1
|
Jafarihaghighi F, Ardjmand M, Mirzadeh A, Hassani MS, Parizi SS. Current challenges and future trends in manufacturing small diameter artificial vascular grafts in bioreactors. Cell Tissue Bank 2020; 21:377-403. [PMID: 32415569 DOI: 10.1007/s10561-020-09837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/09/2020] [Indexed: 01/17/2023]
Abstract
Cardiovascular diseases are a leading cause of death. Vascular surgery is mainly used to solve this problem. However, the generation of a functional and suitable substitute for small diameter (< 6 mm) displacement is challengeable. Moreover, synthetic prostheses, made of polyethylene terephthalate and extended polytetrafluoroethylene show have shown insufficient performance. Therefore, the challenges dominating the use of autografts have prevented their efficient use. Tissue engineering is highlighted in regenerative medicine perhaps in aiming to address the issue of end-stage organ failure. While organs and complex tissues require the vascular supply to support the graft survival and render the bioartificial organ role, vascular tissue engineering has shown to be a hopeful method for cell implantation by the production of tissues in vitro. Bioreactors are a salient point in vascular tissue engineering due to the capability for reproducible and controlled variations showing a new horizon in blood vessel substitution. This review strives to display the overview of current concepts in the development of small-diameter by using bioreactors. In this work, we show a critical look at different factors for developing small-diameter and give suggestions for future studies.
Collapse
Affiliation(s)
- Farid Jafarihaghighi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Abolfazl Mirzadeh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mohammad Salar Hassani
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shahriar Salemi Parizi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
- Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
He H, He Q, Xu F, Zhou Y, Ye Z, Tan W. Dynamic formation of cellular aggregates of chondrocytes and mesenchymal stem cells in spinner flask. Cell Prolif 2019; 52:e12587. [PMID: 31206838 PMCID: PMC6669002 DOI: 10.1111/cpr.12587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Cellular aggregates are readily applicable in cell-based therapy. The effects of agitation and inoculation density on the aggregation of cells in spinner flask and the molecular mechanism of aggregation were investigated. MATERIALS AND METHODS The aggregation kinetics of cells in spinner flask was evaluated with bovine articular chondrocytes (bACs), rabbit bone marrow-derived mesenchymal stem cells (rMSCs) and their mixture. The morphology of cellular aggregates was studied with scanning electron microscopy and gene expression of cell adhesion-related molecules was analysed. RESULTS It was shown that suspension culture in spinner flask induced the aggregation of bACs and rMSCs. Both cells exhibited increased aggregation rate and aggregate size with decreasing agitation rate and increasing cell inoculation density. Additionally, aggregate size increased with extended culture time. By analysing gene expression of integrin β1 and cadherin, it was indicated that these molecules were potentially involved in the aggregation process of bACs and rMSCs, respectively. Aggregates composed of both bACs and rMSCs were also prepared, showing rMSCs in the core and bACs in the periphery. CONCLUSIONS Cellular aggregates were prepared in dynamic suspension culture using spinner flask, the key parameters to the aggregation process were identified, and the molecular mechanism of aggregation was revealed. This would lay a solid foundation for the large-scale production of cellular aggregates for cell-based therapy, such as cartilage regeneration.
