1
|
Majumdar S, Desai R, Hans A, Dandekar P, Jain R. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies. Mol Biotechnol 2025; 67:369-392. [PMID: 38363529 DOI: 10.1007/s12033-024-01060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.
Collapse
Affiliation(s)
- Sarmishta Majumdar
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Aakarsh Hans
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India.
| | - Ratnesh Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
2
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
3
|
Amiri S, Adibzadeh S, Ghanbari S, Rahmani B, Kheirandish MH, Farokhi-Fard A, Dastjerdeh MS, Davami F. CRISPR-interceded CHO cell line development approaches. Biotechnol Bioeng 2023; 120:865-902. [PMID: 36597180 DOI: 10.1002/bit.28329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
For industrial production of recombinant protein biopharmaceuticals, Chinese hamster ovary (CHO) cells represent the most widely adopted host cell system, owing to their capacity to produce high-quality biologics with human-like posttranslational modifications. As opposed to random integration, targeted genome editing in genomic safe harbor sites has offered CHO cell line engineering a new perspective, ensuring production consistency in long-term culture and high biotherapeutic expression levels. Corresponding the remarkable advancements in knowledge of CRISPR-Cas systems, the use of CRISPR-Cas technology along with the donor design strategies has been pushed into increasing novel scenarios in cell line engineering, allowing scientists to modify mammalian genomes such as CHO cell line quickly, readily, and efficiently. Depending on the strategies and production requirements, the gene of interest can also be incorporated at single or multiple loci. This review will give a gist of all the most fundamental recent advancements in CHO cell line development, such as different cell line engineering approaches along with donor design strategies for targeted integration of the desired construct into genomic hot spots, which could ultimately lead to the fast-track product development process with consistent, improved product yield and quality.
Collapse
Affiliation(s)
- Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Setare Adibzadeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Ghanbari
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behnaz Rahmani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad H Kheirandish
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Farokhi-Fard
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mansoureh S Dastjerdeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Establishment of a glycoengineered CHO cell line for enhancing the antennary structure and sialylation of CTLA4-Ig. Enzyme Microb Technol 2022; 157:110007. [DOI: 10.1016/j.enzmictec.2022.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/23/2022]
|
5
|
Heffner KM, Wang Q, Hizal DB, Can Ö, Betenbaugh MJ. Glycoengineering of Mammalian Expression Systems on a Cellular Level. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021. [PMID: 29532110 DOI: 10.1007/10_2017_57] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian expression systems such as Chinese hamster ovary (CHO), mouse myeloma (NS0), and human embryonic kidney (HEK) cells serve a critical role in the biotechnology industry as the production host of choice for recombinant protein therapeutics. Most of the recombinant biologics are glycoproteins that contain complex oligosaccharide or glycan attachments representing a principal component of product quality. Both N-glycans and O-glycans are present in these mammalian cells, but the engineering of N-linked glycosylation is of critical interest in industry and many efforts have been directed to improve this pathway. This is because altering the N-glycan composition can change the product quality of recombinant biotherapeutics in mammalian hosts. In addition, sialylation and fucosylation represent components of the glycosylation pathway that affect circulatory half-life and antibody-dependent cellular cytotoxicity, respectively. In this chapter, we first offer an overview of the glycosylation, sialylation, and fucosylation networks in mammalian cells, specifically CHO cells, which are extensively used in antibody production. Next, genetic engineering technologies used in CHO cells to modulate glycosylation pathways are described. We provide examples of their use in CHO cell engineering approaches to highlight these technologies further. Specifically, we describe efforts to overexpress glycosyltransferases and sialyltransfereases, and efforts to decrease sialidase cleavage and fucosylation. Finally, this chapter covers new strategies and future directions of CHO cell glycoengineering, such as the application of glycoproteomics, glycomics, and the integration of 'omics' approaches to identify, quantify, and characterize the glycosylated proteins in CHO cells. Graphical Abstract.
