1
|
Rouhollahi AA, Giyahchi M, Dastgheib SMM, Moghimi H. Assessing the efficiency and microbial diversity of H 2S-removing biotrickling filters at various pH conditions. Microb Cell Fact 2024; 23:157. [PMID: 38807121 PMCID: PMC11134876 DOI: 10.1186/s12934-024-02427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
This study aimed to investigate the operation of three parallel biotrickling filters (BTFs) in removing H2S at different pH conditions (haloalkaliphilic, neutrophilic, and acidophilic) and their associated microbial population in the biodesulfurization process. BTF columns were inoculated with enriched inoculum and experiments were performed by gradually reducing Empty Bed Retention Time (EBRT) and increasing inlet concentration in which the maximum removal efficiency and maximum elimination capacity in EBRT 60 s reached their maximum level in haloalkaline condition (91% and 179.5 g S-H2S m-3 h-1). For visualizing the attached microbial biofilms on pall rings, Scanning Electron Microscopy (SEM) was used and microbial community structure analysis by NGS showed that the most abundant phyla in haBTF, nBTF, and aBTF belong to Gammaproteobacteria, Betaproteobacteria, and Acidithiobacillia, respectively. Shannon and Simpson indexes evaluation showed a lower diversity of bacteria in the aBTF reactor than that of nBTF and haBTF and beta analysis indicated a different composition of bacteria in haBTF compared to the other two filters. These results indicated that the proper performance of BTF under haloalkaliphilic conditions is the most effective way for H2S removal from air pollutants of different industries.
Collapse
Affiliation(s)
- Abbas Abbas Rouhollahi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Minoo Giyahchi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Shihab MS, Alp K, Türker M, Akmirza I, Mhemid RK. Removal of ethanethiol using a biotrickling filter with nitrate as an electron acceptor. ENVIRONMENTAL TECHNOLOGY 2020; 41:1738-1752. [PMID: 30418102 DOI: 10.1080/09593330.2018.1545804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Many studies have discussed the biotreatment of ethanethiol (ET) under aerobic conditions. However, O2 free conditions offer bio-conversion of ET gas into elemental sulphur and/or sulphate using [Formula: see text] as electron acceptor, and this has been not studied. In this study, an anoxic biotrickling filter was tested in lab-scale conditions with ET/[Formula: see text] ratio 0.74 and 0.34 mole/mole to remove malodorous ET waste gas. The study examined the effect of three operational parameters: ET inlet concentrations (150, 300, 800, and 1500 mg/m3), trickling velocities (0.12, 0.18, 0.24, 0.3, and 0.45 m/h), and empty bed residence times (30, 60, 90, and 120 s). It found that the effect of trickling velocity on removal efficiency depended on inlet concentrations; 0.24 m/h trickling velocity resulted in efficient ET removal (higher than 90.8% for 150 mg/m3 of inlet concentration) while 0.45 m/h trickling velocity could only achieve a removal of 80.6% for 1500 mg/m3 of inlet concentration at fixed EBRT 60 s. Increasing the EBRT up to 60 s was adequate to achieve removal efficiency, i.e. 92 and 80% for ET inlet concentrations 150 and 1500 mg/m3 respectively, and the maximum elimination capacity was 75.18 g/m3/h at 0.45 m/h. Overall, the anoxic conditions enhanced the low oxidation rates of ET in an anoxic biotrickling filter despite mass transfer limitations and poor solubility of ET.
