1
|
Lamba S, Mundanda Muthappa D, Fanning S, Scannell AGM. Sporulation and Biofilms as Survival Mechanisms of Bacillus Species in Low-Moisture Food Production Environments. Foodborne Pathog Dis 2022; 19:448-462. [PMID: 35819266 DOI: 10.1089/fpd.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-moisture foods (LMF) have clear advantages with respect to limiting the growth of foodborne pathogens. However, the incidences of Bacillus species in LMF reported in recent years raise concerns about food quality and safety, particularly when these foods are used as ingredients in more complex higher moisture products. This literature review describes the interlinked pathways of sporulation and biofilm formation by Bacillus species and their underlying molecular mechanisms that contribute to the bacteriums' persistence in LMF production environments. The long-standing challenges of food safety and quality in the LMF industry are also discussed with a focus on the bakery industry.
Collapse
Affiliation(s)
- Sakshi Lamba
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Dechamma Mundanda Muthappa
- UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Huang Y, Flint SH, Palmer JS. Bacillus cereus spores and toxins – The potential role of biofilms. Food Microbiol 2020; 90:103493. [DOI: 10.1016/j.fm.2020.103493] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 01/19/2023]
|
3
|
Characterization and transcriptomic basis of biofilm formation by Lactobacillus plantarum J26 isolated from traditional fermented dairy products. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Wang N, Sadiq FA, Li S, He G, Yuan L. Tandem mass tag-based quantitative proteomics reveals the regulators in biofilm formation and biofilm control of Bacillus licheniformis. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Poquet I, Saujet L, Canette A, Monot M, Mihajlovic J, Ghigo JM, Soutourina O, Briandet R, Martin-Verstraete I, Dupuy B. Clostridium difficile Biofilm: Remodeling Metabolism and Cell Surface to Build a Sparse and Heterogeneously Aggregated Architecture. Front Microbiol 2018; 9:2084. [PMID: 30258415 PMCID: PMC6143707 DOI: 10.3389/fmicb.2018.02084] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is an opportunistic entero-pathogen causing post-antibiotic and nosocomial diarrhea upon microbiota dysbiosis. Although biofilms could contribute to colonization, little is known about their development and physiology. Strain 630Δerm is able to form, in continuous-flow micro-fermentors, macro-colonies and submersed biofilms loosely adhesive to glass. According to gene expression data, in biofilm/planktonic cells, central metabolism is active and fuels fatty acid biosynthesis rather than fermentations. Consistently, succinate is consumed and butyrate production is reduced. Toxin A expression, which is coordinated to metabolism, is down-regulated, while surface proteins, like adhesins and the primary Type IV pili subunits, are over-expressed. C-di-GMP level is probably tightly controlled through the expression of both diguanylate cyclase-encoding genes, like dccA, and phosphodiesterase-encoding genes. The coordinated expression of genes controlled by c-di-GMP and encoding the putative surface adhesin CD2831 and the major Type IV pilin PilA1, suggests that c-di-GMP could be high in biofilm cells. A Bacillus subtilis SinR-like regulator, CD2214, and/or CD2215, another regulator co-encoded in the same operon as CD2214, control many genes differentially expressed in biofilm, and in particular dccA, CD2831 and pilA1 in a positive way. After growth in micro-titer plates and disruption, the biofilm is composed of robust aggregated structures where cells are embedded into a polymorphic material. The intact biofilm observed in situ displays a sparse, heterogeneous and high 3D architecture made of rods and micro-aggregates. The biofilm is denser in a mutant of both CD2214 and CD2215 genes, but it is not affected by the inactivation of neither CD2831 nor pilA1. dccA, when over-expressed, not only increases the biofilm but also triggers its architecture to become homogeneous and highly aggregated, in a way independent of CD2831 and barely dependent of pilA1. Cell micro-aggregation is shown to play a major role in biofilm formation and architecture. This thorough analysis of gene expression reprogramming and architecture remodeling in biofilm lays the foundation for a deeper understanding of this lifestyle and could lead to novel strategies to limit C. difficile spread.
Collapse
Affiliation(s)
- Isabelle Poquet
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France
| | - Laure Saujet
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Alexis Canette
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | | | - Jean-Marc Ghigo
- Unité de Génétique des Biofilms, Institut Pasteur, Paris, France
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Romain Briandet
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bacteries Anaerobies, Institut Pasteur, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| |
Collapse
|
6
|
Zwick JV, Noble S, Ellaicy YK, Coe GD, Hakey DJ, King AN, Sadauskas AJ, Faulkner MJ. AhpA is a peroxidase expressed during biofilm formation in Bacillus subtilis. Microbiologyopen 2016; 6. [PMID: 27683249 PMCID: PMC5300871 DOI: 10.1002/mbo3.403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022] Open
Abstract
Organisms growing aerobically generate reactive oxygen species such as hydrogen peroxide. These reactive oxygen molecules damage enzymes and DNA, potentially causing cell death. In response, Bacillus subtilis produces at least nine potential peroxide-scavenging enzymes; two belong to the alkylhydroperoxide reductase (Ahp) class of peroxidases. Here, we explore the role of one of these Ahp homologs, AhpA. While previous studies demonstrated that AhpA can scavenge peroxides and thus defend cells against peroxides, they did not clarify when during growth the cell produces AhpA. The results presented here show that the expression of ahpA is regulated in a manner distinct from that of the other peroxide-scavenging enzymes in B. subtilis. While the primary Ahp, AhpC, is expressed during exponential growth and stationary phase, these studies demonstrate that the expression of ahpA is dependent on the transition-state regulator AbrB and the sporulation and biofilm formation transcription factor Spo0A. Furthermore, these results show that ahpA is specifically expressed during biofilm formation, and not during sporulation or stationary phase, suggesting that derepression of ahpA by AbrB requires a signal other than those present upon entry into stationary phase. Despite this expression pattern, ahpA mutant strains still form and maintain robust biofilms, even in the presence of peroxides. Thus, the role of AhpA with regard to protecting cells within biofilms from environmental stresses is still uncertain. These studies highlight the need to further study the Ahp homologs to better understand how they differ from one another and the unique roles they may play in oxidative stress resistance.
