1
|
Jin T, Yin J. Patterns of virus growth across the diversity of life. Integr Biol (Camb) 2021; 13:44-59. [PMID: 33616184 DOI: 10.1093/intbio/zyab001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
Although viruses in their natural habitats add up to less than 10% of the biomass, they contribute more than 90% of the genome sequences [1]. These viral sequences or 'viromes' encode viruses that populate the Earth's oceans [2, 3] and terrestrial environments [4, 5], where their infections impact life across diverse ecological niches and scales [6, 7], including humans [8-10]. Most viruses have yet to be isolated and cultured [11-13], and surprisingly few efforts have explored what analysis of available data might reveal about their nature. Here, we compiled and analyzed seven decades of one-step growth and other data for viruses from six major families, including their infections of archaeal, bacterial and eukaryotic hosts [14-191]. We found that the use of host cell biomass for virus production was highest for archaea at 10%, followed by bacteria at 1% and eukarya at 0.01%, highlighting the degree to which viruses of archaea and bacteria exploit their host cells. For individual host cells, the yield of virus progeny spanned a relatively narrow range (10-1000 infectious particles per cell) compared with the million-fold difference in size between the smallest and largest cells. Furthermore, healthy and infected host cells were remarkably similar in the time they needed to multiply themselves or their virus progeny. Specifically, the doubling time of healthy cells and the delay time for virus release from infected cells were not only correlated (r = 0.71, p < 10-10, n = 101); they also spanned the same range from tens of minutes to about a week. These results have implications for better understanding the growth, spread and persistence of viruses in complex natural habitats that abound with diverse hosts, including humans and their associated microbes.
Collapse
Affiliation(s)
- Tianyi Jin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
2
|
Bukrinsky MI, Mukhamedova N, Sviridov D. Lipid rafts and pathogens: the art of deception and exploitation. J Lipid Res 2020; 61:601-610. [PMID: 31615838 PMCID: PMC7193957 DOI: 10.1194/jlr.tr119000391] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents.
Collapse
Affiliation(s)
- Michael I Bukrinsky
- Department of Microbiology, Immunology, and Tropical Medicine,George Washington University School of Medicine and Health Science, Washington, DC 20037
| | | | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia. mailto:
| |
Collapse
|
3
|
Abstract
When a virus infects a host cell, it hijacks the biosynthetic capacity of the cell to produce virus progeny, a process that may take less than an hour or more than a week. The overall time required for a virus to reproduce depends collectively on the rates of multiple steps in the infection process, including initial binding of the virus particle to the surface of the cell, virus internalization and release of the viral genome within the cell, decoding of the genome to make viral proteins, replication of the genome, assembly of progeny virus particles, and release of these particles into the extracellular environment. For a large number of virus types, much has been learned about the molecular mechanisms and rates of the various steps. However, in only relatively few cases during the last 50 years has an attempt been made-using mathematical modeling-to account for how the different steps contribute to the overall timing and productivity of the infection cycle in a cell. Here we review the initial case studies, which include studies of the one-step growth behavior of viruses that infect bacteria (Qβ, T7, and M13), human immunodeficiency virus, influenza A virus, poliovirus, vesicular stomatitis virus, baculovirus, hepatitis B and C viruses, and herpes simplex virus. Further, we consider how such models enable one to explore how cellular resources are utilized and how antiviral strategies might be designed to resist escape. Finally, we highlight challenges and opportunities at the frontiers of cell-level modeling of virus infections.
Collapse
Affiliation(s)
- John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jacob Redovich
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Ramezani A, Dubrovsky L, Pushkarsky T, Sviridov D, Karandish S, Raj DS, Fitzgerald ML, Bukrinsky M. Stimulation of Liver X Receptor Has Potent Anti-HIV Effects in a Humanized Mouse Model of HIV Infection. J Pharmacol Exp Ther 2015; 354:376-83. [PMID: 26126533 PMCID: PMC4538872 DOI: 10.1124/jpet.115.224485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/29/2015] [Indexed: 01/24/2023] Open
Abstract
Previous studies demonstrated that liver X receptor (LXR) agonists inhibit human immunodeficiency virus (HIV) replication by upregulating cholesterol transporter ATP-binding cassette A1 (ABCA1), suppressing HIV production, and reducing infectivity of produced virions. In this study, we extended these observations by analyzing the effect of the LXR agonist T0901317 [N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide] on the ongoing HIV infection and investigating the possibility of using LXR agonist for pre-exposure prophylaxis of HIV infection in a humanized mouse model. Pre-exposure of monocyte-derived macrophages to T0901317 reduced susceptibility of these cells to HIV infection in vitro. This protective effect lasted for up to 4 days after treatment termination and correlated with upregulated expression of ABCA1, reduced abundance of lipid rafts, and reduced fusion of the cells with HIV. Pre-exposure of peripheral blood leukocytes to T0901317 provided only a short-term protection against HIV infection. Treatment of HIV-exposed humanized mice with LXR agonist starting 2 weeks postinfection substantially reduced viral load. When eight humanized mice were pretreated with LXR agonist prior to HIV infection, five animals were protected from infection, two had viral load at the limit of detection, and one had viral load significantly reduced relative to mock-treated controls. T0901317 pretreatment also reduced HIV-induced dyslipidemia in infected mice. In conclusion, these results reveal a novel link between LXR stimulation and cell resistance to HIV infection and suggest that LXR agonists may be good candidates for development as anti-HIV agents, in particular for pre-exposure prophylaxis of HIV infection.
Collapse
Affiliation(s)
- Ali Ramezani
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Larisa Dubrovsky
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Tatiana Pushkarsky
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Dmitri Sviridov
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Sara Karandish
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Dominic S Raj
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Michael L Fitzgerald
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| |
Collapse
|
5
|
Karlovská J, Williams AA, Macri RV, Gandour RD, Funari SS, Uhríková D, Balgavý P. Synchrotron SAX and WAX diffraction study of a hydrated very long-chain, dendritic amphiphile+DPPC mixture. Colloids Surf B Biointerfaces 2007; 54:160-4. [PMID: 17134885 DOI: 10.1016/j.colsurfb.2006.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/11/2006] [Accepted: 10/01/2006] [Indexed: 10/24/2022]
Abstract
The tri-headed anionic dendritic amphiphile, 4-(2-carboxyethyl)-4-[(icosyloxycarbonyl)amino]heptanedioic acid (3CCb20), forms mixed aggregates with dipalmitoylphosphatidylcholine (DPPC) in excess water at 3CCb20:DPPC = 0.91:1 molar ratio. On heating, these mixed aggregates transform into fluid bilayers stacked in the liquid crystalline lamellar L(alpha) phase at about 40 degrees C. This phase transition and the microstructure of 3CCb20 + DPPC aggregates were studied with small- and wide-angle synchrotron X-ray diffraction. The ability of 3CCb20 to solubilize solidlike lipid bilayers could contribute to the antimicrobial activities of 3CCb20, including its anti-HIV activity.
Collapse
Affiliation(s)
- Janka Karlovská
- Department of Physical Chemistry of Drugs, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|