1
|
Jiang W, Yao X, Wang F, Li Y, Zhu S, Bian D. Effect of transient organic load and aeration changes to pollutant removal and extracellular polymeric substances. ENVIRONMENTAL TECHNOLOGY 2023; 44:2417-2430. [PMID: 35029133 DOI: 10.1080/09593330.2022.2029952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/08/2022] [Indexed: 06/08/2023]
Abstract
Transient organic load shocks have an important influence on the removal of pollutants and the content and composition of extracellular polymeric substances (EPS). This study was based on a micro-pressure reactor (MPR) with the influent COD concentration as the variable, while different operating conditions were controlled by adjusting the aeration rate. The effect of single-cycle transient organic loading shocks on EPS and pollutant removal and the correlation between their changes were investigated. The results showed that COD removal was unaffected under the shock, and the effect of nitrogen and phosphorus removal decreased. As the incoming carbon source increased, the EPS content at shock increased, with the polysaccharide (PS) content being the most affected. As aeration increased, the effect of organic load shock on EPS and pollutant removal decreased. Under different aeration conditions, PS contributed to denitrification and anaerobic phosphorus release during transient organic load shocks, and protein (PN) contributed to aerobic phosphorus uptake. The reduction in PS and PN relative to the pre-shock caused by the shock resulted in the EPS exhibiting a favourable effect on COD removal and an inhibitory effect on the effectiveness of nitrogen and phosphorus removal.
Collapse
Affiliation(s)
- Weiqing Jiang
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
| | - Xingrong Yao
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
| | - Fan Wang
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
| | - Yajing Li
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
| | - Suiyi Zhu
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Dejun Bian
- Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun, People's Republic of China
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, People's Republic of China
| |
Collapse
|
2
|
Paśmionka IB, Gospodarek J. Assessment of the Impact of Selected Industrial Wastewater on the Nitrification Process in Short-Term Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053014. [PMID: 35270705 PMCID: PMC8910604 DOI: 10.3390/ijerph19053014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Many chemical compounds can inhibit the nitrification process, especially organic compounds used in the chemical industry. This results in a decrease in the nitrification intensity or even a complete termination of this process. As the technological design of the selected municipal and industrial wastewater treatment plant (WWTP) assumed the dephosphation process, without taking into account nitrification, it was necessary to reduce the concentration of ammonium nitrogen in the treated sewage supplied to the Vistula River. Therefore, the aim of the research was to determine the inhibition of nitrification in the activated sludge method under the influence of industrial wastewater from the production of various organic compounds and to select the most toxic wastewater in relation to nitrifiers. The assessment of nitrification inhibition was carried out on the basis of the method of short-term (4-h) impact of the tested sewage on nitrifying bacteria in the activated sludge. The research covered nine different types of chemical sewage, including wastewater from the production of synthetic rubbers, styrene plastics, adhesives, solvents and emulsifiers. The nitrification process was inhibited to the highest degree by wastewater from the production of styrene-butadiene rubbers (72%). Only wastewater from the production of methacrylate (polymethyl methacrylate) had the lowest degree of inhibition: 16%. These wastewaters also have a toxic effect on the entire biocenosis and adversely affect the structure of activated sludge flocs. The attempts to filter toxic wastewater through the ash basins significantly relieved the inhibition of nitrification.
Collapse
|
3
|
Su JF, Zhang YM, Bai XC, Liang DH, He L, Wang JX. The influence of the novel composite material LiNbO 3@Fe 3O 4 on the denitrification efficiency of bacterium Achromobacter sp. A14. ENVIRONMENTAL TECHNOLOGY 2021; 42:1179-1186. [PMID: 31446888 DOI: 10.1080/09593330.2019.1660413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
The effect of the novel composite material LiNbO3@Fe3O4 on the nitrate removal, and Mn2+ oxidation efficiency by autotrophic denitrification strain Achromobacter sp. A14 was investigated in this study. The optimum conditions were tested by using five levels of initial Mn2+ concentrations (40, 60, 80, 100 and 120 mg/L), initial pH (5.0, 6.0, 7.0, 8.0 and 9.0) and temperature (20, 25, 30, 35 and 40°C). A maximal nitrate removal ratio of nearly 100% and a maximal Mn2+ oxidation ratio of 71.59% were simultaneously achieved at pH 7.0, 80 mg/L Mn2+ and 30°C by bacteria A14 with 300 mg/L LiNbO3@Fe3O4 as catalytic material. Biomaterial cycle testing indicated that the denitrification efficiency of bacteria A14 with LiNbO3@Fe3O4 remained steady after 10 batches.