Collapse
Affiliation(s)
- Joelie V Zwick
- Department of Biology, Bradley University, Peoria, IL, USA
| | - Sarah Noble
- Department of Biology, Bradley University, Peoria, IL, USA
| | | | | | - Dylan J Hakey
- Department of Biology, Bradley University, Peoria, IL, USA
| | - Alyssa N King
- Department of Biology, Bradley University, Peoria, IL, USA
| | | | | |
Collapse
|
7
|
Kröber M, Verwaaijen B, Wibberg D, Winkler A, Pühler A, Schlüter A. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. J Biotechnol 2016; 231:212-223. [PMID: 27312701 DOI: 10.1016/j.jbiotec.2016.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/23/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
Abstract
The strain Bacillus amyloliquefaciens FZB42 is a plant growth promoting rhizobacterium (PGPR) and biocontrol agent known to keep infections of lettuce (Lactuca sativa) by the phytopathogen Rhizoctonia solani down. Several mechanisms, including the production of secondary metabolites possessing antimicrobial properties and induction of the host plant's systemic resistance (ISR), were proposed to explain the biocontrol effect of the strain. B. amyloliquefaciens FZB42 is able to form plaques (biofilm-like structures) on plant roots and this feature was discussed to be associated with its biocontrol properties. For this reason, formation of B. amyloliquefaciens biofilms was studied at the transcriptional level using high-throughput sequencing of whole transcriptome cDNA libraries from cells grown under biofilm-forming conditions vs. planktonic growth. Comparison of the transcriptional profiles of B. amyloliquefaciens FZB42 under these growth conditions revealed a common set of highly transcribed genes mostly associated with basic cellular functions. The lci gene, encoding an antimicrobial peptide (AMP), was among the most highly transcribed genes of cells under both growth conditions suggesting that AMP production may contribute to biocontrol. In contrast, gene clusters coding for synthesis of secondary metabolites with antimicrobial properties were only moderately transcribed and not induced in biofilm-forming cells. Differential gene expression revealed that 331 genes were significantly up-regulated and 230 genes were down-regulated in the transcriptome of B. amyloliquefaciens FZB42 under biofilm-forming conditions in comparison to planktonic cells. Among the most highly up-regulated genes, the yvqHI operon, coding for products involved in nisin (class I bacteriocin) resistance, was identified. In addition, an operon whose products play a role in fructosamine metabolism was enhanced in its transcription. Moreover, genes involved in the production of the extracellular biofilm matrix including exopolysaccharide genes (eps) and the yqxM-tasA-sipW operon encoding amyloid fiber synthesis were up-regulated in the B. amyloliquefaciens FZB42 biofilm. On the other hand, highly down-regulated genes in biofilms are associated with synthesis, assembly and regulation of the flagellar apparatus, the degradation of aromatic compounds and the export of copper. The obtained transcriptional profile for B. amyloliquefaciens biofilm cells uncovered genes involved in its development and enabled the assessment that synthesis of secondary metabolites among other factors may contribute to the biocontrol properties of the strain.
Collapse
Affiliation(s)
- Magdalena Kröber
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Bart Verwaaijen
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Anika Winkler
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
8
|
Liu D, Xu J, Wang Y, Chen Y, Shen X, Niu H, Guo T, Ying H. Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells. J Biotechnol 2016; 218:1-12. [DOI: 10.1016/j.jbiotec.2015.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/23/2022]
|
9
|
Benoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ, Blei F, Zhou M, Dijksterhuis J, Brakhage AA, Kuipers OP, de Vries RP, Kovács ÁT. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ Microbiol 2014; 17:2099-113. [PMID: 25040940 DOI: 10.1111/1462-2920.12564] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 07/06/2014] [Indexed: 02/06/2023]
Abstract
Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus.
Collapse
Affiliation(s)
- Isabelle Benoit
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Microbiology, Utrecht University, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands
| | - Marielle H van den Esker
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Aleksandrina Patyshakuliyeva
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Derek J Mattern
- Molecular and Applied Microbiology Department, Leibniz Institute for Natural Product Research and Infection Biology - HKI, Jena, Germany.,Department of Microbiology and Molecular Biology, Friedrich Schiller University of Jena, Jena, Germany
| | - Felix Blei
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Miaomiao Zhou
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jan Dijksterhuis
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Axel A Brakhage
- Molecular and Applied Microbiology Department, Leibniz Institute for Natural Product Research and Infection Biology - HKI, Jena, Germany.,Department of Microbiology and Molecular Biology, Friedrich Schiller University of Jena, Jena, Germany
| | - Oscar P Kuipers
- Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands.,Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands
| | - Ákos T Kovács
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
10
|
Serra DO, Hengge R. Stress responses go three dimensional - the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ Microbiol 2014; 16:1455-71. [PMID: 24725389 PMCID: PMC4238805 DOI: 10.1111/1462-2920.12483] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Abstract
In natural habitats, bacteria often occur in multicellular communities characterized by a robust extracellular matrix of proteins, amyloid fibres, exopolysaccharides and extracellular DNA. These biofilms show pronounced stress resistance including a resilience against antibiotics that causes serious medical and technical problems. This review summarizes recent studies that have revealed clear spatial physiological differentiation, complex supracellular architecture and striking morphology in macrocolony biofilms. By responding to gradients of nutrients, oxygen, waste products and signalling compounds that build up in growing biofilms, various stress responses determine whether bacteria grow and proliferate or whether they enter into stationary phase and use their remaining resources for maintenance and survival. As a consequence, biofilms differentiate into at least two distinct layers of vegetatively growing and stationary phase cells that exhibit very different cellular physiology. This includes a stratification of matrix production with a major impact on microscopic architecture, biophysical properties and directly visible morphology of macrocolony biofilms. Using Escherichia coli as a model system, this review also describes our detailed current knowledge about the underlying molecular control networks – prominently featuring sigma factors, transcriptional cascades and second messengers – that drive this spatial differentiation and points out directions for future research.
Collapse
Affiliation(s)
- Diego O Serra
- Institute of Biology/Microbiology, Humboldt Universität zu Berlin, Chausseestr. 117, Berlin, 10115, Germany
| | | |
Collapse
|
11
|
Ushakova NA, Nekrasov RV, Meleshko NA, Laptev GY, Il’ina LA, Kozlova AA, Nifatov AV. Effect of Bacillus subtilis on the rumen microbial community and its components exhibiting high correlation coefficients with the host nutrition, growth, and development. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713040127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Yuan J, Chen Y, Zhou G, Chen H, Gao H. Investigation of roles of divalent cations in Shewanella oneidensis pellicle formation reveals unique impacts of insoluble iron. Biochim Biophys Acta Gen Subj 2013; 1830:5248-57. [PMID: 23911985 DOI: 10.1016/j.bbagen.2013.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bacteria adopt a variety of lifestyles in their natural habitats and can alternate among different lifestyles in response to environmental changes. At high cell densities, bacteria can form extracellular matrix encased cell population on submerged tangible surfaces (biofilms), or at the air-liquid interface (pellicles). Compared to biofilm, pellicle lifestyle allows for better oxygen access, but is metabolically more costly to maintain. Further understanding of pellicle formation and environmental cues that influence cellular choices between these lifestyles will definitely improve our appreciation of bacterial interaction with their environments. METHODS Shewanella oneidensis cells were cultured in 24-well plates with supplementation of varied divalent cations, and pellicles formed under such conditions were evaluated. Mutants defective in respiration of divalent cations were used to further characterize and confirm unique impacts of iron. RESULTS AND CONCLUSIONS Small amount of Fe(2+) was essential for pellicle formation, but presence of over-abundant iron (0.3mM Fe(2+) or Fe(3+)) led to pellicle disassociation without impairing growth. Such impacts were found due to S. oneidensis-mediated formation of insoluble alternative electron acceptors (i.e., Fe3O4) under physiologically relevant conditions. Furthermore, we demonstrated that cells preferred a lifestyle of forming biofilm and respiring on such insoluble electron acceptors under tested conditions, even to living in pellicles. GENERAL SIGNIFICANCE Our finding suggests that bacterial lifestyle choice involves balanced evaluation of multiple aspects of environmental conditions, and yet-to-be-characterized signaling mechanism is very likely underlying such processes.
Collapse
Affiliation(s)
- Jie Yuan
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
13
|
Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 2013; 11:157-68. [PMID: 23353768 DOI: 10.1038/nrmicro2960] [Citation(s) in RCA: 615] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.