Collapse
Affiliation(s)
- Kelley M Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Özge Can
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans 2021; 49:915-931. [PMID: 33704400 PMCID: PMC8106501 DOI: 10.1042/bst20200840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Collapse
Affiliation(s)
- Roberto Donini
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
7
|
Han HJ, Lim JH, Cha HM, Lee JH, Kim DI. Utilization of Glucocorticoids as Additives for Enhanced Sialylation of Fc-fusion Protein in CHO Cell Cultures. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Nguyen TS, Misaki R, Ohashi T, Fujiyama K. Enhancement of sialylation in rIgG in glyco-engineered Chinese hamster ovary cells. Cytotechnology 2020; 72:343-355. [PMID: 32125558 DOI: 10.1007/s10616-020-00381-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Since about 70% of commercial biopharmaceutical products have been produced in Chinese hamster ovary (CHO) cells, this cell line is undeniably a workhorse for biopharmaceuticals production. Meanwhile, sialic acid terminals were reported to affect anti-inflammatory activity, antibody-dependent cellular cytotoxicity efficacy of IgG antibodies. Taking these findings together, we aimed to establish CHO cell lines that highly produce sialic acid terminals by overexpressing two N-acetylneuraminic acid-based key enzymes, α(2,6)-sialyltransferase and UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase using dihydrofolate reductase/methotrexate gene amplification method. Indeed, the number of total sialic acid terminal glycan structures increased tremendously, by 12-fold compared to the wild type in total protein extracts. With the methotrexate supplementation, a targeted cell line, CHOmt17-100, showed up to 1.4 times more sialylated structures of glycoforms in total proteins. Interestingly, immunoglobulin G, used as the model protein in CHOmt17-100, showed about 53% sialylated structures in its glycoforms. These resultant sialylated glycans exhibited more than approximately 14.5 times increase as compared to that of the wild type. Moreover, the resultant glycan structures mostly had N-acetylneuraminic acid terminals, while N-glycolylneuraminic acid terminal composition remained less than 5% as compared to the wild type. Engineered antibodies derived from CHO cell lines that produce high levels of sialic acid will contribute to the examination of glycoforms' efficacy and usefulness toward bio-better products.
Collapse
Affiliation(s)
- Thi Sam Nguyen
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Knockout of sialidase and pro-apoptotic genes in Chinese hamster ovary cells enables the production of recombinant human erythropoietin in fed-batch cultures. Metab Eng 2019; 57:182-192. [PMID: 31785386 DOI: 10.1016/j.ymben.2019.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022]
Abstract
Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2-44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.
Collapse
|
11
|
Evaluating the impact of suramin additive on CHO cells producing Fc-fusion protein. Biotechnol Lett 2019; 41:1255-1263. [PMID: 31541331 DOI: 10.1007/s10529-019-02728-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To examine the effects of suramin in CHO cell cultures in terms of the cell culture performance and quality of the Fc-fusion protein. RESULTS Suramin had positive effects on the CHO cell cultures. The addition of suramin caused an increase in the viable cell density, cell viability, and titer of the Fc-fusion protein. Moreover, suramin had no impact on protein aggregation and enhanced the sialic acid contents of Fc-fusion protein by 1.18-fold. The enhanced sialylation was not caused by the increased nucleotide sugar level but by the inhibition of sialidase activity. The results showed that suramin inhibited apoptosis and had positive impacts on the productivity and quality of Fc-fusion protein. CONCLUSION The addition of suramin increased the production of Fc-fusion protein and enhanced sialylation when added as a supplement to the media component in CHO cell cultures. This study suggested that suramin could be a beneficial additive during the biological production in terms of the productivity and quality of Fc-fusion protein.
Collapse
|
12
|
Coxon CH, Longstaff C, Burns C. Applying the science of measurement to biology: Why bother? PLoS Biol 2019; 17:e3000338. [PMID: 31220076 PMCID: PMC6605671 DOI: 10.1371/journal.pbio.3000338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/02/2019] [Indexed: 01/10/2023] Open
Abstract
Both basic and translational research are continuously evolving, but the principles that underpin research integrity remain constant. These include rational, hypothesis-driven, and adequately planned and controlled science, which is carried out openly, honestly, and ethically. An important component of this should be minimising experimental irreproducibility. Biological systems, in particular, are inherently variable due to the nature of cells and tissues, as well as the complex molecules within them. As a result, it is important to understand and identify sources of variability and to strive to minimise their influence. In many instances, the application of metrology (the science of measurement) can play an important role in ensuring good quality research, even within biological systems that aren't always amenable to many of the metrological concepts applied in other fields. Here, we introduce the basic concepts of metrology in relation to biological systems and promote the application of these principles to help avoid potentially costly mistakes in both basic and translational research. We also call on funders to encourage the uptake of metrological principles, as well as provide funding and support for later engagement with regulatory bodies.