Collapse
Affiliation(s)
- Huimin He
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Qing He
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Feiyue Xu
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yan Zhou
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zhaoyang Ye
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Wen‐Song Tan
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| |
Collapse
|
3
|
Validation of a novel 3D flow model for the optimization of construct perfusion in radial-flow packed-bed bioreactors (rPBBs) for long-bone tissue engineering. N Biotechnol 2019; 52:110-120. [PMID: 31173925 DOI: 10.1016/j.nbt.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 12/25/2022]
Abstract
Osteogenic cell culture in three-dimensional (3D) hollow cylindrical porous scaffolds in radial-flow packed-bed bioreactors (rPBBs) may overcome the transport limitations of static and axial perfusion bioreactors in the engineering of long-bone substitutes. Flow models of rPBBs help optimize radial flux distribution of medium and tissue maturation in vitro. Only a 2D model is available for steady flow transport in rPBBs with axisymmetric inlet and outlet accounting for the fluid dynamics of void spaces, assessed against literature information. Here, a novel 3D model is proposed for steady flow transport in the three compartments of rPBBs with a more practical lateral outlet. A 3D model of transient tracer transport was developed based on the flow model to predict bioreactor residence time distribution (RTD). Model-predicted flow patterns were validated in terms of RTD against tracer experiments performed with bioreactor prototypes equipped with commercial scaffolds for bone tissue engineering. Bioreactors were challenged with a step change in entering tracer concentration in an optimized set-up under conditions promoting uniform radial flux distribution and typical shunt flows. Model-predicted RTDs agreed well with those experimentally determined. In conclusion, tracer experiments validate the use of the 3D flow model for optimizing construct perfusion in rPBBs to engineer long-bone substitutes.
Collapse
|
4
|
Mallick SP, Rastogi A, Tripathi S, Srivastava P. Strategies on process engineering of chondrocyte culture for cartilage tissue regeneration. Bioprocess Biosyst Eng 2016; 40:601-610. [PMID: 27995334 DOI: 10.1007/s00449-016-1724-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/06/2016] [Indexed: 12/26/2022]
Abstract
The current work is an attempt to study the strategies for cartilage tissue regeneration using porous scaffold in wavy walled airlift bioreactor (ALBR). Novel chitosan, poly (L-lactide) and hyaluronic acid based composite scaffold were prepared. The scaffolds were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N-hydroxysuccinimide and chondroitin sulfate to obtain interconnected 3D microstructure showing excellent biocompatibility, higher cellular differentiation and increased stability. The surface morphology and porosity of the scaffolds were analyzed using scanning electron microscopy (SEM) and mercury intrusion porosimeter and optimized for chondrocyte regeneration. The study shows that the scaffolds were highly porous with pore size ranging from 48 to 180 µm and the porosities in the range 80-92%. Swelling and in vitro degradation studies were performed for the composite scaffolds; by increasing the chitosan: HA ratio in the composite scaffolds, the swelling property increases and stabilizes after 24 h. There was controlled degradation of composite scaffolds for 4 weeks. The uniform chondrocyte distribution in the scaffold using various growth modes in the shake flask and ALBR was studied by glycosaminoglycans (GAG) quantification, MTT assay and mixing time evaluation. The cell culture studies demonstrated that efficient designing of ALBR increases the cartilage regeneration as compared to using a shake flask. The free chondrocyte microscopy and cell attachment were performed by inverted microscope and SEM, and from the study it was confirmed that the cells uniformly attached to the scaffold. This study focuses on optimizing strategies for the culture of chondrocyte using suitable scaffold for improved cartilage tissue regeneration.
Collapse
Affiliation(s)
- Sarada Prasanna Mallick
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Amit Rastogi
- Department of Orthopaedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Satyavrat Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
5
|
Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomater Sci 2016; 4:734-67. [PMID: 26923076 DOI: 10.1039/c6bm00068a] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.
Collapse
Affiliation(s)
- Sandra Camarero-Espinosa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
6
|
Choi B, Kim S, Lin B, Wu BM, Lee M. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20110-21. [PMID: 25361212 DOI: 10.1021/am505723k] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.