Collapse
Affiliation(s)
- Hera Vlamakis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Clark ME, He Z, Redding AM, Joachimiak MP, Keasling JD, Zhou JZ, Arkin AP, Mukhopadhyay A, Fields MW. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state. BMC Genomics 2012; 13:138. [PMID: 22507456 PMCID: PMC3431258 DOI: 10.1186/1471-2164-13-138] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. Results The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells. Conclusions Even though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion.
Collapse
Affiliation(s)
- Melinda E Clark
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liang Y, Gao H, Guo X, Chen J, Qiu G, He Z, Zhou J, Liu X. Transcriptome analysis of pellicle formation of Shewanella oneidensis. Arch Microbiol 2012; 194:473-82. [PMID: 22228442 DOI: 10.1007/s00203-011-0782-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
Although the pellicle is one of the major growth modes of microorganisms, the metabolic features of pellicle cells and the determinative factors for pellicle formation are largely unknown. In recent years, biofilm development of Shewanella oneidensis, an important model organism for bioremediation studies, has been extensively studied. In this paper, a transcriptional profiling of pellicle cells relative to planktonic cells indicated that cells in pellicles were more metabolically active than the planktonic cells. Most notably, up-transcription of general secretion system proteins and iron/heme uptake and transport proteins was observed in pellicle cells. Unexpectedly, neither the hmuT nor hugA heme transport mutant exhibited a significant defect in pellicle formation. Expectedly, three type I secretion system mutants were severely deficient in pellicle formation, suggesting an essential role of these proteins.
Collapse
Affiliation(s)
- Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Szkotak R, Niepa THR, Jawrani N, Gilbert JL, Jones MB, Ren D. Differential Gene Expression to Investigate the Effects of Low-level Electrochemical Currents on Bacillus subtilis. AMB Express 2011; 1:39. [PMID: 22078549 PMCID: PMC3294250 DOI: 10.1186/2191-0855-1-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/11/2011] [Indexed: 12/22/2022] Open
Abstract
With the emergence and spread of multidrug resistant bacteria, effective methods to eliminate both planktonic bacteria and those embedded in surface-attached biofilms are needed. Electric currents at μA-mA/cm2 range are known to reduce the viability of bacteria. However, the mechanism of such effects is still not well understood. In this study, Bacillus subtilis was used as the model Gram-positive species to systematically investigate the effects of electrochemical currents on bacteria including the morphology, viability, and gene expression of planktonic cells, and viability of biofilm cells. The data suggest that weak electrochemical currents can effectively eliminate B. subtilis both as planktonic cells and in biofilms. DNA microarray results indicate that the genes associated with oxidative stress response, nutrient starvation, and membrane functions were induced by electrochemical currents. These findings suggest that ions and oxidative species generated by electrochemical reactions might be important for the killing effects of these currents.
Collapse
Affiliation(s)
- Robert Szkotak
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Tagbo H R Niepa
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Nikhil Jawrani
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Jeremy L Gilbert
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | | | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
17
|
Koerdt A, Orell A, Pham TK, Mukherjee J, Wlodkowski A, Karunakaran E, Biggs CA, Wright PC, Albers SV. Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J Proteome Res 2011; 10:4105-19. [PMID: 21761944 PMCID: PMC3166137 DOI: 10.1021/pr2003006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Microorganisms in nature often live in surface-associated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ∼3.4 and ∼1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development. S. acidocaldarius, S. solfataricus, and S. tokodaii strains were grown independently as biofilms. Comparison between planktonic and biofilm cell popupations of all three strains was performed by spectroscopic analysis (FTIR and XPS), iTRAQ proteomics, and RNA microarrays. To highlight common features in biofilm formation among the Sulfolobus strains, the data is presented as a comparative analysis. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, suggesting their roles as key regulatory factor in biofilm development.
Collapse
Affiliation(s)
- Andrea Koerdt
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Candela T, Maes E, Garénaux E, Rombouts Y, Krzewinski F, Gohar M, Guérardel Y. Environmental and biofilm-dependent changes in a Bacillus cereus secondary cell wall polysaccharide. J Biol Chem 2011; 286:31250-62. [PMID: 21784857 DOI: 10.1074/jbc.m111.249821] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1-3)]GlcNAc(β1-6)[Glc(β1-3)][ManNAc(α1-4)]GalNAc(α1-4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1-2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm.
Collapse
Affiliation(s)
- Thomas Candela
- Université de Lille1, Unité de Glycobiologie Structurale et Fonctionnelle, F-59650 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Nagorska K, Ostrowski A, Hinc K, Holland IB, Obuchowski M. Importance of eps genes from Bacillus subtilis in biofilm formation and swarming. J Appl Genet 2011; 51:369-81. [PMID: 20720312 DOI: 10.1007/bf03208867] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Unicellular organisms naturally form multicellular communities, differentiate into specialized cells, and synchronize their behaviour under certain conditions. Swarming, defined as a movement of a large mass of bacteria on solid surfaces, is recognized as a preliminary step in the formation of biofilms. The main aim of this work was to study the role of a group of genes involved in exopolysaccharide biosynthesis during pellicle formation and swarming in Bacillus subtilis strain 168. To assess the role of particular proteins encoded by the group of epsI-epsO genes that form the eps operon, we constructed a series of insertional mutants. The results obtained showed that mutations in epsJ-epsN, but not in the last gene of the eps operon (epsO), have a severe effect on pellicle formation under all tested conditions. Moreover, the inactivation of 5 out of the 6 genes analysed caused total inhibition of swarming in strain 168 (that does not produce surfactin) on LB medium. Following restoration of the sfp gene (required for production of surfactin, which is essential for swarming of the wild-type bacteria), the sfp+ strains defective in eps genes (except epsO) generated significantly different patterns during swarming on synthetic B medium, as compared to the parental strain 168 sfp+.
Collapse
Affiliation(s)
- K Nagorska
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | | | | | | | | |
Collapse
|
20
|
Gene expression analysis of monospecies Salmonella Typhimurium biofilms using Differential Fluorescence Induction. J Microbiol Methods 2011; 84:467-78. [DOI: 10.1016/j.mimet.2011.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/10/2011] [Accepted: 01/14/2011] [Indexed: 12/22/2022]
|
21
|
Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME JOURNAL 2010; 5:613-26. [PMID: 20962878 DOI: 10.1038/ismej.2010.153] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA.