Collapse
Affiliation(s)
- Jun Feng Su
- State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Yuan Ming Zhang
- State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Xue Chen Bai
- China United Northwest Institute for Engineering Design and Research Co., Ltd. (CUCED), Xi'an, People's Republic of China
| | - Dong Hui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Lei He
- China United Northwest Institute for Engineering Design and Research Co., Ltd. (CUCED), Xi'an, People's Republic of China
| | - Jia Xing Wang
- State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Cui Y, Gao J, Zhang D, Zhao Y, Wang Y. Rapid start-up of partial nitrification process using benzethonium chloride-a novel nitrite oxidation inhibitor. BIORESOURCE TECHNOLOGY 2020; 315:123860. [PMID: 32707510 DOI: 10.1016/j.biortech.2020.123860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Benzethonium chloride (BZC) is an antibacterial compound with extensive applications in various anti-infective products. However, the feasibility of attaining partial nitrification of municipal wastewater using BZC has not been reported. In this work, BZC was used for the first time to attain partial nitrification. Batch experiments indicated nitrite oxidizing bacteria (NOB) was more vulnerable to BZC than ammonia oxidizing bacteria (AOB). When activated sludge was treated only once with 0.023 g BZC·(g MLSS)-1 for 18 h, partial nitrification was attained at the 29th cycle with NAR of 97.46% and sustained 91 cycles in stability tests. Complimentary DNA sequencing analysis revealed the suppression of Nitrospira was the reason for partial nitrification. Oligotyping analysis indicated AOB could likely resist to BZC by both the species shifts and development of tolerance, while most NOB species could not adapt to BZC. This study revealed the feasibility of BZC as a novel NOB inhibitor.
Collapse
Affiliation(s)
- Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuwei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Biofilm reactors for value-added products production: An in-depth review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Morkus P, Zolfaghari M, Kordkandi SA, Nease J, Filipe CDM, Latulippe DR. A Rapid Assay to Assess Nitrification Inhibition Using a Panel of Bacterial Strains and Partial Least Squares Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:184-194. [PMID: 31790215 DOI: 10.1021/acs.est.9b04453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a proof of concept, a rapid assay consisting of a cell-based biosensor (CBB) panel of pure bacterial strains, a fluorescent dye, and partial least squares (PLS) modeling was developed to assess the nitrification inhibition potential of industrial wastewater (WW) samples. The current standard method used to assess the nitrification inhibition potential is the specific nitrification rate (SNR) batch test, which requires approximately 4 h to complete under the watch of an experienced operator. In this study, we exposed the CBB panel of seven bacterial strains (nitrifying and non-nitrifying) to 28 different industrial WW samples and then probed both the membrane integrity and cellular activity using a commercially available "live/dead" fluorescent dye. The CBB panel response acts as a surrogate measurement for the performance of nitrification. Of the seven strains, four (Nitrospira, Escherichia coli, Bacillus subtilis, Bacillus cereus) were identified via the modeling technique to be the most significant contributors for predicting the nitrification inhibition potential. The key outcome from this work is that the CBB panel fluorescence data (collected in approximately 10 min) can accurately predict the outcome of an SNR batch test (that takes 4 h) when performed with the same WW samples and has a strong potential to approximate the chemical composition of these WW samples using PLS modeling. Overall, this is a powerful technique that can be used for point-of-use detection of nitrification inhibition.
Collapse
Affiliation(s)
- Patrick Morkus
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Mehdi Zolfaghari
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Salman Alizadeh Kordkandi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Jake Nease
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - David R Latulippe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
7
|
The role of extracellular polymeric substances in reducing copper inhibition to nitrification in activated sludge. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0329-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Su JF, Cheng C, Huang TL, Ma F, Lu JS, Shao SC. Novel simultaneous Fe(iii) reduction and ammonium oxidation of Klebsiella sp. FC61 under the anaerobic conditions. RSC Adv 2016. [DOI: 10.1039/c5ra25507d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simultaneous Fe(iii) reduction and ammonium oxidation of strain FC61 was isolated from the Tang Yu oligotrophic reservoir of Xi'an (China).