Collapse
Affiliation(s)
- Bogyu Choi
- Division of Advanced Prosthodontics, ‡Department of Bioengineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | | | | | | | | |
Collapse
|
7
|
Blackstone BN, Palmer AF, Rilo HR, Powell HM. Scaffold architecture controls insulinoma clustering, viability, and insulin production. Tissue Eng Part A 2014; 20:1784-93. [PMID: 24410263 DOI: 10.1089/ten.tea.2013.0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, in vitro diagnostic tools have shifted focus toward personalized medicine by incorporating patient cells into traditional test beds. These cell-based platforms commonly utilize two-dimensional substrates that lack the ability to support three-dimensional cell structures seen in vivo. As monolayer cell cultures have previously been shown to function differently than cells in vivo, the results of such in vitro tests may not accurately reflect cell response in vivo. It is therefore of interest to determine the relationships between substrate architecture, cell structure, and cell function in 3D cell-based platforms. To investigate the effect of substrate architecture on insulinoma organization and function, insulinomas were seeded onto 2D gelatin substrates and 3D fibrous gelatin scaffolds with three distinct fiber diameters and fiber densities. Cell viability and clustering was assessed at culture days 3, 5, and 7 with baseline insulin secretion and glucose-stimulated insulin production measured at day 7. Small, closely spaced gelatin fibers promoted the formation of large, rounded insulinoma clusters, whereas monolayer organization and large fibers prevented cell clustering and reduced glucose-stimulated insulin production. Taken together, these data show that scaffold properties can be used to control the organization and function of insulin-producing cells and may be useful as a 3D test bed for diabetes drug development.
Collapse
Affiliation(s)
- Britani N Blackstone
- 1 Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio
| | | | | | | |
Collapse
|
8
|
Yang YH, Barabino GA. Differential morphology and homogeneity of tissue-engineered cartilage in hydrodynamic cultivation with transient exposure to insulin-like growth factor-1 and transforming growth factor-β1. Tissue Eng Part A 2013; 19:2349-60. [PMID: 23672482 PMCID: PMC3807706 DOI: 10.1089/ten.tea.2012.0742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/01/2013] [Indexed: 12/22/2022] Open
Abstract
Successful tissue-engineering strategies for cartilage repair must maximize the efficacy of chondrocytes within their limited life span. To that end, the combination of exogenous growth factors with mechanical stimuli holds promise for development of clinically relevant cartilage tissue substitutes. The current study aimed to determine whether incorporation of transient exposure to growth factors into a hydrodynamic bioreactor system can improve the functional maturation of tissue-engineered cartilage. Chondrocyte-seeded polyglycolic acid scaffolds were cultivated within a wavy-walled bioreactor that imparts fluid flow-induced shear stress for 4 weeks. Constructs were nourished with 100 ng/mL insulin-like growth factor-1 (IGF-1) or 10 ng/mL transforming growth factor-β1 (TGF-β1) either for the first 15 days of the culture (transient) or throughout the entire cultivation (continuous). Transiently treated constructs were found to exhibit better functional properties than continuously nourished constructs. The limited development of engineered tissues continuously stimulated by IGF-1 or TGF-β1 was related to massive growth factor leftovers in the environments that downregulated the expression of the associated receptors. Treatment with TGF-β1 eliminated the formation of a fibrous capsule at the construct periphery possibly through suppression of Smad3 phosphorylation, yielding constructs with greater homogeneity. Furthermore, TGF-β1 reversely regulated Smad2 and Smad3 pathways in articular chondrocytes under hydrodynamic stimuli partially via Smad7. Collectively, transient exposure to growth factors is likely to maintain chondrocyte homeostasis, and thus promotes their anabolic activities under hydrodynamic stimuli. The present work suggests that robust hydrodynamically engineered neocartilage with a reduced fibrotic response and enhanced tissue homogeneity can be achieved through optimization of growth factor supplementation protocols and potentially through manipulation of intracellular signals such as Smad.
Collapse
Affiliation(s)
- Yueh-Hsun Yang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | | |
Collapse
|
9
|
Abstract
A bioreactor system plays an important role in tissue engineering and enables reproduction and controlled changes in the environmental factor. The bioreactor provides technical means to perform controlled processes in safe and reduced reproducible generation of time. Cartilage cells were grown in vitro by mimicking the in vivo condition. The basic unit of cartilage, that is, chondrocyte, requires sufficient shear, strain, and hydrodynamic pressure for regular growth as it is nonvascular tissue. An attempt has been made to design a novel airlift reactor for chondrocyte culture, and the reactor has been evaluated for its performance. The design includes internal loop wavy riser airlift reactor for chondrocyte culture with 5% CO2 sparging which gives a good yield of chondrocyte after 28 days. The wavy riser provides more surfaces for collision of fluid flow so to create the turbulence. Also, the horizontal semicircular baffles create an angle of 180° which helps in high shear rate. The optimized L/D ratio of the designed airlift reactor (for chondrocyte culture) is 5.67, and it also exhibits good mixing performance.