Collapse
|
22
|
Galindo CL, Sha J, Moen ST, Agar SL, Kirtley ML, Foltz SM, McIver LJ, Kozlova EV, Garner HR, Chopra AK. Comparative Global Gene Expression Profiles of Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant at Flea and Human Body Temperatures. Comp Funct Genomics 2010; 2010:342168. [PMID: 20508723 PMCID: PMC2873655 DOI: 10.1155/2010/342168] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/22/2010] [Indexed: 02/04/2023] Open
Abstract
Braun/murein lipoprotein (Lpp) is involved in inflammatory responses and septic shock. We previously characterized a Deltalpp mutant of Yersinia pestis CO92 and found that this mutant was defective in surviving in macrophages and was attenuated in a mouse inhalation model of plague when compared to the highly virulent wild-type (WT) bacterium. We performed global transcriptional profiling of WT Y. pestis and its Deltalpp mutant using microarrays. The organisms were cultured at 26 and 37 degrees Celsius to simulate the flea vector and mammalian host environments, respectively. Our data revealed vastly different effects of lpp mutation on the transcriptomes of Y. pestis grown at 37 versus 26 degrees C. While the absence of Lpp resulted mainly in the downregulation of metabolic genes at 26 degrees C, the Y. pestis Deltalpp mutant cultured at 37 degrees C exhibited profound alterations in stress response and virulence genes, compared to WT bacteria. We investigated one of the stress-related genes (htrA) downregulated in the Deltalpp mutant relative to WT Y. pestis. Indeed, complementation of the Deltalpp mutant with the htrA gene restored intracellular survival of the Y. pestis Deltalpp mutant. Our results support a role for Lpp in Y. pestis adaptation to the host environment, possibly via transcriptional activation of htrA.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 02461-0477, USA
| | - Jian Sha
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Scott T. Moen
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Stacy L. Agar
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Michelle L. Kirtley
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Sheri M. Foltz
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Lauren J. McIver
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 02461-0477, USA
| | - E. V. Kozlova
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Harold R. Garner
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 02461-0477, USA
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| |
Collapse
|
23
|
Kocabaş P, Çalık P, Çalık G, Özdamar TH. Microarray Studies inBacillus subtilis. Biotechnol J 2009; 4:1012-27. [DOI: 10.1002/biot.200800330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
The effect of calcium on the transcriptome of sporulating B. subtilis cells. Int J Food Microbiol 2009; 133:234-42. [PMID: 19552981 DOI: 10.1016/j.ijfoodmicro.2009.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 11/21/2022]
Abstract
Bacterial spores formed in the presence of high concentrations of minerals are a major problem in the food industry because of their extreme heat resistance. In order to enhance our insight in the molecular mechanisms underlying this phenomenon we have performed a detailed time-resolved analysis of the genome-wide transcriptome pattern of Bacillus subtilis sporulated both in the absence and presence of high calcium concentrations. The data was analysed in two ways. First, we determined the influence of the presence of high calcium levels during sporulation on the expression of gene groups as defined in Subtilist and KEGG pathways database. Second, we assessed the differential expression at the level of individual genes. When analysing groups and pathways, we found that those annotated as being involved in sporulation were significantly affected. Also, groups and pathways involved in flagella formation and biofilm matrix production were affected by the presence of calcium in the sporulation medium. When we analysed the behaviour of individual genes we found 305 genes influenced by calcium, including all known spore coat polysaccharide biosynthesis genes (10 induced and 1 repressed). A number of the calcium affected genes were also involved in biofilm formation. Minimal overlap with other stress outputs like sigma B activation and weak acid stress response was noted. Those genes that did overlap were unique to that combination which corroborates the notion that the cells sense these conditions differently.
Collapse
|
25
|
Wang X, Kim Y, Wood TK. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME JOURNAL 2009; 3:1164-79. [PMID: 19458652 DOI: 10.1038/ismej.2009.59] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Earlier, we discovered that the global regulator, Hha, is related to cell death in biofilms and regulates cryptic prophage genes. Here, we show that Hha induces excision of prophages, CP4-57 and DLP12, by inducing excision genes and by reducing SsrA synthesis. SsrA is a tmRNA that is important for rescuing stalled ribosomes, contains an attachment site for CP4-57 and is shown here to be required for CP4-57 excision. These prophages impact biofilm development, as the deletion of 35 genes individually of prophages, CP4-57 and DLP12, increase biofilm formation up to 17-fold, and five genes decrease biofilm formation up to sixfold. In addition, CP4-57 excises during early biofilm development but not in planktonic cells, whereas DLP12 excision was detected at all the developmental stages for both biofilm and planktonic cells. CP4-57 excision leads to a chromosome region devoid of prophage and to the formation of a phage circle (which is lost). These results were corroborated by a whole-transcriptome analysis that showed that complete loss of CP4-57 activated the expression of the flg, flh and fli motility operons and repressed expression of key enzymes in the tricarboxylic acid cycle and of enzymes for lactate utilization. Prophage excision also results in the expression of cell lysis genes that reduce cell viability (for example, alpA, intA and intD). Hence, defective prophages are involved in host physiology through Hha and in biofilm formation by generating a diversified population with specialized functions in terms of motility and nutrient metabolism.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
26
|
Ni N, Choudhary G, Li M, Wang B. A new phenothiazine structural scaffold as inhibitors of bacterial quorum sensing in Vibrio harveyi. Biochem Biophys Res Commun 2009; 382:153-6. [DOI: 10.1016/j.bbrc.2009.02.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/26/2009] [Indexed: 02/03/2023]
|
27
|
Yamane K, Ogawa K, Yoshida M, Hayashi H, Nakamura T, Yamanaka T, Tamaki T, Hojoh H, Leung KP, Fukushima H. Identification and Characterization of Clinically Isolated Biofilm-forming Gram-positive Rods from Teeth Associated with Persistent Apical Periodontitis. J Endod 2009; 35:347-52. [DOI: 10.1016/j.joen.2008.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 11/25/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022]
|
28
|
A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. J Bacteriol 2009; 191:2423-30. [PMID: 19201793 DOI: 10.1128/jb.01464-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that catabolism of l-lactate in Bacillus subtilis depends on the previously uncharacterized yvfV-yvfW-yvbY (herein renamed lutABC) operon, which is inferred to encode three iron-sulfur-containing proteins. The operon is under the dual control of a GntR-type repressor (LutR, formerly YvfI) and the master regulator for biofilm formation SinR and is induced during growth in response to l-lactate. Operons with high similarity to lutABC are present in the genomes of a variety of gram-positive and gram-negative bacteria, raising the possibility that LutABC is a widely conserved and previously unrecognized pathway for the utilization of l-lactate or related metabolites.
Collapse
|
29
|
Monds RD, O'Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 2009; 17:73-87. [PMID: 19162483 DOI: 10.1016/j.tim.2008.11.001] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/28/2022]
Abstract
For the past ten years, the developmental model of microbial biofilm formation has served as the major conceptual framework for biofilm research; however, the paradigmatic value of this model has begun to be challenged by the research community. Here, we critically evaluate recent data to determine whether biofilm formation satisfies the criteria requisite of a developmental system. We contend that the developmental model of biofilm formation must be approached as a model in need of further validation, rather than utilized as a platform on which to base empirical research and scientific inference. With this in mind, we explore the experimental approaches required to further our understanding of the biofilm phenotype, highlighting evolutionary and ecological approaches as a natural complement to rigorous mechanistic studies into the causal basis of biofilm formation. Finally, we discuss a second model of biofilm formation that serves as a counterpoint to our discussion of the developmental model. Our hope is that this article will provide a platform for discussion about the conceptual underpinnings of biofilm formation and the impact of such frameworks on shaping the questions we ask, and the answers we uncover, during our research into these microbial communities.