Collapse
Affiliation(s)
- Jun feng Su
- School of Environmental and Municipal Engineering
- Xi'an University of Architecture and Technology
- Xi'an 710055
- China
- State Key Laboratory of Urban Water Resource and Environment
| | - Ce Cheng
- School of Environmental and Municipal Engineering
- Xi'an University of Architecture and Technology
- Xi'an 710055
- China
| | - Ting lin Huang
- School of Environmental and Municipal Engineering
- Xi'an University of Architecture and Technology
- Xi'an 710055
- China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Jin suo Lu
- School of Environmental and Municipal Engineering
- Xi'an University of Architecture and Technology
- Xi'an 710055
- China
| | - Si cheng Shao
- School of Environmental and Municipal Engineering
- Xi'an University of Architecture and Technology
- Xi'an 710055
- China
| |
Collapse
|
9
|
Han Y, Jin X, Wang Y, Liu Y, Chen X. Inhibitory effect of cyanide on nitrification process and its eliminating method in a suspended activated sludge process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2706-2713. [PMID: 24122270 DOI: 10.1007/s11356-013-2226-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
Inhibition of nitrification by four typical pollutants (acrylonitrile, acrylic acid, acetonitrile and cyanide) in acrylonitrile wastewater was investigated. The inhibitory effect of cyanide on nitrification was strongest, with a 50% inhibitory concentration of 0.218 mg·gVSS-1 being observed in a municipal activated sludge system. However, the performance of nitrification was recovered when cyanide was completely degraded. The nitrification, which had been inhibited by 4.17 mg·gVSS-1 of free cyanide for 24 h, was recovered to greater than 95% of that without cyanide after 10 days of recovery. To overcome cyanide inhibition, cyanide-degrading bacteria were cultivated in a batch reactor by increasing the influent cyanide concentration in a stepwise manner, which resulted in an increase in the average cyanide degradation rate from 0.14 to 1.01 mg CN-·gVSS-1·h-1 over 20 days. The cultured cyanide-degrading bacteria were shaped like short rods, and the dominant cyanide-degrading bacteria strain was identified as Pseudomonas fluorescens NCIMB by PCR.
Collapse
|
10
|
Adaptation of nitrifying microbial biomass to nickel in batch incubations. Appl Microbiol Biotechnol 2012; 97:847-57. [DOI: 10.1007/s00253-012-3947-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/27/2022]
|
11
|
Pambrun V, Marquot A, Racault Y. Characterization of the toxic effects of cadmium and 3.5-dichlorophenol on nitrifying activity and mortality in biologically activated sludge systems-effect of low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2008; 15:592-599. [PMID: 18716816 DOI: 10.1007/s11356-008-0029-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 07/24/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND, AIMS, AND SCOPE Sometimes, urban wastewaters convey a more or less significant part of toxic products from industries or the craft industry. Nitrifying activity can be affected by these substances, implying higher ammonia concentrations in the outlet effluent and contributing to toxicity for the aquatic environment. Moreover, the more stringently treated wastewater standards now require a reliable treatment for nitrogen. One of the key issues is the identification of the inhibition behavior of nitrifying bacteria facing a toxic substance. This new understanding could then finally be integrated into models in order to represent and to optimize wastewater treatment plants (WWTP) operation in cases involving 'toxic scenarios'. MATERIALS AND METHODS The toxic substances studied in this work, cadmium and 3.5-dichlorophenol (3.5-DCP), are representative of chemical substances commonly found in municipal sewage and industrial effluents and symbolize two different contaminant groups. The effects of Cd and 3.5-DCP on nitrification kinetics have been investigated using respirometry techniques. RESULTS IC50 values determination gives concentrations of 3.1 mg/L for 3.5-DCP and 45.8 mg/L for Cd at 21 +/- 1 degrees C. The variation to low temperature seems to have no real effect on IC50 for DCP, but induces a decrease of cadmium IC50 to 27.5 mg/L at 14 degrees C. Finally, specific respirometric tests have been carried out in order to determine the potential effect of these toxic substances on the nitrifying decay rate b ( a ). No significant effect has been noticed for Cd, whereas the presence of 3.5-DCP (at IC50 concentration) induced a dramatic increase of b ( a ) at 20 degrees C. The same behavior has been confirmed by experiments performed in winter periods with a sludge temperature around 12 degrees C. DISCUSSION The target substances have different modes of action on activity and mortality, notably due to the abilities of the contaminant to be precipitated, accumulated, or even to be progressively degraded. Studies realized at low temperature confirmed this assumption, and put in evidence the effect of temperature on toxic substances capable of being biosorbed. However, the change in the sludge