Collapse
|
10
|
Salehi-Nik N, Amoabediny G, Pouran B, Tabesh H, Shokrgozar MA, Haghighipour N, Khatibi N, Anisi F, Mottaghy K, Zandieh-Doulabi B. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering. BIOMED RESEARCH INTERNATIONAL 2013; 2013:762132. [PMID: 24000327 PMCID: PMC3755438 DOI: 10.1155/2013/762132] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
Abstract
Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.
Collapse
Affiliation(s)
- Nasim Salehi-Nik
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Behdad Pouran
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Hadi Tabesh
- Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Nooshin Haghighipour
- National Cell Bank, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Nahid Khatibi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Fatemeh Anisi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 14395-1374, Tehran, Iran
| | - Khosrow Mottaghy
- Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | |
Collapse
|
11
|
Bilgen B, Barabino GA. Modeling of bioreactor hydrodynamic environment and its effects on tissue growth. Methods Mol Biol 2012; 868:237-255. [PMID: 22692614 DOI: 10.1007/978-1-61779-764-4_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The design of optimal bioreactor systems for tissue engineering applications requires a sophisticated understanding of the complexities of the bioreactor environment and the role that it plays in the formation of engineered tissues. To this end, a tissue growth model is developed to characterize the tissue growth and extracellular matrix synthesis by chondrocytes seeded and cultivated on polyglycolic acid scaffolds in a wavy-walled bioreactor for a period of 4 weeks. This model consists of four components: (1) a computational fluid dynamics (CFD) model to characterize the complex hydrodynamic environment in the bioreactor, (2) a kinetic growth model to characterize the cell growth and extracellular matrix production dynamics, (3) an artificial neural network (ANN) that empirically correlates hydrodynamic parameters with kinetic constants, and (4) a second ANN that correlates the biochemical composition of constructs with their material properties. In tandem, these components enable the prediction of the dynamics of tissue growth, as well as the final compositional and mechanical properties of engineered cartilage. The growth model methodology developed in this study serves as a tool to predict optimal bioprocessing conditions required to achieve desired tissue properties.
Collapse
Affiliation(s)
- Bahar Bilgen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
12
|
HE JIANKANG, LI DICHEN, LIU YAXIONG, LI XIAO, XU SHANGLONG, LU BINGHENG. COMPUTATIONAL FLUID DYNAMICS FOR TISSUE ENGINEERING APPLICATIONS. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519411004046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrodynamic cellular environment plays an important role in translating engineered tissue constructs into clinically useful grafts. However, the cellular fluid dynamic environment inside bioreactor systems is highly complex and it is normally impractical to experimentally characterize the local flow patterns at the cellular scale. Computational fluid dynamics (CFD) has been recognized as an invaluable and reliable alternative to investigate the complex relationship between hydrodynamic environments and the regeneration of engineered tissues at both the macroscopic and microscopic scales. This review describes the applications of CFD simulations to probe the hydrodynamic environment parameters (e.g., flow rate, shear stress, etc.) and the corresponding experimental validations. We highlight the use of CFD to optimize bioreactor design and scaffold architectures for improved ex-vivo hydrodynamic environments. It is envisioned that CFD could be used to customize specific hydrodynamic cellular environments to meet the unique requirements of different cell types in combination with advanced manufacturing techniques and finally facilitate the maturation of tissue-engineered constructs.