Collapse
Affiliation(s)
- Mohammed Salim Shihab
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Environmental Engineering, University of Mosul, Mosul, Iraq
| | - Kadir Alp
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | | | - Ilker Akmirza
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain
| | - Rasha Khalid Mhemid
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- College of Environmental Science and Technology, University of Mosul, Mosul, Iraq
| |
Collapse
|
3
|
García-Pérez T, Hernández-Jiménez S, Revah S. Operational parameters in H 2S biofiltration under extreme acid conditions: performance, biomass control, and CO 2 consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4502-4508. [PMID: 31755066 DOI: 10.1007/s11356-019-06789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
This paper reports the treatment of gaseous hydrogen sulfide, H2S, in a biotrickling filter (BTF) under extreme acidic pH conditions (≈ 1.2). The effect of adding thiosulfate (Na2S2O3.5H2O) to promote biomass growth, feeding low concentrations of ozone to control excess biomass, and the carbon dioxide, CO2, consumption by the chemolithoautotrophic consortium were evaluated. The results showed a global removal efficiency over 98.0% with loads of H2S > 50 g m-3 h-1 (at 639 ppmv) and a linear relation between H2S elimination capacity with the CO2 consumption rate of around 0.1 gCO2/gH2S. Supplementing sulfur in the medium with 2 g L-1 thiosulfate resulted in negative effect performance. Respirometry tests proved that the consortium could not utilize this sulfur form at this pH. Additionally, continuous and intermittent O3 feeding to the BTF in gaseous concentrations of 98 ± 5.4 mg m-3 caused a slight decreased in the performance but the biomass activity in the BTF was only slightly affected allowing a quick performance recovery once O3 addition was suspended.
Collapse
Affiliation(s)
- Teresa García-Pérez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana - Cuajimalpa, Prolongación Vasco de Quiroga 4871, Cuajimalpa de Morelos, 05348, Cd. de México, México
| | - Sergio Hernández-Jiménez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana - Cuajimalpa, Prolongación Vasco de Quiroga 4871, Cuajimalpa de Morelos, 05348, Cd. de México, México
| | - Sergio Revah
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana - Cuajimalpa, Prolongación Vasco de Quiroga 4871, Cuajimalpa de Morelos, 05348, Cd. de México, México.
| |
Collapse
|
4
|
Nagendranatha Reddy C, Bae S, Min B. Biological removal of H 2S gas in a semi-pilot scale biotrickling filter: Optimization of various parameters for efficient removal at high loading rates and low pH conditions. BIORESOURCE TECHNOLOGY 2019; 285:121328. [PMID: 31003205 DOI: 10.1016/j.biortech.2019.121328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
In this study, a semi-pilot scale biotrickling filter (BTF) was operated in a continuous co-current mode to remove high concentration of hydrogen sulfide (H2S) at optimum operational conditions. The early startup period of 6 days was needed, and then stable removal of H2S gas at inlet concentrations up to about 2000 ppm was successfully obtained at gas retention time (GRT) of 15 min and liquid recirculation rate (LRR) of 120 ml/min. The elimination capacities (ECs) increased linearly with increase in H2S loading rates (HLRs up to 38.5 g/m3 h), but a gradual decrease in removal efficiency was observed from a volumetric HLR of 18.1 g/m3 h. The LRR was further decreased from 120 to 30 ml/min, and the minimum liquid-gas ratio of 0.24 was found without decrease in removal efficiency. The MiSeq analysis revealed the presence of sulphur oxidizing bacteria (SOB) dominated by Acidithiobacillus caldus (>97%) at all portions of BTF.
