu X, Hansen JC. Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J Biol Chem 2003; 279:8701-7. [PMID: 14668337 DOI: 10.1074/jbc.m311348200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Linker histone binding to nucleosomal arrays in vitro causes linker DNA to form an apposed stem motif, stabilizes extensively folded secondary chromatin structures, and promotes self-association of individual nucleosomal arrays into oligomeric tertiary chromatin structures. To determine the involvement of the linker histone C-terminal domain (CTD) in each of these functions, and to test the hypothesis that the functions of this highly basic domain are mediated by neutralization of linker DNA negative charge, four truncation mutants were created that incrementally removed stretches of 24 amino acids beginning at the extreme C terminus of the mouse H1(0) linker histone. Native and truncated H1(0) proteins were assembled onto biochemically defined nucleosomal arrays and characterized in the absence and presence of salts to probe primary, secondary, and tertiary chromatin structure. Results indicate that the ability of H1(0) to alter linker DNA conformation and stabilize condensed chromatin structures is localized to specific C-terminal subdomains, rather than being equally distributed throughout the entire CTD. We propose that the functions of the linker histone CTD in chromatin are linked to the characteristic intrinsic disorder of this domain.
Collapse
Affiliation(s)
- Xu Lu
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | |
Collapse
|
32
|
Lu X, Hansen JC. Revisiting the structure and functions of the linker histone C-terminal tail domain. Biochem Cell Biol 2003; 81:173-6. [PMID: 12897851 DOI: 10.1139/o03-041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linker histones stabilize folded chromatin, acting through their long C-terminal tails. The C-termini contain high percentages of evenly distributed lysine and arginine residues and have no secondary structure in solution. Hence, it has generally been believed that the C-termini function by shielding negative charges on the DNA backbone. However, recent evidence supports a mechanism of action of the linker histone C-terminus that involves formation of specific secondary structure(s) upon interaction with other components of the chromatin fiber.
Collapse
Affiliation(s)
- Xu Lu
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 78229, USA
| | | |
Collapse
|
33
|
Wong JTY, New DC, Wong JCW, Hung VKL. Histone-like proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins. EUKARYOTIC CELL 2003; 2:646-50. [PMID: 12796310 PMCID: PMC161454 DOI: 10.1128/ec.2.3.646-650.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dinoflagellates have very large genomes encoded in permanently condensed and histoneless chromosomes. Sequence alignment identified significant similarity between the dinoflagellate chromosomal histone-like proteins of Crypthecodinium cohnii (HCCs) and the bacterial DNA-binding and the eukaryotic histone H1 proteins. Phylogenetic analysis also supports the origin of the HCCs from histone-like proteins of bacteria.
Collapse
Affiliation(s)
- J T Y Wong
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China.
| | | | | | | |
Collapse
|
34
|
Lewis JD, Ausió J. Protamine-like proteins: evidence for a novel chromatin structure. Biochem Cell Biol 2003; 80:353-61. [PMID: 12123288 DOI: 10.1139/o02-083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protamine-like (PL) proteins are DNA-condensing proteins that replace somatic-type histones during spermatogenesis. Their composition suggests a function intermediate to that of histones and protamines. Although these proteins have been well characterized at the chemical level in a large number of species, particularly in marine invertebrates, little is known about the specific structures arising from their interaction with DNA. Speculation concerning chromatin structure is complicated by the high degree of heterogeneity in both the number and size of these proteins, which can vary considerably even between closely related species. After careful examination and comparison of the protein sequences available to date for the PL proteins, we propose a model for a novel chromatin structure in the sperm of these organisms that is mediated by somatic-type histones, which are frequently found associated with these proteins. This structure supports the concept that the PL proteins may represent various evolutionary steps between a sperm-specific histone H1 precursor and true protamines. Potential post-translational modifications and the control of PL protein expression and deposition are also discussed.