Collapse
Affiliation(s)
- Carmen H Coxon
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Colin Longstaff
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Chris Burns
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| |
Collapse
|
13
|
Chen X, Liu X, Xiao Z, Liu J, Zhao L, Tan WS, Fan L. Insights into the loss of protein sialylation in an fc-fusion protein-producing CHO cell bioprocess. Appl Microbiol Biotechnol 2019; 103:4753-4765. [DOI: 10.1007/s00253-019-09850-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
|
14
|
Downstream Processing for Biopharmaceuticals Recovery. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [DOI: 10.1007/978-3-030-01881-8_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Metabolic engineering of CHO cells to prepare glycoproteins. Emerg Top Life Sci 2018; 2:433-442. [DOI: 10.1042/etls20180056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022]
Abstract
As a complex and common post-translational modification, N-linked glycosylation affects a recombinant glycoprotein's biological activity and efficacy. For example, the α1,6-fucosylation significantly affects antibody-dependent cellular cytotoxicity and α2,6-sialylation is critical for antibody anti-inflammatory activity. Terminal sialylation is important for a glycoprotein's circulatory half-life. Chinese hamster ovary (CHO) cells are currently the predominant recombinant protein production platform, and, in this review, the characteristics of CHO glycosylation are summarized. Moreover, recent and current metabolic engineering strategies for tailoring glycoprotein fucosylation and sialylation in CHO cells, intensely investigated in the past decades, are described. One approach for reducing α1,6-fucosylation is through inhibiting fucosyltransferase (FUT8) expression by knockdown and knockout methods. Another approach to modulate fucosylation is through inhibition of multiple genes in the fucosylation biosynthesis pathway or through chemical inhibitors. To modulate antibody sialylation of the fragment crystallizable region, expressions of sialyltransferase and galactotransferase individually or together with amino acid mutations can affect antibody glycoforms and further influence antibody effector functions. The inhibition of sialidase expression and chemical supplementations are also effective and complementary approaches to improve the sialylation levels on recombinant glycoproteins. The engineering of CHO cells or protein sequence to control glycoforms to produce more homogenous glycans is an emerging topic. For modulating the glycosylation metabolic pathways, the interplay of multiple glyco-gene knockouts and knockins and the combination of multiple approaches, including genetic manipulation, protein engineering and chemical supplementation, are detailed in order to achieve specific glycan profiles on recombinant glycoproteins for superior biological function and effectiveness.
Collapse
|
16
|
Chen X, Liu J, Liu X, Fan L, Zhao L, Tan WS. Characterization and minimization of sialic acid degradation in an Fc-fusion protein-producing CHO cell bioprocess. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Thi Sam N, Misaki R, Ohashi T, Fujiyama K. Enhancement of glycosylation by stable co-expression of two sialylation-related enzymes on Chinese hamster ovary cells. J Biosci Bioeng 2018; 126:102-110. [PMID: 29439861 DOI: 10.1016/j.jbiosc.2018.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/28/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Sialic acid plays important roles in stabilization and modulation of the interaction of molecules and membranes in organisms. Due to its high electronegativity, sialic acid can promote binding effects of molecules and support the transportation of drugs and ions in cells. This also strengthens cells against degradation from glycosidases and proteases. Hence sialic acid helps glycoproteins extend their half-lives and bioactivity. On the other hand, Chinese hamster ovary (CHO) cells have been widely used as a workhorse in biopharmaceutical fields in part due to the similarity between their glycan properties and those in humans. Thus, a high sialylation produced by CHO host cell line is strongly desired. In this study, we simultaneously overexpressed two key sialylated-based enzymes human β-galactoside α(2,6) sialyltransferase I and UDP-GlcNAc 2-epimerase/ManNAc kinase to achieve greater sialylation pattern produced host cells. The single-cell line thus-generated produced an approximately 41.6% higher level of total free sialic acid, and the glycan profiles showed a significant increase of more than 7-fold in the relative amount of total sialylated N-glycan as compared to the wild-type. These results demonstrated that co-expression of these two sialylated-based key enzymes yielded a cell line that effectively produced glycoproteins with superior sialylation and achievable human-like glycoforms.
Collapse
Affiliation(s)
- Nguyen Thi Sam
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Kwak CY, Park SY, Lee CG, Okino N, Ito M, Kim JH. Enhancing the sialylation of recombinant EPO produced in CHO cells via the inhibition of glycosphingolipid biosynthesis. Sci Rep 2017; 7:13059. [PMID: 29026192 PMCID: PMC5638827 DOI: 10.1038/s41598-017-13609-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/26/2017] [Indexed: 11/20/2022] Open
Abstract
Sialylation regulates the in vivo half-life of recombinant therapeutic glycoproteins, affecting their therapeutic efficacy. Levels of the precursor molecule cytidine monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) are considered a limiting factor in the sialylation of glycoproteins. Here, we show that by reducing the amount of intracellular CMP-Neu5Ac consumed for glycosphingolipid (GSL) biosynthesis, we can increase the sialylation of recombinant human erythropoietin (rhEPO) produced in CHO cells. Initially, we found that treating CHO cells with a potent inhibitor of GSL biosynthesis increases the sialylation of the rhEPO they produce. Then, we established a stable CHO cell line that produces rhEPO in the context of repression of the key GSL biosynthetic enzyme UDP-glucose ceramide glucosyltransferase (UGCG). These UGCG-depleted cells show reduced levels of gangliosides and significantly elevated levels of rhEPO sialylation. Upon further analysis of the resulting N-glycosylation pattern, we discovered that the enhanced rhEPO sialylation could be attributed to a decrease in neutral and mono-sialylated N-glycans and an increase in di-sialylated N-glycans. Our results suggest that the therapeutic efficacy of rhEPO produced in CHO cells can be improved by shunting intracellular CMP-Neu5Ac away from GSL biosynthesis and toward glycoprotein sialylation.