Collapse
Affiliation(s)
- JIANKANG HE
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - DICHEN LI
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - YAXIONG LIU
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - XIAO LI
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - SHANGLONG XU
- Department of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - BINGHENG LU
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Yang YH, Barabino GA. Requirement for Serum in Medium Supplemented with Insulin-Transferrin-Selenium for Hydrodynamic Cultivation of Engineered Cartilage. Tissue Eng Part A 2011; 17:2025-35. [DOI: 10.1089/ten.tea.2010.0415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yueh-Hsun Yang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Gilda A. Barabino
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Kinney MA, Sargent CY, McDevitt TC. The multiparametric effects of hydrodynamic environments on stem cell culture. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:249-62. [PMID: 21491967 DOI: 10.1089/ten.teb.2011.0040] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells possess the unique capacity to differentiate into many clinically relevant somatic cell types, making them a promising cell source for tissue engineering applications and regenerative medicine therapies. However, in order for the therapeutic promise of stem cells to be fully realized, scalable approaches to efficiently direct differentiation must be developed. Traditionally, suspension culture systems are employed for the scale-up manufacturing of biologics via bioprocessing systems that heavily rely upon various types of bioreactors. However, in contrast to conventional bench-scale static cultures, large-scale suspension cultures impart complex hydrodynamic forces on cells and aggregates due to fluid mixing conditions. Stem cells are exquisitely sensitive to environmental perturbations, thus motivating the need for a more systematic understanding of the effects of hydrodynamic environments on stem cell expansion and differentiation. This article discusses the interdependent relationships between stem cell aggregation, metabolism, and phenotype in the context of hydrodynamic culture environments. Ultimately, an improved understanding of the multifactorial response of stem cells to mixed culture conditions will enable the design of bioreactors and bioprocessing systems for scalable directed differentiation approaches.
Collapse
Affiliation(s)
- Melissa A Kinney
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0532, USA
| | | | | |
Collapse
|
15
|
Bilgen B, Uygun K, Bueno EM, Sucosky P, Barabino GA. Tissue Growth Modeling in a Wavy-Walled Bioreactor. Tissue Eng Part A 2009; 15:761-71. [DOI: 10.1089/ten.tea.2008.0078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bahar Bilgen
- Department of Orthopaedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, Massachusetts
| | - Ericka M. Bueno
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Philippe Sucosky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Gilda A. Barabino
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
16
|
Abstract
Articular cartilage repair and regeneration continue to be largely intractable because of the poor regenerative properties of this tissue. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased articular cartilage functionality, has evoked intense interest and holds great potential for improving articular cartilage therapy. This review provides an overall description of the current state of and progress in articular cartilage repair and regeneration. Traditional therapies and related problems are introduced. More importantly, a variety of promising cell sources, biocompatible tissue engineered scaffolds, scaffoldless techniques, growth factors, and mechanical stimuli used in current articular cartilage tissue engineering are reviewed. Finally, the technical and regulatory challenges of articular cartilage tissue engineering and possible future directions are also discussed.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jerry Hu
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
17
|
Weyand B, Israelowitz M, Schroeder H, Vogt P. Fluid Dynamics in Bioreactor Design: Considerations for the Theoretical and Practical Approach. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [DOI: 10.1007/10_2008_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Characterization of spatial growth and distribution of chondrocyte cells embedded in collagen gels through a stereoscopic cell imaging system. Biotechnol Bioeng 2008; 99:1230-40. [DOI: 10.1002/bit.21667] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Bilgen B, Barabino GA. Location of scaffolds in bioreactors modulates the hydrodynamic environment experienced by engineered tissues. Biotechnol Bioeng 2007; 98:282-94. [PMID: 17318906 DOI: 10.1002/bit.21385] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Physical forces experienced by engineered-tissues during in vitro cultivation influence tissue growth and function. The hydrodynamic environment within bioreactors plays a decisive role in providing the necessary physical stimuli and nutrient transport to support tissue development. Our overall goal is to investigate interrelationships between the local hydrodynamic environment in the bioreactor and the structural and functional tissue properties in order to optimize the production of clinically relevant engineered-tissues. To this end, we used computational fluid dynamics (CFD) modeling to characterize the complex hydrodynamic environment in a wavy-walled bioreactor used for cultivation of tissue-engineered cartilage constructs and examined the changes in the flow field due to the presence of constructs. The flow-induced shear stress range experienced by engineered constructs cultivated in the wavy-walled bioreactor (0-0.67 dyn/cm(2)) was found to be significantly lower than that in the spinner flask (0-1.2 dyn/cm(2)), and to be modulated by the radial or axial position of the constructs. These CFD results are validated by experimental particle-image velocimetry (PIV) measurements previously reported by our group. Results from the present study indicate that the location of constructs in the bioreactor not only affected the magnitude and distribution of the shear stresses on the constructs, but also other hydrodynamic parameters, such as the directional distribution of the fluid velocity and the degree of fluid recirculation, all of which may differentially influence the development of tissue-engineered constructs.