Collapse
Affiliation(s)
- Russell D Monds
- Bio-X Program, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
30
|
Ni N, Li M, Wang J, Wang B. Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 2009; 29:65-124. [DOI: 10.1002/med.20145] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Duo M, Hou S, Ren D. Identifying Escherichia coli genes involved in intrinsic multidrug resistance. Appl Microbiol Biotechnol 2008; 81:731-41. [DOI: 10.1007/s00253-008-1709-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/29/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
|
32
|
Influence of the sigmaB stress factor and yxaB, the gene for a putative exopolysaccharide synthase under sigmaB Control, on biofilm formation. J Bacteriol 2008; 190:3546-56. [PMID: 18326573 DOI: 10.1128/jb.01665-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms structured communities of biofilms encased in an exopolysaccharide matrix on solid surfaces and at the air-liquid interface. It is postulated that nonoptimal growth conditions induce this multicellular behavior. We showed that under laboratory conditions a strain deleted for sigB was unable to form a floating pellicle on the surface of a liquid medium. However, overexpression of yxaB, encoding a putative exopolysaccharide synthase, from a p(Spac) promoter in a sigB-deleted strain resulted in partial recovery of the wild-type phenotype, indicating the participation of the YxaB protein in this multicellular process. We present data concerning the regulation of transcription of genes yxaB and yxaA, encoding a putative glycerate kinase. Both genes are cotranscribed as a single transcription unit from a sigma(A)-dependent promoter during vegetative growth of a liquid bacterial culture. The promoter driving transcription of the yxaAB operon is regulated by AbrB. In addition, the second gene in the operon, yxaB, possesses its own promoter, which is recognized by RNA polymerase containing the sigma(B) subunit. This transcription start site is used under general stress conditions, resulting in increased expression.
Collapse
|
33
|
Identifying the important structural elements of brominated furanones for inhibiting biofilm formation by Escherichia coli. Bioorg Med Chem Lett 2008; 18:1006-10. [DOI: 10.1016/j.bmcl.2007.12.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/06/2007] [Accepted: 12/11/2007] [Indexed: 11/24/2022]
|
34
|
Ojha A, Hatfull GF. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol 2007; 66:468-83. [PMID: 17854402 PMCID: PMC2170428 DOI: 10.1111/j.1365-2958.2007.05935.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many species of mycobacteria form structured biofilm communities at liquid–air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes – especially those involved in siderophore synthesis and iron uptake – are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 μM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron–exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 μM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it.
Collapse
|
35
|
An D, Parsek MR. The promise and peril of transcriptional profiling in biofilm communities. Curr Opin Microbiol 2007; 10:292-6. [PMID: 17573234 DOI: 10.1016/j.mib.2007.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 05/25/2007] [Indexed: 11/23/2022]
Abstract
DNA microarray technology has been successfully used to identify genes that contribute to biofilm formation for a handful of bacterial species. However, as the number of profiling studies increases, it is becoming increasingly apparent that these data might miss important aspects of biofilm development. One reason for this is the inability of current experimental designs to resolve spatial and functional heterogeneity in the biofilm community. Thus, an emerging challenge is to use transcriptional profiling in combination with techniques that can identify and separate relevant subpopulations within a biofilm.
Collapse
Affiliation(s)
- Dingding An
- Department of Microbiology, University of Washington, School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-7242, USA
| | | |
Collapse
|
36
|
Lee K, Costerton JW, Ravel J, Auerbach RK, Wagner DM, Keim P, Leid JG. Phenotypic and functional characterization of Bacillus anthracis biofilms. Microbiology (Reading) 2007; 153:1693-1701. [PMID: 17526827 DOI: 10.1099/mic.0.2006/003376-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biofilms, communities of micro-organisms attached to a surface, are responsible for many chronic diseases and are often associated with environmental reservoirs or lifestyles. Bacillus anthracis is a Gram-positive, endospore-forming bacterium and is the aetiological agent of pulmonary, gastrointestinal and cutaneous anthrax. Anthrax infections are part of the natural lifecycle of many ruminants in North America, including cattle and bison, and B. anthracis is thought to be a central part of this ecosystem. However, in endemic areas in which humans and livestock interact, chronic cases of cutaneous anthrax are commonly reported. This suggests that biofilms of B. anthracis exist in the environment and are part of the ecology associated with its lifecycle. Currently, there are few data that account for the importance of the biofilm mode of life in B. anthracis, yet biofilms have been characterized in other pathogenic and non-pathogenic Bacillus species, including Bacillus cereus and Bacillus subtilis, respectively. This study investigated the phenotypic and functional role of biofilms in B. anthracis. The results demonstrate that B. anthracis readily forms biofilms which are inherently resistant to commonly prescribed antibiotics, and that antibiotic resistance is not solely the function of sporulation.
Collapse
Affiliation(s)
- Keehoon Lee
- Northern Arizona University, Flagstaff, AZ 86001, USA
| | - J W Costerton
- The Center for Biofilms, The University of Southern California, Los Angeles, CA, USA
| | - Jacques Ravel
- The Institute for Genomic Research, Bethesda, MD, USA
| | | | | | - Paul Keim
- Northern Arizona University, Flagstaff, AZ 86001, USA
| | - Jeff G Leid
- Northern Arizona University, Flagstaff, AZ 86001, USA
| |
Collapse
|
37
|
Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 2007; 104:8113-8. [PMID: 17452642 PMCID: PMC1876580 DOI: 10.1073/pnas.0610226104] [Citation(s) in RCA: 524] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Staphylococcus aureus cidA and lrgA genes have been shown to affect cell lysis under a variety of conditions during planktonic growth. It is hypothesized that these genes encode holins and antiholins, respectively, and may serve as molecular control elements of bacterial cell lysis. To examine the biological role of cell death and lysis, we studied the impact of the cidA mutation on biofilm development. Interestingly, this mutation had a dramatic impact on biofilm morphology and adherence. The cidA mutant (KB1050) biofilm exhibited a rougher appearance compared with the parental strain (UAMS-1) and was less adherent. Propidium iodide staining revealed that KB1050 accumulated more dead cells within the biofilm population relative to UAMS-1, indicative of reduced cell lysis. In agreement with this finding, quantitative real-time PCR experiments demonstrated the presence of 5-fold less genomic DNA in the KB1050 biofilm relative to UAMS-1. Furthermore, treatment of the UAMS-1 biofilm with DNase I caused extensive cell detachment, whereas similar treatment of the KB1050 biofilm had only a modest effect. These results demonstrate that cidA-controlled cell lysis plays a significant role during biofilm development and that released genomic DNA is an important structural component of S. aureus biofilm.
Collapse
Affiliation(s)
- Kelly C. Rice
- *Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Ethan E. Mann
- *Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Jennifer L. Endres
- *Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Elizabeth C. Weiss
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - James E. Cassat
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Kenneth W. Bayles
- *Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Abstract
Analysis of the temporal development of Escherichia coli K-12 biofilms in complex medium indicates the greatest differential gene expression between biofilm and suspension cells occurred in young biofilms at 4 and 7 h (versus 15 and 24 h). The main classes of genes differentially expressed (biofilm versus biofilm and biofilm versus suspension cells) include 42 related to stress response (e.g. cspABFGI), 66 related to quorum sensing (e.g. ydgG, gadABC, hdeABD), 20 related to motility (e.g. flgBCEFH, fliLMQR, motB), 13 related to fimbriae (e.g. sfmCHM, fimZ, csgC), 24 related to sulfur and tryptophan metabolism (e.g. trpLBA, tnaLA, cysDNCJH), 80 related to transport (e.g. gatABC, agaBC, ycjJ, ydfJ, phoU, phnCJKM), and six related to extracellular matrix (e.g. wcaBDEC). Of the 93 mutants identified and studied, 76 showed altered biofilm formation. Biofilm architecture changed from thin and dense to globular and dispersed to dense and smooth. The quorum-sensing signal AI-2 controls gene expression most clearly in mature biofilms (24 h) when intracellular AI-2 levels are highest. Sulfate transport and metabolism genes (cysAUWDN) and genes with unknown functions (ymgABCZ) were repressed in young (4, 7 h) biofilms, induced in developed biofilms (15 h), and repressed in mature (24 h) biofilms. Genes related to both motility and fimbriae were induced in biofilms at all sampling time points and colanic acid genes were induced in mature biofilms (24 h). Genes related to dihydroxyacetone phosphate synthesis from galactitol and galactosamine (e.g. gatZABCDR, agaBCY) were highly regulated in biofilms. Genes involved in the biosynthesis of indole and sulfide (tnaLA) are repressed in biofilms after 7 h (corroborated by decreasing intracellular indole concentrations in biofilms). Cold-shock protein transcriptional regulators (cspABFGI) appear to be positive biofilm regulators, and deletions in respiratory genes (e.g. hyaACD, hyfCG, appC, narG) increased biofilm formation sevenfold.