Collapse
Affiliation(s)
- Chan-Yeong Kwak
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Seung-Yeol Park
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Chung-Geun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Jung Hoe Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
19
|
Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017; 251:128-140. [DOI: 10.1016/j.jbiotec.2017.04.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
|
20
|
Cha HM, Lim JH, Yeon JH, Hwang JM, Kim DI. Co-overexpression of Mgat1 and Mgat4 in CHO cells for production of highly sialylated albumin-erythropoietin. Enzyme Microb Technol 2017; 103:53-58. [PMID: 28554385 DOI: 10.1016/j.enzmictec.2017.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/30/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
Abstract
Terminal sialic acids on N-glycan of recombinant human erythropoietin are very important for in vivo half-life, as this glycoprotein has three N-glycosylation sites. N-acetylglucosaminyltransferases I, II, IV, and V (i.e. Mgat1, Mgat2, Mgat4, and Mgat5) catalyze the formation of a glycan antennary structure. These enzymes display different reaction kinetics for a common substrate and generally show low expression in Chinese hamster ovary (CHO) cells. Therefore, genetic control of Mgat expression is an effective method to increase sialic acid contents by enhancing glycan antennarity. To produce highly sialylated albumin-erythropoietin (Alb-EPO), we co-overexpressed the Mgat1 and Mgat4 genes in CHO cells and determined the optimal ratio of Mgat1:Mgat4 gene expression. All transfected cell lines showed increased gene expression of Mgat4, including Mgat1 overexpressing cell line. Sialic acid content of Alb-EPO was highest in co-transfected cells with excess Mgat4 gene, and these cells showed a higher tri- and tetra-antennary structure than control cells. Based on these results, we suggest that co-transfection of the Mgat1 and Mgat4 genes at a ratio of 2:8 is optimal for extension of antennary structures. Also, regulation of Mgat gene expression in the glycan biosynthesis pathway can be a novel approach to increase the terminal sialic acids of N-glycans.
Collapse
Affiliation(s)
- Hyun-Myoung Cha
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jin-Hyuk Lim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jung-Heum Yeon
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Min Hwang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Il Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
21
|
Qian Y, Lewis AM, Sidnam SM, Bergeron A, Abu-Absi NR, Vaidyanathan N, Deresienski A, Qian NX, Borys MC, Li ZJ. LongR3 enhances Fc-fusion protein N-linked glycosylation while improving protein productivity in an industrial CHO cell line. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Luo C, Chen S, Xu N, Sai WB, Zhao W, Li YC, Hu XJ, Tian H, Gao XD, Yao WB. Establishment of a fluorescence-based method to evaluate endocytosis of desialylated glycoproteins in vitro. Biomed Pharmacother 2017; 88:87-94. [PMID: 28095357 DOI: 10.1016/j.biopha.2016.12.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 01/12/2023] Open
Abstract
Insufficient sialylation can result in rapid clearance of therapeutic glycoproteins by intracellular degradation, which is mainly mediated by asialoglycoprotein receptors (ASGPRs) on hepatic cells. In contrast, for glycoproteins, a long half-life is often related to high level of terminal sialic acid. These could be extremely important for insufficient sialylated biomedicines in clinic, and development of therapeutic glycoproteins in laboratory. However, how the desialylated glycoproteins are removed and how to evaluate the ASGPRs mediated endocytosis in vitro needs further investigate. Herein we described an integrative characterization of ASGPRs in vitro to elucidate its endocytosis properties. The endocytosis was determined by a fluorescence-based quantization method. The results showed that the ASGPRs could bind to poorly sialylated glycoproteins including asialofetuin and low sialylated recombinant Factor VIIa with a relatively higher ASGPRs binding affinity, and induce a more rapid endocytosis in vitro. Moreover, the mechanism under the internalization of ASGPRs was also investigated, which was found to depend on clathrin and caveolin. Utilizing the relative fluorescence quantification can be suitable for measurement of insufficient sialylated glycoprotein endocytosis and quality control of therapeutic glycoproteins, which could be useful for the understanding of the development of therapeutic glycoproteins.