Collapse
Affiliation(s)
- Bahar Bilgen
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
20
|
Bueno EM, Laevsky G, Barabino GA. Enhancing cell seeding of scaffolds in tissue engineering through manipulation of hydrodynamic parameters. J Biotechnol 2007; 129:516-31. [PMID: 17324484 DOI: 10.1016/j.jbiotec.2007.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 12/01/2006] [Accepted: 01/03/2007] [Indexed: 11/30/2022]
Abstract
The seeding of cells onto biocompatible scaffolds is a determinant step in the attainment of functional properties of engineered tissues. Efficient, fast and spatially uniform cell seeding can improve the clinical potential of engineered tissue templates. One way to approach these cell seeding requirements is through bioreactor design. In the present study, bovine chondrocytes were seeded (2.5, 5.0 or 10.0 million cells per scaffold) onto polyglycolic acid scaffolds within the hydrodynamic environments of wavy-walled and spinner flask bioreactors. Previous characterizations of the hydrodynamic environment in the vicinity of constructs cultivated in these bioreactors suggested decreased flow-induced shear stress as well as increased recirculation and magnitude of the axial fluid velocities in the wavy-walled bioreactor. Here we report more efficient and spatially uniform cell seeding in the wavy-walled bioreactor, and at intermediate initial cell densities (5 million cells per scaffold). This study constitutes an important step towards the achievement of functional tissue-engineered implants by (i) increasing our understanding of the influence of hydrodynamic parameters on the efficiency and spatial distribution of cell attachment to scaffolds and the production of extracellular matrix and (ii) introducing a comprehensive approach to the investigation of the effects of bioprocessing conditions on tissue morphology and composition.
Collapse
Affiliation(s)
- Ericka M Bueno
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 342 Snell Engineering, Boston, MA 02115, USA.
| | | | | |
Collapse
|
21
|
Chen HC, Hu YC. Bioreactors for tissue engineering. Biotechnol Lett 2006; 28:1415-23. [PMID: 16955350 DOI: 10.1007/s10529-006-9111-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 05/15/2006] [Indexed: 11/24/2022]
Abstract
Bioreactors are essential in tissue engineering, not only because they provide an in vitro environment mimicking in vivo conditions for the growth of tissue substitutes, but also because they enable systematic studies of the responses of living tissues to various mechanical and biochemical cues. The basic principles of bioreactor design are reviewed, the bioreactors commonly used for the tissue engineering of cartilage, bone and cardiovascular systems are assessed in terms of their performance and usefulness. Several novel bioreactor types are also reviewed.