Collapse
Affiliation(s)
- Joanna Domka
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
39
|
Morikawa M, Kagihiro S, Haruki M, Takano K, Branda S, Kolter R, Kanaya S. Biofilm formation by a Bacillus subtilis strain that produces gamma-polyglutamate. MICROBIOLOGY-SGM 2006; 152:2801-2807. [PMID: 16946274 DOI: 10.1099/mic.0.29060-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The extracellular matrix produced by Bacillus subtilis B-1, an environmental strain that forms robust floating biofilms, was purified, and determined to be composed predominantly of gamma-polyglutamate (gamma-PGA), with a molecular mass of over 1,000 kDa. Both biofilm formation and gamma-PGA production by B. subtilis B-1 increased with increasing Mn(2+) or glycerol concentration. gamma-PGA was produced in a growth-associated manner in standing culture, and floating biofilms were formed. However, gamma-PGA was produced in a non-growth-associated manner in shaking culture conditions. When B. subtilis B-1 was grown in a microaerated culture system, floating biofilm formation and gamma-PGA production were significantly retarded, suggesting that oxygen depletion is involved in the initial steps of floating biofilm formation in standing culture. Proteomic analysis of membrane proteins demonstrated that flagellin, oligopeptide permease and Vpr protease precursor were the major proteins produced by cells in a floating biofilm and a colony.
Collapse
Affiliation(s)
- Masaaki Morikawa
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shinji Kagihiro
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Mitsuru Haruki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Steve Branda
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Roberto Kolter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Domka J, Lee J, Wood TK. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 2006; 72:2449-59. [PMID: 16597943 PMCID: PMC1448992 DOI: 10.1128/aem.72.4.2449-2459.2006] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously discovered that yliH and yceP are induced in Escherichia coli biofilms (D. Ren, L. A. Bedzyk, S. M. Thomas, R. W. Ye, and T. K. Wood, Appl. Microbiol. Biotechnol. 64:515-524, 2004). Here, it is shown that deletion of yceP (b1060) and yliH (b0836) increases biofilm formation in continuous-flow chambers with minimal glucose medium by increasing biofilm mass (240- to 290-fold), surface coverage (16- to 31-fold), and mean thickness (2,800-fold). To determine the genetic basis of the increase in biofilm formation, we examined the differential gene expression profile in biofilms for both the mutants relative to the wild-type strain in rich medium with glucose and found that 372 to 882 genes were induced and that 76 to 337 were repressed consistently >2-fold (P < or = 0.05). The increase in biofilm formation was related to differential expression of genes related to stress response (8 to 64 genes) for both mutants, including rpoS and sdiA. More importantly, 42 to 130 genes related to autoinducer 2 cell signaling were also differentially expressed, including gadAB and flgBCEGHIJLMN, as well as signaling through indole, since 17 to 26 indole-related genes were differentially expressed, including phoAER, gltBD, mtr (encodes protein for indole import), and acrEF (encodes proteins for indole export). Increased biofilm formation in the yliH and yceP mutants in LB supplemented with 0.2% glucose (LB glu) occurred through a reduction in extracellular and intracellular indole concentrations in both mutants (50- to 140-fold), and the addition of indole to the culture restored the wild-type biofilm phenotype; hence, indole represses biofilms. Additionally, both mutants regulate biofilms through quorum sensing, since deletion of either yliH or yceP increased extracellular autoinducer 2 concentrations 50-fold when grown in complex medium (most notably in the stationary phase). Both proteins are involved in motility regulation, since YliH (127 amino acids) and YceP (84 amino acids) repressed motility two to sevenfold (P < or = 0.05) in LB, and YceP repressed motility sevenfold (P < or = 0.05) in LB glu. Heightened motility in the yceP mutant occurred, due to increased transcription of the flagella and motility loci, including fliC, motA, and qseB (3- to 86-fold). We propose new names for these two loci: bssR for yliH and bssS for yceP, based on the phrase "regulator of biofilm through signal secretion."
Collapse
Affiliation(s)
- Joanna Domka
- Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
41
|
Mathew R, Mukherjee R, Balachandar R, Chatterji D. Deletion of the rpoZ gene, encoding the ω subunit of RNA polymerase, results in pleiotropic surface-related phenotypes in Mycobacterium smegmatis. Microbiology (Reading) 2006; 152:1741-1750. [PMID: 16735737 DOI: 10.1099/mic.0.28879-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Theωsubunit, the smallest subunit of bacterial RNA polymerase, is known to be involved in maintaining the conformation of theβ′ subunit and aiding its recruitment to the rest of the core enzyme assembly inEscherichia coli. It has recently been shown inMycobacterium smegmatis, by creating a deletion mutation of therpoZgene encodingω, that the physiological role of theωsubunit also includes providing physical protection toβ′. Interestingly, the mutant had altered colony morphology. This paper demonstrates that the mutant mycobacterium has pleiotropic phenotypes including reduced sliding motility and defective biofilm formation. Analysis of the spatial arrangement of biofilms by electron microscopy suggests that the altered phenotype of the mutant arises from a deficiency in generation of extracellular matrix. Complementation of the mutant strain with a copy of the wild-typerpoZgene integrated in the bacterial chromosome restored both sliding motility and biofilm formation to the wild-type state, unequivocally proving the role ofωin the characteristics observed for the mutant bacterium. Analysis of the cell wall composition demonstrated that the mutant bacterium had an identical glycopeptidolipid profile to the wild-type, but failed to synthesize the short-chain mycolic acids characteristic of biofilm growth inM. smegmatis.