sample characteristics can be pointed out as a problem in the investigation of the temperature effect on nitrification inhibition, as biosorption, bioaccumulation, and predation are directly linked to the sludge characteristics (VSS concentration, temperature) and the plant operating conditions (loading rates, sludge age, etc.). CONCLUSIONS This work brings new understandings concerning the action mode of these specific contaminants on nitrifying bacteria and, in particular, on the role of temperature. The experiments lead to the determination of the IC50 values for both toxic substances on biological nitrification. The inhibition mechanisms of Cd and 3.5-DCP on nitrifying activity have been simply represented by a non-competitive inhibition model. RECOMMENDATIONS AND PERSPECTIVES Other experiments carried out in a continuous lab-scale pilot plant should be done with a proper control of the operating conditions and of the sludge characteristics in order to better understand the mechanisms of nitrification inhibition for each contaminant. Finally, these first results show that toxic substances can have an effect on the growth rate but also on the decay rate, depending on the characteristics of the toxic substance and the sludge. This eventual double effect would imply different strategies of WWTP operation according to the behavior of the contaminant on the bacteria.
Collapse
Affiliation(s)
- Vaitea Pambrun
- Cemagref de Bordeaux, 50 avenue de Verdun, Gazinet 33612, Cestas cedex, France.
| | | | | |
Collapse
|
12
|
Do H, Lim J, Shin SG, Wu YJ, Ahn JH, Hwang S. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation. J Ind Microbiol Biotechnol 2008; 35:1331-8. [PMID: 18712557 DOI: 10.1007/s10295-008-0415-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
For biological nitrification, a set of experiments were carried out to approximate the response of lag period along with ammonia oxidation rate with respect to different concentrations of cyanide (CN-) and ammonia-oxidizing bacteria (AOB), and temperature variation in laboratory-scale batch reactors. The effects of simultaneous changes in these three factors on ammonia oxidation were quantitatively estimated and modeled using response surface analysis. The lag period and the ammonia oxidation rate responded differently to changes in the three factors. The lag period and the ammonia oxidation rate were significantly affected by the CN- and AOB concentrations, while temperature changes only affected the ammonia oxidation rate. The increase of AOB concentration and temperature alleviated the inhibition effect of cyanide on ammonia oxidation. The statistical method used in this study can be extended to estimate the quantitative effects of other environmental factors that can change simultaneously.
Collapse
Affiliation(s)
- Hyojin Do
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Gyungbuk, 790-784, South Korea
| | | | | | | | | | | |
Collapse
|
13
|
Physiological state, growth mode, and oxidative stress play a role in Cd(II)-mediated inhibition of Nitrosomonas europaea 19718. Appl Environ Microbiol 2008; 74:2447-53. [PMID: 18245236 DOI: 10.1128/aem.01940-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to determine the impact of physiological growth states (batch exponential and batch stationary growth) and growth modes (substrate-limited chemostat, substrate-sufficient exponential batch, and substrate-depleted stationary batch growth) on several measures of growth and responses to Cd(II)-mediated inhibition of Nitrosomonas europaea strain 19718. The specific oxygen uptake rate (sOUR) was the most sensitive indicator of inhibition among the different responses analyzed, including total cell abundance, membrane integrity, intracellular 16S rRNA/DNA ratio, and amoA expression. This observation remained true irrespective of the physiological state, the growth mode, or the mode of Cd(II) exposure. Based on the sOUR, a strong time-dependent exacerbation of inhibition (in terms of an inhibition coefficient [K(i)]) in exponential batch cultures was observed. Long-term inhibition levels (based on K(i) estimates) in metabolically active chemostat and exponential batch cultures were also especially severe and comparable. In contrast, the inhibition level in stationary-phase cultures was 10-fold lower and invariable with exposure time. Different strategies for surviving substrate limitation (a 10-fold increase in amoA expression) and starvation (the retention of 16S rRNA levels) in N. europaea cultures were observed. amoA expression was most negatively impacted by Cd(II) exposure in the chemostat cultures, was less impacted in exponential batch cultures, and was least impacted in stationary batch cultures. Although the amoA response was consistent with that of the sOUR, the amoA response was not as strong. The intracellular 16S rRNA/DNA ratio, as determined by fluorescence in situ hybridization, also did not uniformly correlate with the sOUR under conditions of inhibition or no inhibition. Finally, Cd(II)-mediated inhibition of N. europaea was attributed partially to oxidative stress.