Collapse
Affiliation(s)
- C Nagendranatha Reddy
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Sungwoo Bae
- Research Institute, Halla OMS Co. Ltd., 359 Kyoungbukdaero, Andong-si, Kyoungsangbuk-do 36664, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
5
|
Application of Response Surface Methodology for H2S Removal from Biogas by a Pilot Anoxic Biotrickling Filter. CHEMENGINEERING 2019. [DOI: 10.3390/chemengineering3030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, a pilot biotrickling filter (BTF) was installed in a wastewater treatment plant to treat real biogas. The biogas flow rate was between 1 and 5 m3·h−1 with an H2S inlet load (IL) between 35.1 and 172.4 gS·m−3·h−1. The effects of the biogas flow rate, trickling liquid velocity (TLV) and nitrate concentration on the outlet H2S concentration and elimination capacity (EC) were studied using a full factorial design (33). Moreover, the results were adjusted using Ottengraf’s model. The most influential factors in the empirical model were the TLV and H2S IL, whereas the nitrate concentration had less influence. The statistical results showed high predictability and good correlation between models and the experimental results. The R-squared was 95.77% and 99.63% for the ‘C model’ and the ‘EC model’, respectively. The models allowed the maximum H2S IL (between 66.72 and 119.75 gS·m−3·h−1) to be determined for biogas use in a combustion engine (inlet H2S concentration between 72 and 359 ppmV). The ‘C model’ was more sensitive to TLV (–0.1579 (gS·m−3)/(m·h−1)) in the same way the ‘EC model’ was also more sensitive to TLV (4.3303 (gS·m−3)/(m·h−1)). The results were successfully fitted to Ottengraf’s model with a first-order kinetic limitation (R-squared above 0.92).
Collapse
|
6
|
Chen Y, Xie L, Cai W, Wu J. Pilot-scale study using biotrickling filter to remove H2S from sewage lift station: Experiment and CFD simulation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Chaemchuen S, Zhou K, Verpoort F. From Biogas to Biofuel: Materials Used for Biogas Cleaning to Biomethane. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201600016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Gerrity S, Kennelly C, Clifford E, Collins G. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species. ENVIRONMENTAL TECHNOLOGY 2016; 37:2252-2264. [PMID: 26829048 DOI: 10.1080/09593330.2016.1147609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams.
Collapse
Affiliation(s)
- S Gerrity
- a Microbial Communities Laboratory, School of Natural Sciences , National University of Ireland Galway , Galway , Ireland
| | - C Kennelly
- b Civil Engineering, College of Engineering and Informatics , National University of Ireland Galway , Galway , Ireland
| | - E Clifford
- b Civil Engineering, College of Engineering and Informatics , National University of Ireland Galway , Galway , Ireland
- c Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Galway , Ireland
| | - G Collins
- a Microbial Communities Laboratory, School of Natural Sciences , National University of Ireland Galway , Galway , Ireland
- c Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Galway , Ireland
- d School of Engineering , University of Glasgow , Glasgow , UK
| |
Collapse
|
9
|
Feizi F, Nasernejad B, Zamir SM. Effect of operating temperature on transient behaviour of a biofilter treating waste-air containing n-butanol vapour during intermittent loading. ENVIRONMENTAL TECHNOLOGY 2015; 37:1179-1187. [PMID: 26507257 DOI: 10.1080/09593330.2015.1105302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Transient-state removal of n-butanol vapour was investigated in a biofilter (BF) packed with compost and lava rock at different operating temperatures in the range of 30-45°C under intermittent loading (8 h per day). Adsorption on the inactive bed and biodegradation in the microbial-active bed were studied separately at an empty bed residence time (EBRT) of 1 min and inlet concentrations of 2.6-3.2 g m(-3), respectively. According to the transient experiments, the highest removal efficiency (RE) around 86% was obtained at 40°C due to a high microbial activity. Comparison of CO2 production and pure adsorption of n-butanol showed that adsorption was the major mechanism in the start-up of BF at each operating condition; although the impact of adsorption declined as temperature increased from 30°C to 45°C. The process was reaction limited at all operating conditions. Based on the determination of stoichiometric coefficients of n-butanol biodegradation, the CO2 production level was significantly lower than that of the chemical oxidation process which resulted in a decrease in environmental pollution.