Collapse
Affiliation(s)
- Renjith Mathew
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Raju Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
42
|
González Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 2006; 188:305-16. [PMID: 16352847 PMCID: PMC1317603 DOI: 10.1128/jb.188.1.305-316.2006] [Citation(s) in RCA: 408] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cross-species bacterial communication signal autoinducer 2 (AI-2), produced by the purified enzymes Pfs (nucleosidase) and LuxS (terminal synthase) from S-adenosylhomocysteine, directly increased Escherichia coli biofilm mass 30-fold. Continuous-flow cells coupled with confocal microscopy corroborated these results by showing the addition of AI-2 significantly increased both biofilm mass and thickness and reduced the interstitial space between microcolonies. As expected, the addition of AI-2 to cells which lack the ability to transport AI-2 (lsr null mutant) failed to stimulate biofilm formation. Since the addition of AI-2 increased cell motility through enhanced transcription of five motility genes, we propose that AI-2 stimulates biofilm formation and alters its architecture by stimulating flagellar motion and motility. It was also found that the uncharacterized protein B3022 regulates this AI-2-mediated motility and biofilm phenotype through the two-component motility regulatory system QseBC. Deletion of b3022 abolished motility, which was restored by expressing b3022 in trans. Deletion of b3022 also decreased biofilm formation significantly, relative to the wild-type strain in three media (46 to 74%) in 96-well plates, as well as decreased biomass (8-fold) and substratum coverage (19-fold) in continuous-flow cells with minimal medium (growth rate not altered and biofilm restored by expressing b3022 in trans). Deleting b3022 changed the wild-type biofilm architecture from a thick (54-mum) complex structure to one that contained only a few microcolonies. B3022 positively regulates expression of qseBC, flhD, fliA, and motA, since deleting b3022 decreased their transcription by 61-, 25-, 2.4-, and 18-fold, respectively. Transcriptome analysis also revealed that B3022 induces crl (26-fold) and flhCD (8- to 27-fold). Adding AI-2 (6.4 muM) increased biofilm formation of wild-type K-12 MG1655 but not that of the isogenic b3022, qseBC, fliA, and motA mutants. Adding AI-2 also increased motA transcription for the wild-type strain but did not stimulate motA transcription for the b3022 and qseB mutants. Together, these results indicate AI-2 induces biofilm formation in E. coli through B3022, which then regulates QseBC and motility; hence, b3022 has been renamed the motility quorum-sensing regulator gene (the mqsR gene).
Collapse
Affiliation(s)
- Andrés F González Barrios
- Dept. of Chemical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3222, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sampathkumar B, Napper S, Carrillo CD, Willson P, Taboada E, Nash JHE, Potter AA, Babiuk LA, Allan BJ. Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology (Reading) 2006; 152:567-577. [PMID: 16436444 DOI: 10.1099/mic.0.28405-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AlthoughCampylobacter jejuniis a leading cause of food-borne illness, little is known about the mechanisms by which this pathogen mediates prolonged environmental survival or host cell virulence. Although these behaviours represent distinct phenotypes, they share a common requirement of an immobilized state. In order to understand the cellular mechanisms that facilitate a surface-associated lifestyle, transcriptional and translational expression profiles were determined for sessile and planktonicC. jejuni. These investigations indicate that the immobilized bacteria undergo a shift in cellular priorities away from metabolic, motility and protein synthesis capabilities towards emphasis on iron uptake, oxidative stress defence and membrane transport. This pattern of expression partially overlaps those reported for Campylobacter during host colonization, as well as for other species of bacteria involved in biofilms, highlighting common adaptive responses to the conserved challenges within each of these phenotypes. The adaptation of Campylobacter to immobilized growth may represent a quasi-differentiated state that functions as a foundation for further specialization towards phenotypes such as biofilm formation or host cell virulence.
Collapse
Affiliation(s)
- Balamurugan Sampathkumar
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta, Canada T4L 1W1
| | - Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Catherine D Carrillo
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Road, Ottawa, Ontario, Canada K1A 0R6
| | - Philip Willson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Eduardo Taboada
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Road, Ottawa, Ontario, Canada K1A 0R6
| | - John H E Nash
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Road, Ottawa, Ontario, Canada K1A 0R6
| | - Andrew A Potter
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Lorne A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Brenda J Allan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| |
Collapse
|
44
|
Joshi R, McSpadden Gardener BB. Identification and Characterization of Novel Genetic Markers Associated with Biological Control Activities in Bacillus subtilis. PHYTOPATHOLOGY 2006; 96:145-154. [PMID: 18943917 DOI: 10.1094/phyto-96-0145] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Suppressive subtractive hybridization (SSH) was used to identify genetic markers associated with biological control of plant pathogens by Bacillus subtilis. The genomes of two commercialized strains, GB03 and QST713, were compared with that of strain 168, which has no defined biocontrol capacities, to obtain a pool of DNA fragments unique to the two biocontrol strains. The sequences of 149 subtracted fragments were determined and compared with those present in GenBank, but only 80 were found to correspond to known Bacillus genes. Of these, 65 were similar to genes with a wide range of metabolic functions, including the biosynthesis of cell wall components, sporulation, and antibiotic biosynthesis. Sixteen subtracted fragments shared a high degree of similarity to sequences found in multiple B. subtilis strains with proven biocontrol capacities. Oligonucleotide primers specific to nine of these genes were developed. The targeted genes included five genes involved in antibiotic synthesis (bmyB, fenD, ituC,srfAA, and srfAB) and four additional genes (yndJ, yngG, bioA, and a hypothetical open reading frame) not previously associated with biological control. All nine markers were amplified from the commercialized B. subtilis strains GB03, QST713, and MBI600, with the exception of ituC, which was not detected in GB03. The markers also were amplified from four other B. subtilis isolates, but they were not amplified from other related Bacillus strains, including the plant growth-promoting rhizobacteria IN937a and IN937b. Sequencing of the amplified markers revealed that all seven of the isolates that scored positive for multiple markers were genotypically distinct strains. Interestingly, strains scored positive for the amplifiable markers generally were more effective at inhibiting the growth of Rhizoctonia solani and Pythium ultimum than other Bacillus isolates that lacked the markers. The potential utility of the defined genetic markers to further define the diversity, ecology, and biocontrol activities of B. subtilis are discussed.
Collapse
|
45
|
Abstract
The production of biofilms by bacteria is a lifestyle that is thought to require or involve a differential gene expression compared with that of planktonic bacteria. Recently, we have witnessed a change of focus from the simple hunt for hypothetical essential biofilm genes to the identification of late and more complex biofilm functions. However, finding common bacterial biofilm gene-expression patterns through global expression analysis remains difficult. Owing to the apparently minimal overlap between functions involved in biofilm formation by different bacteria, exploring the biofilm lifestyle could prove to be a case-by-case task for which global approaches show their limits.
Collapse
Affiliation(s)
- Christophe Beloin
- Groupe de Génétique des Biofilms, Institut Pasteur, CNRS URA 2172, 25 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | | |
Collapse
|
46
|
Ren D, Zuo R, González Barrios AF, Bedzyk LA, Eldridge GR, Pasmore ME, Wood TK. Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol 2005; 71:4022-34. [PMID: 16000817 PMCID: PMC1169008 DOI: 10.1128/aem.71.7.4022-4034.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 01/31/2005] [Indexed: 12/16/2022] Open
Abstract
After 13,000 samples of compounds purified from plants were screened, a new biofilm inhibitor, ursolic acid, has been discovered and identified. Using both 96-well microtiter plates and a continuous flow chamber with COMSTAT analysis, 10 microg of ursolic acid/ml inhibited Escherichia coli biofilm formation 6- to 20-fold when added upon inoculation and when added to a 24-h biofilm; however, ursolic acid was not toxic to E. coli, Pseudomonas aeruginosa, Vibrio harveyi, and hepatocytes. Similarly, 10 microg of ursolic acid/ml inhibited biofilm formation by >87% for P. aeruginosa in both complex and minimal medium and by 57% for V. harveyi in minimal medium. To investigate the mechanism of this nontoxic inhibition on a global genetic basis, DNA microarrays were used to study the gene expression profiles of E. coli K-12 grown with or without ursolic acid. Ursolic acid at 10 and 30 microg/ml induced significantly (P < 0.05) 32 and 61 genes, respectively, and 19 genes were consistently induced. The consistently induced genes have functions for chemotaxis and mobility (cheA, tap, tar, and motAB), heat shock response (hslSTV and mopAB), and unknown functions (such as b1566 and yrfHI). There were 31 and 17 genes repressed by 10 and 30 microg of ursolic acid/ml, respectively, and 12 genes were consistently repressed that have functions in cysteine synthesis (cysK) and sulfur metabolism (cysD), as well as unknown functions (such as hdeAB and yhaDFG). Ursolic acid inhibited biofilms without interfering with quorum sensing, as shown with the V. harveyi AI-1 and AI-2 reporter systems. As predicted by the differential gene expression, deleting motAB counteracts ursolic acid inhibition (the paralyzed cells no longer become too motile). Based on the differential gene expression, it was also discovered that sulfur metabolism (through cysB) affects biofilm formation (in the absence of ursolic acid).