Collapse
Affiliation(s)
- John D Lewis
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada
| | | |
Collapse
|
35
|
Jedrusik MA, Vogt S, Claus P, Schulze E. A novel linker histone-like protein is associated with cytoplasmic filaments inCaenorhabditis elegans. J Cell Sci 2002; 115:2881-91. [PMID: 12082149 DOI: 10.1242/jcs.115.14.2881] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histone H1 complement of Caenorhabditis elegans contains a single unusual protein, H1.X. Although H1.X possesses the globular domain and the canonical three-domain structure of linker histones, the amino acid composition of H1.X is distinctly different from conventional linker histones in both terminal domains. We have characterized H1.X in C. elegans by antibody labeling, green fluorescent protein fusion protein expression and RNA interference. Unlike normal linker histones, H1.X is a cytoplasmic as well as a nuclear protein and is not associated with chromosomes. H1.X is most prominently expressed in the marginal cells of the pharynx and is associated with a peculiar cytoplasmic cytoskeletal structure therein, the tonofilaments. Additionally H1.X::GFP is expressed in the cytoplasm of body and vulva muscle cells, neurons, excretory cells and in the nucleoli of embryonic blastomeres and adult gut cells. RNA interference with H1.X results in uncoordinated and egg laying defective animals, as well as in a longitudinally enlarged pharynx. These phenotypes indicate a cytoplasmic role of H1.X in muscle growth and muscle function.
Collapse
Affiliation(s)
- Monika A Jedrusik
- Georg-August University of Göttingen, Third Department of Zoology - Developmental Biology, Humboldtallee 34A, Germany
| | | | | | | |
Collapse
|
36
|
Vila R, Ponte I, Jiménez MA, Rico M, Suau P. An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: a CD and NMR study. Protein Sci 2002; 11:214-20. [PMID: 11790831 PMCID: PMC2373450 DOI: 10.1110/ps.29602] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Knowledge of the structural properties of linker histones is important to the understanding of their role in higher-order chromatin structure and gene regulation. Here we study the conformational properties of the peptide Ac-EKTPVKKKARKAAGGAKRKTSG-NH(2) (NE-1) by circular dichroism and (1)H-NMR. This peptide corresponds to the positively charged region of the N-terminal domain, adjacent to the globular domain, of mouse histone H1e (residues 15-36). This is the most abundant H1 subtype in many kinds of mammalian somatic cells. NE-1 is mainly unstructured in aqueous solution, but in the presence of the secondary-structure stabilizer trifluoroethanol (TFE) it acquires an alpha-helical structure. In 90% TFE solution the alpha-helical population is approximately 40%. In these conditions, NE-1 is structured in two alpha-helices that comprise almost all the peptide, namely, from Thr17 to Ala27 and from Gly29 to Thr34. Both helical regions are highly amphipathic, with the basic residues on one face of the helix and the apolar ones on the other. The two helical elements are separated by a Gly-Gly motif. Gly-Gly motifs at equivalent positions are found in many vertebrate H1 subtypes. Structure calculations show that the Gly-Gly motif behaves as a flexible linker between the helical regions. The wide range of relative orientations of the helical axes allowed by the Gly-Gly motif may facilitate the tracking of the phosphate backbone by the helical elements or the simultaneous binding of two nonconsecutive DNA segments in chromatin.
Collapse
Affiliation(s)
- Roger Vila
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
37
|
Abstract
In which taxa did H1 linker histones appear in the course of evolution? Detailed comparative analysis of the histone H1 and histone H1-related sequences available to date suggests that the origin of histone H1 can be traced to bacteria. The data also reveal that the sequence corresponding to the 'winged helix' motif of the globular structural domain, a domain characteristic of all metazoan histone H1 molecules, is evolutionarily conserved and appears separately in several divergent lines of protists. Some protists, however, appear to have only a lysine-rich basic protein, which has compositional similarity to some of the histone H1-like proteins from eubacteria and to the carboxy-terminal domain of the H1 linker histones from animals and plants. No lysine-rich basic proteins have been described in archaebacteria. The data presented in this review provide the surprising conclusion that whereas DNA-condensing H1-related histones may have arisen early in evolution in eubacteria, the appearance of the sequence motif corresponding to the globular domain of metazoan H1s occurred much later in the protists, after and independently of the appearance of the chromosomal core histones in archaebacteria.