Collapse
Affiliation(s)
- Farzaneh Feizi
- a Chemical Engineering Department, Shahrood Branch , Islamic Azad University , Shahrood , Iran
| | - Bahram Nasernejad
- b Chemical Engineering Department , Amirkabir University of Technology , Tehran , Iran
| | - Seyed Morteza Zamir
- c Biotechnology Group, Faculty of Chemical Engineering , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
10
|
Application of a novel respirometric methodology to characterize mass transfer and activity of H2S-oxidizing biofilms in biotrickling filter beds. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Liu Z, Stromberg D, Liu X, Liao W, Liu Y. A new multiple-stage electrocoagulation process on anaerobic digestion effluent to simultaneously reclaim water and clean up biogas. JOURNAL OF HAZARDOUS MATERIALS 2015; 285:483-90. [PMID: 25540943 DOI: 10.1016/j.jhazmat.2014.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/28/2014] [Accepted: 10/01/2014] [Indexed: 05/25/2023]
Abstract
A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology.
Collapse
Affiliation(s)
- Zhiguo Liu
- Biosystems and Agricultural Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - David Stromberg
- Biosystems and Agricultural Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Xuming Liu
- DQY Agricultural Technology Co. LTD, Beijing 100081, China
| | - Wei Liao
- Biosystems and Agricultural Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Yan Liu
- Biosystems and Agricultural Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
12
|
Removal of Ethanethiol Gas by Iron Oxide Porous Ceramsite Biotrickling Filter. J CHEM-NY 2015. [DOI: 10.1155/2015/414237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The performance of ethanethiol removal in biotrickling filter was investigated by microorganisms fixed on iron oxide-based porous ceramsite (IPC) under different operating parameters conditions. Ethanethiol removal efficiency was examined as a function of inlet concentration, empty bed residence time (EBRT), and spray density of nutrient solution. The results showed that the optimized operation conditions and operation characteristics of biotrickling filter for this study were at the inlet concentration of less than 250 mg·m−3, the spray density of 0.24 m3·m−2 h−1, and the EBRT of 68.7 s. The variation of the EBRT of about 100 s and the spray density of about 0.24 m3·m−2 h−1did not change the ethanethiol removal efficiencies at certain ethanethiol concentrations of less than about 300 mg/m3, respectively. The main metabolic product was sulfate such asSO42-under continuous long-running regime in filter. The ethanethiol desulfurization process better meets the Michaelis-Menien model with calculated kinetic degradation parametersKs=7.96 mg·m−3andVm=221.73 g·m−3 h−1.
Collapse
|
13
|
Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam. Saudi J Biol Sci 2014; 21:450-6. [PMID: 25313280 DOI: 10.1016/j.sjbs.2014.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/24/2022] Open
Abstract
Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00 g H2S m(-3) h(-1) with an empty bed retention time (EBRT) of 25 s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis-Menten equation was adopted to describe the characteristics of the BTF, and K s and V m values for the BTF with pure bamboo charcoal packing material were 3.68 ppmv and 4.26 g H2S m(-3) h(-1), respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems.
Collapse
|
14
|
Biogas Technologies and Cleaning Techniques. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2012. [DOI: 10.1007/978-94-007-2439-6_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Wan S, Li G, Zu L, An T. Purification of waste gas containing high concentration trimethylamine in biotrickling filter inoculated with B350 mixed microorganisms. BIORESOURCE TECHNOLOGY 2011; 102:6757-6760. [PMID: 21524905 DOI: 10.1016/j.biortech.2011.03.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 05/30/2023]
Abstract
A biotrickling filter packed with ceramic particles and seeded with B350 microorganisms was applied to remove trimethylamine (TMA) from gaseous waste. A 100% removal efficiency (RE) was obtained when the empty bed residence time (EBRT) was larger than 110 s at an inlet concentration of 0.30 m g/L. Maximum elimination capacity (EC) was 13.13 g m(-3)h(-1) (RE=64.7%) at 55 s of EBRT. TMA concentrations <0.20mg/L at 83 s of EBRT did not affect the REs (100%). Maximum EC was 13.95 g m(-3)h(-1) (RE=78.1%) at a TMA concentration of 0.42 mg/L. Approximately 53.1% of the carbon in TMA was completely mineralized. Bacterial community analysis in the bioreactor revealed more than 21 species in a stable state. Based on all these results, biotrickling filter inoculated with B350 microorganisms is deemed highly capable of ridding waste gas of TMA.
