1
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
2
|
Assunção J, Malcata FX. Enclosed “non-conventional” photobioreactors for microalga production: A review. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Hashemi A, Moslemi M, Pajoum Shariati F, Delavari Amrei H. Beta‐carotene production within
Dunaliella salina
cells under salt stress condition in an indoor hybrid helical‐tubular photobioreactor. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23577] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ali Hashemi
- Department of Chemical EngineeringScience and Research branch, Islamic Azad UniversityTehran Iran
| | - Monire Moslemi
- Department of Chemical EngineeringScience and Research branch, Islamic Azad UniversityTehran Iran
| | - Farshid Pajoum Shariati
- Department of Chemical EngineeringScience and Research branch, Islamic Azad UniversityTehran Iran
| | - Hossein Delavari Amrei
- Department of Chemical EngineeringFaculty of Engineering, University of Bojnord, Bojnord Iran
| |
Collapse
|
4
|
El-Baz FK, Baky HHAE. Pilot Scale of Microalgal Production Using Photobioreactor. PHOTOSYNTHESIS - FROM ITS EVOLUTION TO FUTURE IMPROVEMENTS IN PHOTOSYNTHETIC EFFICIENCY USING NANOMATERIALS 2018. [DOI: 10.5772/intechopen.78780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
|
6
|
Wang JH, Zhang TY, Dao GH, Xu XQ, Wang XX, Hu HY. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Appl Microbiol Biotechnol 2017; 101:2659-2675. [PMID: 28213735 DOI: 10.1007/s00253-017-8184-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O2 generation, CO2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future studies on microalgae-based advanced wastewater treatment and water reuse.
Collapse
Affiliation(s)
- Jing-Han Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Yuan Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xue-Qiao Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xiao-Xiong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Hong -Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China. .,Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
7
|
Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. BIORESOURCE TECHNOLOGY 2011; 102:4945-53. [PMID: 21334885 DOI: 10.1016/j.biortech.2011.01.054] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/15/2011] [Accepted: 01/17/2011] [Indexed: 05/18/2023]
Abstract
CO(2) sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO(2) in the atmosphere. They, in addition to CO(2) capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO(2) are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO(2) present in the flue gas including SO(X), NO(X). However, there are additional factors like the availability of light, pH, O(2) removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO(2) sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor.
Collapse
Affiliation(s)
- Kanhaiya Kumar
- Department of Biotechnology, Indian Institute of Technology Kharagpur 721302, India
| | | | | | | | | |
Collapse
|
8
|
Xu L, Weathers PJ, Xiong XR, Liu CZ. Microalgal bioreactors: Challenges and opportunities. Eng Life Sci 2009. [DOI: 10.1002/elsc.200800111] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
|
10
|
Carvalho AP, Meireles LA, Malcata FX. Microalgal Reactors: A Review of Enclosed System Designs and Performances. Biotechnol Prog 2006. [DOI: 10.1002/bp060065r] [Citation(s) in RCA: 562] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Carlozzi P, Pinzani E. Growth characteristics ofArthrospira platensis cultured inside a new close-coil photobioreactor incorporating a mandrel to control culture temperature. Biotechnol Bioeng 2005; 90:675-84. [PMID: 15803465 DOI: 10.1002/bit.20425] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this study was to investigate Arthrospira growth inside a new CCP incorporating a mandrel for culture temperature control. Some hydrodynamic aspects and photobioreactor performances were investigated as well. The bioreactor incorporated A. platensis grown under batch and semicontinuous conditions. Two systems were used to recycle Arthrospira cultures: a peristaltic pump and an airlift system. When the pump recycled the culture, we achieved a very high Dean number (De=3,950), which decreased a great deal when the pump was replaced with the airlift system. During outdoor Arthrospira batch growth, a cell concentration of 16.4 g (DW)l-1 was reached after 9 days. However, the maximum chlorophyll content of the biomass (2.0% of DW) was achieved on the fifth and sixth days. The highest daily biomass output rate was obtained using the airlift system, when the CCP was operated under a semicontinuous regime: the gross output rate was 2.85+/-0.37 g (DW) l-1 d-1 and the net was 2.32+/-0.11 g (DW) l-1 d-1. The advantages of the airlift system may be due to the low concentration of oxygen built up inside Arthrospira culture and the lack of cell damage due to the pump system. Thus, oxygen and pump stress may have been avoided.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio degli Ecosistemi, Sezione di Firenze, Polo Scientifico, Via Madonna del Piano, 50019 Sesto F.no, Firenze, Italy.