Collapse
Affiliation(s)
- Huang-Chi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | | |
Collapse
|
22
|
Abstract
Chondrocyte is a unique cell type in articular cartilage tissue and is essential for cartilage formation and functionality. It arises from mesenchymal stem cells (MSCs) and is regulated by a series of cytokine and transcription factor interactions, including the transforming growth factor-beta super family, fibroblast growth factors, and insulin-like growth factor-1. To understand the biomechanisms of the chondrocyte differentiation process, various cellular model systems have been employed, such as primary chondrocyte culture, clonal normal cell lines (HCS-2/8, Ch-1, ATDC5, CFK-2, and RCJ3.1C5.18), and transformed clonal cell lines (T/C-28a2, T/C-28a4, C-28/I2, tsT/AC62, and HPV-16 E6/E7). Additionally, cell culture methods, including conventional monolayer culture, three-dimensional scaffold culture, bioreactor culture, pellet culture, and organ culture, have been established to create stable environments for the expansion, phenotypic maintenance, and subsequent biological study of chondrocytes for clinical application. Knowledge gained through these study systems has allowed for the use of chondrocytes in orthopedics for the treatment of cartilage injury and epiphyseal growth plate defects using tissue-engineering approaches. Furthermore, the potential of chondrocyte implantation for facial reconstruction, the treatment of long segmental tracheal defects, and urinary incontinence and vesicoureteral reflux are being investigated. This review summarizes the present study of chondrocyte biology and the potential uses of this cell in orthopedics and other disciplines.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Orthopaedic Surgery, Faculty of Medicine and Dentistry, University of Western Australia, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
23
|
Bilgen B, Sucosky P, Neitzel GP, Barabino GA. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. Biotechnol Bioeng 2006; 95:1009-22. [PMID: 17031866 DOI: 10.1002/bit.20775] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cartilage tissue engineering requires the use of bioreactors in order to enhance nutrient transport and to provide sufficient mechanical stimuli to promote extracellular matrix (ECM) synthesis by chondrocytes. The amount and quality of ECM components is a large determinant of the biochemical and mechanical properties of engineered cartilage constructs. Mechanical forces created by the hydrodynamic environment within the bioreactors are known to influence ECM synthesis. The present study characterizes the hydrodynamic environment within a novel wavy-walled bioreactor (WWB) used for the development of tissue-engineered cartilage. The geometry of this bioreactor provides a unique hydrodynamic environment for mammalian cell and tissue culture, and investigation of hydrodynamic effects on tissue growth and function. The flow field within the WWB was characterized using two-dimensional particle-image velocimetry (PIV). The flow in the WWB differed significantly from that in the traditional spinner flask both qualitatively and quantitatively, and was influenced by the positioning of constructs within the bioreactor. Measurements of velocity fields were used to estimate the mean-shear stress, Reynolds stress, and turbulent kinetic energy components in the vicinity of the constructs within the WWB. The mean-shear stress experienced by the tissue-engineered constructs in the WWB calculated using PIV measurements was in the range of 0-0.6 dynes/cm2. Quantification of the shear stress experienced by cartilage constructs, in this case through PIV, is essential for the development of tissue-growth models relating hydrodynamic parameters to tissue properties.
Collapse
Affiliation(s)
- Bahar Bilgen
- Department of Chemical Engineering, 342 Snell Engineering Center Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
24
|
Bueno EM, Bilgen B, Barabino GA. Wavy-Walled Bioreactor Supports Increased Cell Proliferation and Matrix Deposition in Engineered Cartilage Constructs. ACTA ACUST UNITED AC 2005; 11:1699-709. [PMID: 16411815 DOI: 10.1089/ten.2005.11.1699] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hydrodynamic forces in bioreactors can decisively influence extracellular matrix deposition in engineered cartilage constructs. In the present study, the reduced fluid shear, high-axial mixing environment provided by a wavy-walled bioreactor was exploited in the cultivation of cartilage constructs using polyglycolic acid scaffolds seeded with bovine articular chondrocytes. Increased growth as defined by weight, cell proliferation and extracellular matrix deposition was observed in cartilage constructs from wavy-walled bioreactors in comparison with those from spinner flasks cultured under the same conditions. The wet weight composition of 4-week constructs from the wavy-walled bioreactor was similar to that of spinner flask constructs, but the former were 60% heavier due to equally higher incorporation of extracellular matrix and 30% higher cell population. It is most likely that increased construct matrix incorporation was a result of increased mitotic activity of chondrocytes cultured in the environment of the wavy-walled bioreactor. A layer of elongated cells embedded in type I collagen formed at the periphery of wavy-walled bioreactor and spinner flask constructs, possibly as a response to local shear forces. On the basis of the robustness and reproducibility of the extracellular matrix composition of cartilage constructs, the wavy-walled bioreactor demonstrated promise as an experimental cartilage tissue-engineering vessel. Increased construct growth in the wavy-walled bioreactor may lead to enhanced mechanical properties and expedited in vitro cultivation.