Collapse
Affiliation(s)
- Cheng Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Na Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Wen Bo Sai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Wei Zhao
- Jiangsu Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210023 China
| | - Ying Chun Li
- Jiangsu Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210023 China
| | - Xiao Jing Hu
- Jiangsu Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210023 China
| | - Hong Tian
- Jiangsu Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210023 China
| | - Xiang Dong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China.
| | - Wen Bing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China.
| |
Collapse
|
23
|
Abstract
Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Bojiao Yin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA.
| |
Collapse
|
24
|
Comparative study of idursulfase beta and idursulfase in vitro and in vivo. J Hum Genet 2016; 62:167-174. [PMID: 27829684 PMCID: PMC5285491 DOI: 10.1038/jhg.2016.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/08/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
Hunter syndrome is an X-linked lysosomal storage disease caused by a deficiency in the enzyme iduronate-2-sulfatase (IDS), leading to the accumulation of glycosaminoglycans (GAGs). Two recombinant enzymes, idursulfase and idursulfase beta are currently available for enzyme replacement therapy for Hunter syndrome. These two enzymes exhibited some differences in various clinical parameters in a recent clinical trial. Regarding the similarities and differences of these enzymes, previous research has characterized their biochemical and physicochemical properties. We compared the in vitro and in vivo efficacy of the two enzymes on patient fibroblasts and mouse model. Two enzymes were taken up into the cell and degraded GAGs accumulated in fibroblasts. In vivo studies of two enzymes revealed similar organ distribution and decreased urinary GAGs excretion. Especially, idursulfase beta exhibited enhanced in vitro efficacy for the lower concentration of treatment, in vivo efficacy in the degradation of tissue GAGs and improvement of bones, and revealed lower anti-drug antibody formation. A biochemical analysis showed that both enzymes show largely a similar glycosylation pattern, but the several peaks were different and quantity of aggregates of idursulfase beta was lower.
Collapse
|
25
|
Dorokhov YL, Sheshukova EV, Kosobokova EN, Shindyapina AV, Kosorukov VS, Komarova TV. Functional role of carbohydrate residues in human immunoglobulin G and therapeutic monoclonal antibodies. BIOCHEMISTRY (MOSCOW) 2016; 81:835-57. [DOI: 10.1134/s0006297916080058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Sha S, Agarabi C, Brorson K, Lee DY, Yoon S. N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies. Trends Biotechnol 2016; 34:835-846. [PMID: 27016033 DOI: 10.1016/j.tibtech.2016.02.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/31/2022]
Abstract
The N-linked glycan profiles on recombinant monoclonal antibody therapeutics significantly affect antibody biological functions and are largely determined by host cell genotypes and culture conditions. A key step in bioprocess development for monoclonal antibodies (mAbs) involves optimization and control of N-glycan profiles. With pressure from pricing and biosimilars looming, more efficient and effective approaches are sought in the field of glycoengineering. Metabolic studies and mathematical modeling are two such approaches that optimize bioprocesses by better understanding and predicting glycosylation. In this review, we summarize a group of strategies currently used for glycan profile modulation and control. Metabolic analysis and mathematical modeling are then explored with an emphasis on how these two techniques can be utilized to advance glycoengineering.
Collapse
Affiliation(s)
- Sha Sha
- Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01850, USA
| | - Cyrus Agarabi
- Division of Biotechnology Review and Research II, Office of Biotechnology Products, OPQ, CDER, FDA, Silver Spring, MD, USA
| | - Kurt Brorson
- Division of Biotechnology Review and Research II, Office of Biotechnology Products, OPQ, CDER, FDA, Silver Spring, MD, USA
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117585, Singapore
| | - Seongkyu Yoon
- Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01850, USA.
| |
Collapse
|
27
|
Markely LRA, Cheung L, Choi YJ, Ryll T, Estes S, Prajapati S, Turyan I, Frenkel R, Sosic Z, Lambropoulos J, Tescione L, Ryll T, Berman M. A high-throughput capillary isoelectric focusing immunoassay for fingerprinting protein sialylation. Biotechnol Prog 2015; 32:235-41. [DOI: 10.1002/btpr.2206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/15/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Lam Raga Anggara Markely
- Cell Culture Development-High-Throughput Analytical Group; Biogen, 125 Broadway Cambridge MA 02142
| | - Lila Cheung
- Cell Culture Development-High-Throughput Analytical Group; Biogen, 125 Broadway Cambridge MA 02142
| | - Young Jun Choi
- Cell Culture Development-High-Throughput Analytical Group; Biogen, 125 Broadway Cambridge MA 02142
| | - Thomas Ryll
- Cell Culture Development-High-Throughput Analytical Group; Biogen, 125 Broadway Cambridge MA 02142
| | - Scott Estes
- Cell Culture Development-High-Throughput Analytical Group; Biogen, 125 Broadway Cambridge MA 02142
| | - Shashi Prajapati
- Cell Culture Development-High-Throughput Analytical Group; Biogen, 125 Broadway Cambridge MA 02142
| | - Iva Turyan