Collapse
|
14
|
Hawkes RB, Franzmann PD, O'Hara G, Plumb JJ. Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap. Extremophiles 2006; 10:525-30. [PMID: 16721487 DOI: 10.1007/s00792-006-0527-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
A new species of Archaea was isolated from an industrial mineral sulphide bioleach heap. Strain BH2, a non-motile pleomorphic coccus, was capable of chemomixotrophic growth on ferrous sulphate and yeast extract. Growth was not supported in the absence of yeast extract. Phylogenetic analysis based on the 16S rRNA gene showed that strain BH2 was most closely related to the species Ferroplasma acidiphilum; however, it showed only 95% sequence similarity with this species. Strain BH2 had a temperature optimum of 53.6 degrees C and a temperature range for growth between 22 and 63 degrees C. Thus, it is the first moderately thermophilic member of the genus Ferroplasma. The optimum pH for the growth of the strain occurred between pH 1.0 and 1.2 and the lowest pH at which growth was observed was 0.4. Based on 16S rRNA gene sequence analysis and other physiological characteristics, strain BH2 constitutes a new species within the genus Ferroplasma. The name Ferroplasma cupricumulans is proposed for the new species and strain BH2 (DSM 16651) is proposed as the type strain.
Collapse
Affiliation(s)
- Rebecca B Hawkes
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia.
| | | | | | | |
Collapse
|
15
|
Golyshina OV, Timmis KN. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 2005; 7:1277-88. [PMID: 16104851 DOI: 10.1111/j.1462-2920.2005.00861.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For several decades, the bacterium Acidithiobacillus (previously Thiobacillus) has been considered to be the principal acidophilic sulfur- and iron-oxidizing microbe inhabiting acidic environments rich in ores of iron and other heavy metals, responsible for the metal solubilization and leaching from such ores, and has become the paradigm of such microbes. However, during the last few years, new studies of a number of acidic environments, particularly mining waste waters, acidic pools, etc., in diverse geographical locations have revealed the presence of new cell wall-lacking archaea related to the recently described, acidophilic, ferrous-iron oxidizing Ferroplasma acidiphilum. These mesophilic and moderately thermophilic microbes, representing the family Ferroplasmaceae, were numerically significant members of the microbial consortia of the habitats studied, are able to mobilize metals from sulfide ores, e.g. pyrite, arsenopyrite and copper-containing sulfides, and are more acid-resistant than iron and sulfur oxidizing bacteria exhibiting similar eco-physiological properties. Ferroplasma cell membranes contain novel caldarchaetidylglycerol tetraether lipids, which have extremely low proton permeabilities, as a result of the bulky isoprenoid core, and which are probably a major contributor to the extreme acid tolerance of these cell wall-less microbes. Surprisingly, several intracellular enzymes, including an ATP-dependent DNA ligase have pH optima close to that of the external environment rather than of the cytoplasm. Ferroplasma spp. are probably the major players in the biogeochemical cycling of sulfur and sulfide metals in highly acidic environments, and may have considerable potential for biotechnological applications such as biomining and biocatalysis under extreme conditions.
Collapse
Affiliation(s)
- Olga V Golyshina
- Division of Microbiology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany.
| | | |
Collapse
|