Collapse
Affiliation(s)
- H E Kasinsky
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C., Canada
| | | | | | | |
Collapse
|
38
|
Schulze E, Schulze B. The vertebrate linker histones H1 zero, H5, and H1M are descendants of invertebrate "orphon" histone H1 genes. J Mol Evol 1995; 41:833-40. [PMID: 8587127 DOI: 10.1007/bf00173162] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the evolutionary history of the divergent vertebrate linker histones H1 zero, H5, and H1M. We observed that the sequence of the central conserved domain of these vertebrate proteins shares characteristic features with histone H1 proteins of plants and invertebrate animals which otherwise never appear in any vertebrate histone H1 protein. A quantitative analysis of 58 linker histone sequences also reveals that these proteins are more similar to invertebrate and plant histone H1 than to histone H1 of vertebrates. A phylogenetic tree deduced from an alignment of the central domain of all known linker histones places H1 zero, H5, and H1M in close vicinity to invertebrate sperm histone H1 proteins and to invertebrate histone H1 proteins encoded by polyadenylated mRNAs. We therefore conclude that the ancestors of the vertebrate linker histones H1 zero, H5, and H1M diverged from the main group of histone H1 proteins before the vertebrate type of histone H1 was established in evolution. We discuss this observation in the general context of linker histone evolution.
Collapse
Affiliation(s)
- E Schulze
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4943, USA
| | | |
Collapse
|
39
|
Daban M, Martinage A, Kouach M, Chiva M, Subirana JA, Sautière P. Sequence analysis and structural features of the largest known protamine isolated from the sperm of the archaeogastropod Monodonta turbinata. J Mol Evol 1995; 40:663-70. [PMID: 7643417 DOI: 10.1007/bf00160515] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protamine of the archaeogastropod mollusc Monodonta turbinata has been isolated and characterized. With a mass of 13,476 Da, it is the largest known protamine. Amino acid sequence of this protamine (106 residues) was established from data provided by automated sequence analysis and mass spectrometry of the protein and of its fragments. The primary structure of the NH2-terminal region exhibits repetitive sequence motifs "Basic-Ser" (mainly R-S) and both central and COOH-terminal regions are composed by arginine clusters. The amino acid sequence of Monodonta turbinata protamine shows structural similarities with other protamines from invertebrates and from birds and mammals.
Collapse
Affiliation(s)
- M Daban
- Departament d'Enginyería Química, ETSEIB, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Aslund L, Carlsson L, Henriksson J, Rydåker M, Toro GC, Galanti N, Pettersson U. A gene family encoding heterogeneous histone H1 proteins in Trypanosoma cruzi. Mol Biochem Parasitol 1994; 65:317-30. [PMID: 7969272 DOI: 10.1016/0166-6851(94)90082-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A gene family encoding a set of histone H1 proteins in Trypanosoma cruzi is described. The sequence of 3 genomic and 4 cDNA clones revealed the presence of several motifs characteristic of histone H1, although heterogeneity at the polypeptide level was evident. The clones encode histone H1 proteins of an unusually small size (74-97 amino acids), which lack the globular domain found in histone H1 of higher eukaryotes. All histone H1 mRNAs from T. cruzi are polyadenylated, although no typical polyadenylation signal was found. Furthermore, the genes encoding the histone H1 proteins in T. cruzi are found in a tandem array containing 15-20 gene copies per haploid genome. This tandem array is located on a large chromosome of 2.2 Mb.
Collapse
Affiliation(s)
- L Aslund
- Department of Medical Genetics, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Verdaguer N, Perelló M, Palau J, Subirana JA. Helical structure of basic proteins from spermatozoa. Comparison with model peptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:879-87. [PMID: 8319694 DOI: 10.1111/j.1432-1033.1993.tb17991.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe structural studies carried out with some basic proteins found in association with DNA in the spermatozoa of molluscs and echinoderms. We have studied proteins related to histone H1 as well as protamines. Structural prediction methods show that these proteins have a strong helical potential and contain several turns, mainly of the SPKK type. No beta structures were found. Strong structural similarities have been detected between distantly related species. The presence of helical regions is confirmed by circular dichroism in trifluoroethanol solution. The influence of the SPKK turns is also evident in the CD spectra. In proteins which contain a high percentage of arginine we conclude that conventional prediction methods should be modified in order to allow for a higher helical potential for this amino acid residue. Synthetic peptides with a sequence present in the C-terminal region of histone H1 have also been studied. It was found that octapeptides may only acquire a small amount of structure, whereas hexadecapeptides are 50-60% helical. These studies strongly suggest that both protamines and proteins related to the C-terminal part of histone H1 interact with DNA mainly in the alpha-helical conformation.
Collapse
Affiliation(s)
- N Verdaguer
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | | | | |
Collapse
|
42
|
Carlos S, Jutglar L, Borrell I, Hunt D, Ausio J. Sequence and characterization of a sperm-specific histone H1-like protein of Mytilus californianus. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54132-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|