- Analytical Development - High-Throughput Analytical Group; Biogen, 125 Broadway Cambridge MA 02142
| | - Ruth Frenkel
- Analytical Development - High-Throughput Analytical Group; Biogen, 125 Broadway Cambridge MA 02142
| | - Zoran Sosic
- Analytical Development - High-Throughput Analytical Group; Biogen, 125 Broadway Cambridge MA 02142
| | | | - Lia Tescione
- Cell Culture Development; Biogen, 125 Broadway Cambridge MA 02142
| | - Thomas Ryll
- Cell Culture Development; Biogen, 125 Broadway Cambridge MA 02142
| | - Melissa Berman
- Biomolecular and Small Molecule Science; Biogen, 125 Broadway Cambridge MA 02142
| |
Collapse
|
28
|
The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015; 33:1878-96. [DOI: 10.1016/j.biotechadv.2015.10.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
|
29
|
Lee JH, Kim YG, Lee GM. Effect of Bcl-xLoverexpression on sialylation of Fc-fusion protein in recombinant Chinese hamster ovary cell cultures. Biotechnol Prog 2015; 31:1133-6. [DOI: 10.1002/btpr.2115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/08/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Jong Hyun Lee
- Dept. of Biological Sciences; KAIST; Daejeon 305-701 Republic of Korea
| | - Yeon-Gu Kim
- Biotechnology Process Engineering Center; KRIBB Ochang 363-883 Republic of Korea
| | - Gyun Min Lee
- Dept. of Biological Sciences; KAIST; Daejeon 305-701 Republic of Korea
| |
Collapse
|
30
|
Noncoding RNAs, post-transcriptional RNA operons and Chinese hamster ovary cells. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.14.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Chen CH, Lin YP, Lin JL, Li ST, Ren CT, Wu CY, Chen CH. Rapid Identification of Terminal Sialic Acid Linkage Isomers by Pseudo-MS3Mass Spectrometry. Isr J Chem 2015. [DOI: 10.1002/ijch.201400141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Liu J, Chen X, Fan L, Deng X, Fai Poon H, Tan WS, Liu X. Monitoring sialylation levels of Fc-fusion protein using size-exclusion chromatography as a process analytical technology tool. Biotechnol Lett 2015; 37:1371-7. [DOI: 10.1007/s10529-015-1815-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
|
33
|
Lin N, Mascarenhas J, Sealover NR, George HJ, Brooks J, Kayser KJ, Gau B, Yasa I, Azadi P, Archer-Hartmann S. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnol Prog 2015; 31:334-46. [PMID: 25641927 DOI: 10.1002/btpr.2038] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/26/2014] [Indexed: 12/12/2022]
Abstract
N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN(®) GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones ("ST6GAL1 OE Clone 31 and 32") were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of "bio-better" protein therapeutics and cell culture vaccine production.
Collapse
Affiliation(s)
- Nan Lin
- Cell Sciences and Development, SAFC/Sigma-Aldrich, 2909 Laclede Avenue, Saint Louis, MO, 63103
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Complexity and heterogeneity of oligosaccharides present a considerable challenge to the biopharmaceutical industry to manufacture biotherapeutics with reproducible and consistent glycoform profiles. Mammalian cells, especially Chinese hamster ovary cells, are the most widely used platform for the production of biotherapeutics. The glycans produced are predominantly of the complex type, with some differences between human and nonhuman mammalian glycosylation existing. This review briefly summarizes metabolic glyco-engineering strategies used in mammalian cells in order to alter the glycosylation patterns attached to proteins applied for diverse biotechnology applications.
Collapse
|
35
|
Improving sialylation of recombinant biologics for enhanced therapeutic efficacy. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Škulj M, Pezdirec D, Gaser D, Kreft M, Zorec R. Reduction in C-terminal amidated species of recombinant monoclonal antibodies by genetic modification of CHO cells. BMC Biotechnol 2014; 14:76. [PMID: 25123359 PMCID: PMC4146454 DOI: 10.1186/1472-6750-14-76] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/08/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND During development of recombinant monoclonal antibodies in Chinese hamster ovary (CHO) cells, C-terminal amidated species are observed. C-terminal amidation is catalysed by peptidylglycine α-amidating monooxygenase (PAM), an enzyme known to be expressed in CHO cells. The significant variations between clones during clone selection, and the relatively high content of amidated species (up to 15%) in comparison to reference material (4%), led us to develop a cell line with reduced production of C-terminal amidated monoclonal antibodies using genetic manipulation. RESULTS Initial target validation was performed using the RNA interference approach against PAM, which resulted in a CHO cell line with C-terminal amidation decreased to 3%. Due to the transient effects of small-interfering RNAs, and possible stability problems using short-hairpin RNAs, we knocked-down the PAM gene using zinc finger nucleases. Plasmid DNA and mRNA for zinc finger nucleases were used to generate a PAM knock-out, which resulted in two CHO cell lines with C-terminal amidation decreased to 6%, in CHO Der2 and CHO Der3 cells. CONCLUSION Two genetically modified cell lines were generated using a zinc finger nuclease approach to decrease C-terminal amidation on recombinant monoclonal antibodies. These two cell lines now represent a pool from which the candidate clone with the highest comparability to the reference molecule can be selected, for production of high-quality and safe therapeutics.