Collapse
Affiliation(s)
- Shungang Wan
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | |
Collapse
|
16
|
PSS sorbents for removing trace hydrogen sulfide in methane. Front Chem Sci Eng 2011. [DOI: 10.1007/s11705-010-0569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Wan S, Li G, An T, Guo B. Co-treatment of single, binary and ternary mixture gas of ethanethiol, dimethyl disulfide and thioanisole in a biotrickling filter seeded with Lysinibacillus sphaericus RG-1. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1050-1057. [PMID: 21168267 DOI: 10.1016/j.jhazmat.2010.11.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 05/30/2023]
Abstract
The work reports the aerobic co-treatment characteristics of single, binary and ternary mixture gas of ethanethiol, dimethyl disulfide (DMDS) and thioanisole in a biotrickling filter seeded with Lysinibacillus sphaericus RG-1. 100% removal efficiency (RE) was achieved for sole ethanethiol, DMDS and thioanisole at inlet concentration below 1.05, 0.81 and 0.33 mg/L, respectively, at empty bed resident time 110 s. In addition, 100% RE was also obtained with binary ethanethiol and DMDS (1:1) and ternary ethanethiol, DMDS and thioanisole (3:2:1). Michaelis-Menten equation was modified to incorporate the plug flow behavior of the bioreactor. The maximum removal rate (V(max)) was calculated as 56.18, 57.14 and 22.78 g/m(3)/h for sole ethanethiol, DMDS and thioanisole, respectively, while the V(max) was 41.84 and 14.56 g/m(3)/h for DMDS and thioanisole in binary and ternary systems, respectively. Overall, these suggest that not only sole but also binary and ternary mixture can be efficiently removed in this system.
Collapse
Affiliation(s)
- Shungang Wan
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan Street, Tianhe District, Guangzhou 510640, China
| | | | | | | |
Collapse
|
18
|
Paca J, Halecky M, Misiaczek O, Jones K, Kozliak E, Sobotka M. Biofiltration of paint solvent mixtures in two reactor types: overloading by hydrophobic components. J Ind Microbiol Biotechnol 2010; 37:1263-70. [DOI: 10.1007/s10295-010-0801-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 07/29/2010] [Indexed: 10/18/2022]
|
19
|
An T, Wan S, Li G, Sun L, Guo B. Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2010; 183:372-380. [PMID: 20692095 DOI: 10.1016/j.jhazmat.2010.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
This study aims to compare the biological degradation performance of ethanethiol using strain RG-1 and B350 commercial mixed microorganisms, which were inoculated and immobilized on ceramic particles in twin-biotrickling filter columns. The parameters affecting the removal efficiency, such as empty bed residence time (EBRT) and inlet concentration, were investigated in detail. When EBRT ranged from 332 to 66 s at a fixed inlet concentration of 1.05 mg L(-1), the total removal efficiencies for RG-1 and B350 both decreased from 100% to 70.90% and 47.20%, respectively. The maximum elimination capacities for RG-1 and B350 were 38.36 (removal efficiency=89.20%) and 25.82 g m(-3) h(-1) (removal efficiency=57.10%), respectively, at an EBRT of 83 s. The variation of the inlet concentration at a fixed EBRT of 110 s did not change the removal efficiencies which remained at 100% for RG-1 and B350 at concentrations of less than 1.05 and 0.64 mg L(-1), respectively. The maximum elimination capacities were 39.93 (removal efficiency=60.30%) and 30.34 g m(-3) h(-1) (removal efficiency=46.20%) for RG-1 and B350, respectively, at an inlet concentration of 2.03 mg L(-1). Sulfate was the main metabolic product of sulfur in ethanethiol. Based the results, strain RG-1 would be a better choice than strain B350 for the biodegradation of ethanethiol.