| | | |
Collapse
|
12
|
Hall DO, Fernández FGA, Guerrero EC, Rao KK, Grima EM. Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 2003; 82:62-73. [PMID: 12569625 DOI: 10.1002/bit.10543] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The production of the microalga Phaeodactylum tricornutum in an outdoor helical reactor was analyzed. First, fluid dynamics, mass-transfer capability, and mixing of the reactor was evaluated at different superficial gas velocities. Performance of the reactor was controlled by power input per culture volume. A maximum liquid velocity of 0.32 m s(-1) and mass transfer coefficient of 0.006 s(-1) were measured at 3200 W m(-3). A model of the influence of superficial gas velocity on the following reactor parameters was proposed: gas hold-up, induced liquid velocity, and mass transfer coefficient, with the accuracy of the model being demonstrated. Second, the influence of superficial gas velocity on the yield of the culture was evaluated in discontinuous and continuous cultures. Mean daily values of culture parameters, including dissolved oxygen, biomass concentration, chlorophyll fluorescence (F(v)/F(m) ratio), growth rate, biomass productivity, and photosynthetic efficiency, were determined. Different growth curves were measured when the superficial gas velocity was modified-the higher the superficial gas velocity, the higher the yield of the system. In continuous mode, biomass productivity increased by 35%, from 1.02 to 1.38 g L(-1) d(-1), when the superficial gas velocity increased from 0.27 to 0.41 m s(-1). Maximal growth rates of 0.068 h(-1), biomass productivities up to 1.4 g L(-1) d(-1), and photosynthetic efficiency of up to 15% were obtained at the higher superficial gas velocity of 0.41 m s(-1). The fluorescence parameter, F(v)/F(m), which reflects the maximal efficiency of PSII photochemistry, showed that the cultures were stressed at average irradiances within the culture higher than 280 microE m(-2) s(-1) at every superficial gas velocity. For nonstressed cultures, the yield of the system was a function of average irradiance inside the culture, with the superficial gas velocity determining this relationship. When superficial gas velocity was increased, higher growth rates, biomass productivities, and photosynthetic efficiencies were obtained for similar average irradiance values. The higher the superficial gas velocity, the higher the liquid velocity, with this increase enhancing the movement of the cells inside the culture. In this way the efficiency of the cells increased and higher biomass concentrations and productivities were reached for the same solar irradiance.
Collapse
Affiliation(s)
- David O Hall
- Division of Life Sciences, King's College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Janssen M, Tramper J, Mur LR, Wijffels RH. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 2003; 81:193-210. [PMID: 12451556 DOI: 10.1002/bit.10468] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enclosed outdoor photobioreactors need to be developed and designed for large-scale production of phototrophic microorganisms. Both light regime and photosynthetic efficiency were analyzed in characteristic examples of state-of-the-art pilot-scale photobioreactors. In this study it is shown that productivity of photobioreactors is determined by the light regime inside the bioreactors. In addition to light regime, oxygen accumulation and shear stress limit productivity in certain designs. In short light-path systems, high efficiencies, 10% to 20% based on photosynthetic active radiation (PAR 400 to 700 nm), can be reached at high biomass concentrations (>5 kg [dry weight] m(-3)). It is demonstrated, however, that these and other photobioreactor designs are poorly scalable (maximal unit size 0.1 to 10 m(3)), and/or not applicable for cultivation of monocultures. This is why a new photobioreactor design is proposed in which light capture is physically separated from photoautotrophic cultivation. This system can possibly be scaled to larger unit sizes, 10 to >100 m(3), and the reactor liquid as a whole is mixed and aerated. It is deduced that high photosynthetic efficiencies, 15% on a PAR-basis, can be achieved. Future designs from optical engineers should be used to collect, concentrate, and transport sunlight, followed by redistribution in a large-scale photobioreactor.
Collapse
Affiliation(s)
- Marcel Janssen
- Food and Bioprocess Engineering Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
14
|
Morita M, Watanabe Y, Saiki H. Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol Bioeng 2002; 77:155-62. [PMID: 11753922 DOI: 10.1002/bit.10119] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The photosynthetic performance of a conical, helical tubular photobioreactor (HTP) incorporating Chlorella sorokiniana was investigated under conditions of high temperature and light intensity during midsummer in an outdoor environment. Although the culture medium temperature exceeded 40 degrees C for approximately 5 h each day, peaking at 47.5 degrees C under sunny conditions, a photosynthetic productivity of 30.0 g x m(-2) (installation area) x day(-1) and a photosynthetic efficiency of 8.66% [photosynthetically active radiation (PAR), 400-700 nm] were achieved. A maximum photosynthetic productivity of 33.2 g x m(-2) x day(-1) was achieved on a sunny day, when solar energy input was also maximal (11.5 MJ x m(-2) x day(-1) [PAR]). On the other hand, a maximum photosynthetic efficiency of 9.54% was obtained on a day that was rainy in the morning and cloudy in the afternoon, and there was relatively little solar energy input. The average daily photosynthetic efficiency over the two culture periods (August 4 to 7 and August 10 to 13, 1999) was 7.25%. Thus, a high level of photosynthetic performance was achieved in the conical HTP incorporating Chlorella sorokiniana despite the fact that culture medium temperature was not controlled. The use of Chlorella sorokiniana in the conical HTP should be a good choice to produce microalgal biomass during the summer under field conditions.
Collapse
Affiliation(s)
- Masahiko Morita
- Bio-Science Department, Abiko Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan
| | | | | |
Collapse
|
15
|
Morita M, Watanabe Y, Saiki H. Instruction of Microalgal Biomass Production for Practically Higher Photosynthetic Performance Using a Photobioreactor. FOOD AND BIOPRODUCTS PROCESSING 2001. [DOI: 10.1205/096030801750425271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|