Collapse
Affiliation(s)
- Mihaela Škulj
- Sandoz Biopharmaceuticals, Mengeš, Lek Pharmacetucals d,d, Kolodvorska 27, 1234 Mengeš, Slovenia.
| | | | | | | | | |
Collapse
|
37
|
N-glycosylation modification of plant-derived virus-like particles: an application in vaccines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:249519. [PMID: 24971324 PMCID: PMC4055563 DOI: 10.1155/2014/249519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/19/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
Plants have been developed as an alternative system to mammalian cells for production of recombinant prophylactic or therapeutic proteins for human and animal use. Effective plant expression systems for recombinant proteins have been established with the optimal combination of gene expression regulatory elements and control of posttranslational processing of recombinant glycoproteins. In plant, virus-like particles (VLPs), viral “empty shells” which maintain the same structural characteristics of virions but are genome-free, are considered extremely promising as vaccine platforms and therapeutic delivery systems. Unlike microbial fermentation, plants are capable of carrying out N-glycosylation as a posttranslational modification of glycoproteins. Recent advances in the glycoengineering in plant allow human-like glycomodification and optimization of desired glycan structures for enhancing safety and functionality of recombinant pharmaceutical glycoproteins. In this review, the current plant-derived VLP approaches are focused, and N-glycosylation and its in planta modifications are discussed.
Collapse
|
38
|
A new insect cell glycoengineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency. J Biotechnol 2014; 182-183:19-29. [PMID: 24768688 DOI: 10.1016/j.jbiotec.2014.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/26/2014] [Accepted: 04/14/2014] [Indexed: 12/19/2022]
Abstract
Insect cells are often glycoengineered using DNA constructs encoding foreign glyocoenzymes under the transcriptional control of the baculovirus immediate early promoter, ie1. However, we recently found that the delayed early baculovirus promoter, 39K, provides inducible and higher levels of transgene expression than ie1 after baculovirus infection (Lin and Jarvis, 2013). Thus, the purpose of this study was to assess the utility of the 39K promoter for insect cell glycoengineering. We produced two polyclonal transgenic insect cell populations in parallel using DNA constructs encoding foreign glycoenzymes under either ie1 (Sfie1SWT) or 39K (Sf39KSWT) promoter control. The surface of Sfie1SWT cells was constitutively sialylated, whereas the Sf39KSWT cell surface was only strongly sialylated after baculovirus infection, indicating Sf39KSWT cells were inducibly-glycoengineered. All nine glycogene-related transcript levels were induced by baculovirus infection of Sf39KSWT cells and most reached higher levels in Sf39KSWT than in Sfie1SWT cells at early times after infection. Similarly, galactosyltransferase activity, sialyltransferase activity, and sialic acid levels were induced and reached higher levels in baculovirus-infected Sf39KSWT cells. Finally, two different recombinant glycoproteins produced by baculovirus-infected Sf39KSWT cells had lower proportions of paucimannose-type and higher proportions of sialylated, complex-type N-glycans than those produced by baculovirus-infected Sfie1SWT cells. Thus, the 39K promoter provides baculovirus-inducible expression of foreign glycogenes, higher glycoenzyme activity levels, and higher human-type N-glycan processing efficiencies than the ie1 promoter, indicating that this delayed early baculovirus promoter has great utility for insect cell glycoengineering.
Collapse
|
39
|
Role of Chinese hamster ovary central carbon metabolism in controlling the quality of secreted biotherapeutic proteins. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.13.65] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Markely LRA, Kurt L, Lau J, Mane S, Guan B, Ryll T, Estes S, Prajapati S, Bakhshayeshi M, Pieracci J. High-throughput ion exchange purification of positively charged recombinant protein in the presence of negatively charged dextran sulfate. Biotechnol Prog 2014; 30:516-20. [PMID: 24449619 DOI: 10.1002/btpr.1873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/10/2013] [Accepted: 01/17/2014] [Indexed: 11/10/2022]
Abstract
Product quality analyses are critical for developing cell line and bioprocess producing therapeutic proteins with desired critical product quality attributes. To facilitate these analyses, a high-throughput small-scale protein purification (SSP) is required to quickly purify many samples in parallel. Here we develop an SSP using ion exchange resins to purify a positively charged recombinant growth factor P1 in the presence of negatively charged dextran sulfate supplemented to improve the cell culture performance. The major challenge in this work is that the strong ionic interaction between P1 and dextran sulfate disrupts interaction between P1 and chromatography resins. To solve this problem, we develop a two-step SSP using Q Sepharose Fast Flow (QFF) and SP Sepharose XL (SPXL) resins to purify P1. The overall yield of this two-step SSP is 78%. Moreover, the SSP does not affect the critical product quality attributes. The SSP was critical for developing the cell line and process producing P1.