Collapse
Affiliation(s)
- Ericka M Bueno
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
25
|
Hsu SH, Kuo CC, Yen HJ, Whu SW, Tsai CL. The Effect of Two Different Bioreactors on the Neocartilage Formation in Type II Collagen Modified Polyester Scaffolds Seeded With Chondrocytes. Artif Organs 2005; 29:467-74. [PMID: 15926984 DOI: 10.1111/j.1525-1594.2005.29080.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of dynamic culture conditions on neocartilage formation in type II collagen modified polyester scaffolds was studied. Porcine or human articular chondrocytes were seeded in the scaffolds. The cell-scaffold constructs were cultivated statically, in a rotating-type bioreactor or in a shaker for up to 4 weeks. The cell proliferation, morphology, NO production, synthesis of proteoglycans and collagen, and mechanical properties were evaluated. The results demonstrated that the rotating-type bioreactor promoted the growth of primary porcine chondrocytes, helped to maintain their phenotype, and increased the production of extracellular matrix. The constructs also had the largest dynamic compressive modulus. In the static condition, chondrocytes occupied only the outer margin of the cell-polymer constructs. The poor mass transfer in static condition may have caused a lower pH value in the middle of the constructs and lead further to faster scaffold degradation as well as the weakest neocartilage. Constructs in the shaker produced the highest amount of NO as well as the lowest amount of cells and matrix production. Human or porcine chondrocytes of the second passage seeded in scaffolds were much less viable, with the largest amount of cells and matrix when cultured in rotating-type bioreactors. A larger seeding density was required to form neocartilage from passaged adult chondrocytes.
Collapse
Affiliation(s)
- Shan-hui Hsu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
26
|
Bilgen B, Chang-Mateu IM, Barabino GA. Characterization of mixing in a novel wavy-walled bioreactor for tissue engineering. Biotechnol Bioeng 2005; 92:907-19. [PMID: 16175564 DOI: 10.1002/bit.20667] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The wavy-walled bioreactor (WWB) possesses a novel geometry comprised of walls with sinusoidal waves that mimic baffles in an effort to promote mixing. This geometry provides a unique hydrodynamic environment suitable for the cultivation of mammalian cells and tissues and the investigation of fluid mechanical effects on cell and tissue growth and development. In the present study, mixing in WWB was characterized and compared to that in a conventional spinner flask (SF). The key parameters included in this characterization were mixing time, residence time distribution (RTD), and dissolved oxygen concentration during engineered cartilage tissue cultivation. Factors that influenced mixing in WWB included wave amplitude, agitation rate, and the ratio of the impeller diameter to the tank diameter (D/T). Data obtained from RTD and acid base neutralization studies confirmed the presence of different mixing zones in WWB. A theoretical comparison of WWB to a baffled spinner flask (BSF) using computational fluid dynamics (CFD) modeling predicted that while enhanced mixing was achieved in wavy-walled and BSF bioreactors, the shear stresses applied on tissue constructs were 15% lower in WWB. Improved mixing was achieved in WWB compared to the SF at similar D/T ratios, verified by improved oxygen transport and increased dispersion. However, for lower D/T ratios mixing in WWB was not necessarily improved. This study demonstrated the importance of characterization of mixing by showing the impact of even minor changes in bioreactor geometry and operating conditions.
Collapse
Affiliation(s)
- Bahar Bilgen
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|