Collapse
Affiliation(s)
- Dacheng Ren
- Department of Chemical Engineering and Molecular and Cell Biology, University of Connecticut, 191 Auditorium Rd., Storrs, CT 06269-3222, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Laffey SF, Butler G. Phenotype switching affects biofilm formation by Candida parapsilosis. MICROBIOLOGY-SGM 2005; 151:1073-1081. [PMID: 15817776 DOI: 10.1099/mic.0.27739-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Generation of biofilms by the pathogenic yeast Candida parapsilosis is correlated closely with disease. The phenomenon of phenotype switching in 20 isolates of C. parapsilosis was examined and the relationship with biofilm development was investigated. Four stable and heritable phenotypes were identified--crepe, concentric, smooth and crater. Cells from crepe and concentric phenotypes are almost entirely pseudohyphal, whilst cells from smooth and crater phenotypes are mostly yeast-like. The pseudohyphae from concentric phenotypes are approximately 45 % wider than those from crepe cells. The cell size of the smooth phenotype is smaller than those of the other three phenotypes. On polystyrene surfaces, the concentric phenotype generates up to twofold more biofilm than the crepe and crater phenotypes. Smooth phenotypes generate the least biofilm. Concentric phenotypes also invade agar surfaces more than the crepe and crater phenotypes, whilst smooth phenotypes do not invade at all. The smooth phenotype, however, grows significantly faster than the others. The quorum-sensing molecule farnesol inhibits formation of biofilms by the crepe, concentric and crater phenotypes.
Collapse
Affiliation(s)
- Sean F Laffey
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
48
|
Abstract
DNA microarray technology has been used to identify the global gene expression profile of biofilm cells. This is an interesting case study in how DNA microarray technology has advanced the molecular understanding of an understudied research area. DNA microarray analyses have suggested that there may be common responses upon biofilm formation, such as the repression of flagella genes and hyper-expression of genes for adhesion and ribosomal protein. They have also assisted in the identification of transcription factors that affect the formation of biofilms and indicated that there may not be biofilm-specific genes, arguing against biofilm formation being a developmental process. Instead, the DNA microarray data suggest that biofilms may have a unique pattern of gene expression, in which sub-sets of genes expressed in biofilms are also expressed under different planktonic conditions, but only in the biofilm are they all expressed simultaneously.
Collapse
Affiliation(s)
- Beth A Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 1602 Molecular Sciences Bldg, 405 Hilgard Ave, Los Angeles, California 90095, USA. beth.microbio.ucla.edu
| |
Collapse
|
49
|
Ren D, Bedzyk LA, Setlow P, England DF, Kjelleberg S, Thomas SM, Ye RW, Wood TK. Differential gene expression to investigate the effect of (5Z)-4-bromo- 5-(bromomethylene)-3-butyl-2(5H)-furanone on Bacillus subtilis. Appl Environ Microbiol 2004; 70:4941-9. [PMID: 15294834 PMCID: PMC492336 DOI: 10.1128/aem.70.8.4941-4949.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
(5Z)-4-Bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) from the red marine alga Delisea pulchra was found previously to inhibit the growth, swarming, and biofilm formation of gram-positive bacteria. Using the gram-positive bacterium Bacillus subtilis as a test organism, we observed cell killing by 20 microg of furanone per ml, while 5 microg of furanone per ml inhibited growth approximately twofold without killing the cells. To discover the mechanism of this inhibition on a genetic level and to investigate furanone as a novel antibiotic, full-genome DNA microarrays were used to analyze the gene expression profiles of B. subtilis grown with and without 5 microg of furanone per ml. This agent induced 92 genes more than fivefold (P < 0.05) and repressed 15 genes more than fivefold (P < 0.05). The induced genes include genes involved in stress responses (such as the class III heat shock genes clpC, clpE, and ctsR and the class I heat shock genes groES, but no class II or IV heat shock genes), fatty acid biosynthesis, lichenan degradation, transport, and metabolism, as well as 59 genes with unknown functions. The microarray results for four genes were confirmed by RNA dot blotting. Mutation of a stress response gene, clpC, caused B. subtilis to be much more sensitive to 5 microg of furanone per ml (there was no growth in 8 h, while the wild-type strain grew to the stationary phase in 8 h) and confirmed the importance of the induction of this gene as identified by the microarray analysis.
Collapse
Affiliation(s)
- Dacheng Ren
- Department of Chemical Engineering, University of Connecticut, 191 Auditorium Rd., U-3222, Storrs, CT 06269-3222, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system ofEscherichia coli. Biotechnol Bioeng 2004; 88:630-42. [PMID: 15470704 DOI: 10.1002/bit.20259] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The quorum sensing disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) of the alga Delisea pulchra was previously found by us (Environ Microbiol 3:731-736, 2001) to inhibit quorum sensing in Escherichia coli via autoinducer-2 (AI-2, produced by LuxS). In this study, DNA microarrays were used to study the genetic basis of this natural furanone inhibition of AI-2 signaling (significant values with p < 0.05 are reported). Using DNA microarrays, the AI-2 mutant Escherichia coli DH5alpha was compared with the AI-2 wild-type strain, E. coli K12, to determine how AI-2 influenced gene expression. Escherichia coli K12 was also grown with 0 and 60 microg/mL furanone to study the inhibition of quorum sensing gene expression. It was found that 166 genes were differentially expressed by AI-2 (67 were induced and 99 were repressed) and 90 genes were differentially expressed by furanone (34 were induced and 56 were repressed). Importantly, 79% (44 out of 56) of the genes repressed by furanone were induced by AI-2, which indicated that furanone inhibited AI-2 signaling and influenced the same suite of genes as a regulon. Most of these genes have functions of chemotaxis, motility, and flagellar synthesis. Interestingly, the aerotaxis genes aer and tsr were discovered to be induced by AI-2 and repressed by furanone. Representative microarray results were confirmed by RNA dot blotting. Furthermore, the E. coli air-liquid interface biofilm formation was repressed by furanone, supporting the results that taxis and flagellar genes were repressed by furanone. The autoinducer bioassay indicated that 100 microg/mL furanone decreased the extracellular concentration of AI-2 2-fold, yet luxS and pfs transcription were not significantly altered. Hence, furanone appeared to alter AI-2 signaling post-transcriptionally.
Collapse
Affiliation(s)
- Dacheng Ren
- Department of Chemical Engineering and Molecular & Cell Biology, University of Connecticut, 191 Auditorium Road, U-3222, Storrs, Connecticut 06269-3222, USA
| | | | | | | | | |
Collapse
|