Collapse
Affiliation(s)
- Taicheng An
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
20
|
Ramirez M, Gómez JM, Cantero D, Páca J, Halecký M, Kozliak EI, Sobotka M. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor. Folia Microbiol (Praha) 2009; 54:409-14. [DOI: 10.1007/s12223-009-0057-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/11/2009] [Indexed: 11/30/2022]
|
21
|
Transient-state biodegradation behavior of a horizontal biotrickling filter in co-treating gaseous H2S and NH3. Appl Microbiol Biotechnol 2009; 81:969-75. [DOI: 10.1007/s00253-008-1759-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/09/2008] [Accepted: 10/18/2008] [Indexed: 11/27/2022]
|
22
|
Rattanapan C, Boonsawang P, Kantachote D. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater. BIORESOURCE TECHNOLOGY 2009; 100:125-130. [PMID: 18619836 DOI: 10.1016/j.biortech.2008.05.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
A biofiltration system with sulfur oxidizing bacteria immobilized on granular activated carbon (GAC) as packing materials had a good potential when used to eliminate H(2)S. The sulfur oxidizing bacteria were stimulated from concentrated latex wastewater with sulfur supplement under aerobic condition. Afterward, it was immobilized on GAC to test the performance of cell-immobilized GAC biofilter. In this study, the effect of inlet H(2)S concentration, H(2)S gas flow rate, air gas flow rate and long-term operation on the H(2)S removal efficiency was investigated. In addition, the comparative performance of sulfide oxidizing bacterium immobilized on GAC (biofilter A) and GAC without cell immobilization (biofilter B) systems was studied. It was found that the efficiency of the H(2)S removal was more than 98% even at high concentrations (200-4000 ppm) and the maximum elimination capacity was about 125 g H(2)S/m(3)of GAC/h in the biofilter A. However, the H(2)S flow rate of 15-35 l/h into both biofilters had little influence on the efficiency of H(2)S removal. Moreover, an air flow rate of 5.86 l/h gave complete removal of H(2)S (100%) in biofilter A. During the long-term operation, the complete H(2)S removal was achieved after 3-days operation in biofilter A and remained stable up to 60-days.
Collapse
Affiliation(s)
- Cheerawit Rattanapan
- Department of Industrial Biotechnology, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | | | | |
Collapse
|
23
|
Jin Y, Guo L, Veiga MC, Kennes C. Optimization of the treatment of carbon monoxide-polluted air in biofilters. CHEMOSPHERE 2009; 74:332-337. [PMID: 19010513 DOI: 10.1016/j.chemosphere.2008.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 05/27/2023]
Abstract
This work is the first extensive study on the removal of carbon monoxide from polluted air in biofilters. It compares the performance of two packing materials, namely lava rock alone and a mixture of peat and lava rock. The results show that the biofilter packed with the mixture of peat and lava rock performed much better than the other one. The effect of operating conditions as, among others, the inlet concentration and the empty bed residence time (EBRT) were studied. A maximum elimination capacity of 33 g m(-3) h(-1) was obtained with the mixed packing with more than 85% removal efficiency at EBRT of 3 min or more. Somewhat lower performances were reached at shorter EBRT. The results presented here suggest that the mixture of lava rock and peat, subject to further optimization, offers potential for the biological removal of CO from polluted gas streams.
Collapse
Affiliation(s)
- Yaomin Jin
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa Alejandro de la Sota, 1, 15008 La Coruña, Spain
| | | | | | | |
Collapse
|
24
|
Jiang X, Yan R, Jay JH. Reusing H2S-exhausted carbon as packing material for odor biofiltration. CHEMOSPHERE 2008; 73:698-704. [PMID: 18700176 DOI: 10.1016/j.chemosphere.2008.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 07/03/2008] [Accepted: 07/03/2008] [Indexed: 05/26/2023]
Abstract
Exhausted carbon coming from the H2S adsorption process is a big environmental problem in Wastewater Treatment Plants. In this study, reusing exhausted carbon as a carrier of sulfide-oxidizing bacteria in lab-scale biofilters was evaluated. The exhausted carbons from different heights of the adsorption bed have different exhaustion extents, i.e. characteristics in terms of sulfur content, pH and porosity. Therefore, four biofilters were packed separately with exhausted carbon from top, middle, bottom of H2S adsorption bed, and a mixture of the three, to investigate the suitability for further H2S biofiltration. The results showed a quick startup in these biofilters (approximately 80 h). The numbers of sulfide-oxidizing bacteria immobilized on activated carbon were approximately 4.8, 9.2 and 14 x 108 CFU g-1 top, middle and bottom carbon after the 240-h operation, respectively. In addition, the biofilters demonstrated a rapid recovery to the original removal efficiency (RE) within 2 h after the H2S spike loadings. After a 110-h shutdown, the RE was rapidly recovered for all the biofilters within 5 h, with a shorter time (1 h) observed for the bottom carbon biofilter. The H2S removal mechanism of these biofilters was studied through a full analysis of sulfur products in both liquid (recycling medium) and activated carbon, and variable characterization of activated carbon before and after biofiltration. This study shows that the exhausted carbon-based biofilter is a feasible and economical alternative to conventional odor biofiltration.
Collapse
Affiliation(s)
- Xia Jiang
- School of Civil and Environmental Engineering, Nanyang Technological University, Blk N1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | |
Collapse
|
25
|
Jin Y, Veiga MC, Kennes C. Co-treatment of hydrogen sulfide and methanol in a single-stage biotrickling filter under acidic conditions. CHEMOSPHERE 2007; 68:1186-93. [PMID: 17349668 DOI: 10.1016/j.chemosphere.2007.01.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 05/14/2023]
Abstract
Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions.
Collapse
Affiliation(s)
- Yaomin Jin
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa Alejandro de la Sota, 1, 15008 La Coruña, Spain
| | | | | |
Collapse
|
26
|
Jin Y, Guo L, Veiga MC, Kennes C. Fungal biofiltration of α-pinene: Effects of temperature, relative humidity, and transient loads. Biotechnol Bioeng 2006; 96:433-43. [PMID: 17036365 DOI: 10.1002/bit.21123] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade much effort has been made to develop new carrier materials, more performant biocatalysts, and new types of bioreactors for waste gas treatment. In biofilters fungal biocatalysts are more resistant to acid and dry conditions and take up hydrophobic compounds from the gas phase more easily than wet bacterial biofilms. In the present study, a biofilter packed with a mixture of perlite and Pall rings and fed alpha-pinene-polluted air was inoculated with a new fungal isolate identified as Ophiostoma species. alpha-Pinene is a volatile pollutant typically found in waste gases from wood-related industries. The temperature of waste gas streams from pulp and paper industries containing alpha-pinene is usually higher than ambient temperature. Studies were undertaken here on the effect on performance of temperature changes in the range of 15-40 degrees C. The effect of temperature on biodegradation kinetics in continuous reactors was elucidated through equations derived from the Arrhenius formula. Moreover, the effects of the relative humidity (RH) of the inlet gas phase, transient loads (shock or starvation), and the nature of the nitrogen source on alpha-pinene removal were also studied in this research. The results suggest that the fungal biofilter appears to be an effective treatment process for the removal of alpha-pinene. The optimal conditions are: temperature around 30 degrees C, RH of the inlet waste gas stream around 85%, and nitrate as nitrogen source. The fungal biofilter also showed a good potential to withstand shock loads and recovered rapidly its full performance after a 3-7 days starvation period.
Collapse
Affiliation(s)
- Yaomin Jin
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa Alejandro de la Sota, 1, 15008 La Coruña, Spain
| | | | | | | |
Collapse
|