Collapse
Affiliation(s)
- Lam Raga A Markely
- Cell Culture Development Dept. - High-Throughput Analytical Group, Biogen Idec Inc., 15 Cambridge Center, Cambridge, MA, 02142
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology 2013; 24:325-40. [PMID: 24362443 DOI: 10.1093/glycob/cwt161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd(+) baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.
Collapse
|
42
|
Biological Insights into Therapeutic Protein Modifications throughout Trafficking and Their Biopharmaceutical Applications. Int J Cell Biol 2013; 2013:273086. [PMID: 23690780 PMCID: PMC3652174 DOI: 10.1155/2013/273086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022] Open
Abstract
Over the lifespan of therapeutic proteins, from the point of biosynthesis to the complete clearance from tested subjects, they undergo various biological modifications. Therapeutic influences and molecular mechanisms of these modifications have been well appreciated for some while remained less understood for many. This paper has classified these modifications into multiple categories, according to their processing locations and enzymatic involvement during the trafficking events. It also focuses on the underlying mechanisms and structural-functional relationship between modifications and therapeutic properties. In addition, recent advances in protein engineering, cell line engineering, and process engineering, by exploring these complex cellular processes, are discussed and summarized, for improving functional characteristics and attributes of protein-based biopharmaceutical products.
Collapse
|
43
|
Datta P, Linhardt RJ, Sharfstein ST. An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 2013; 110:1255-71. [DOI: 10.1002/bit.24841] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
|
44
|
Gramer MJ. Product Quality Considerations for Mammalian Cell Culture Process Development and Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 139:123-66. [DOI: 10.1007/10_2013_214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Innovative use of a bacterial enzyme involved in sialic acid degradation to initiate sialic acid biosynthesis in glycoengineered insect cells. Metab Eng 2012; 14:642-52. [PMID: 23022569 DOI: 10.1016/j.ymben.2012.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/07/2012] [Accepted: 08/10/2012] [Indexed: 11/21/2022]
Abstract
The baculovirus/insect cell system is widely used for recombinant protein production, but it is suboptimal for recombinant glycoprotein production because it does not provide sialylation, which is an essential feature of many glycoprotein biologics. This problem has been addressed by metabolic engineering, which has extended endogenous insect cell N-glycosylation pathways and enabled glycoprotein sialylation by baculovirus/insect cell systems. However, further improvement is needed because even the most extensively engineered baculovirus/insect cell systems require media supplementation with N-acetylmannosamine, an expensive sialic acid precursor, for efficient recombinant glycoprotein sialylation. Our solution to this problem focused on E. coli N-acetylglucosamine-6-phosphate 2'-epimerase (GNPE), which normally functions in bacterial sialic acid degradation. Considering that insect cells have the product, but not the substrate for this enzyme, we hypothesized that GNPE might drive the reverse reaction in these cells, thereby initiating sialic acid biosynthesis in the absence of media supplementation. We tested this hypothesis by isolating transgenic insect cells expressing E. coli GNPE together with a suite of mammalian genes needed for N-glycoprotein sialylation. Various assays showed that these cells efficiently produced sialic acid, CMP-sialic acid, and sialylated recombinant N-glycoproteins even in growth media without N-acetylmannosamine. Thus, this study demonstrated that a eukaryotic recombinant protein production platform can be glycoengineered with a bacterial gene, that a bacterial enzyme which normally functions in sialic acid degradation can be used to initiate sialic acid biosynthesis, and that insect cells expressing this enzyme can produce sialylated N-glycoproteins without N-acetylmannosamine supplementation, which will reduce production costs in glycoengineered baculovirus/insect cell systems.
Collapse
|
46
|
Lee JS, Ha TK, Lee SJ, Lee GM. Current state and perspectives on erythropoietin production. Appl Microbiol Biotechnol 2012; 95:1405-16. [DOI: 10.1007/s00253-012-4291-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 11/25/2022]
|
47
|
Park JH, Wang Z, Jeong HJ, Park HH, Kim BG, Tan WS, Choi SS, Park TH. Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19. Appl Microbiol Biotechnol 2012; 96:671-83. [DOI: 10.1007/s00253-012-4203-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022]
|
48
|
Markely LRA, Wang DIC. High-throughput analysis of intraclonal variability of glycoprotein sialylation. Biotechnol Prog 2011; 28:591-4. [DOI: 10.1002/btpr.738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/24/2011] [Indexed: 01/01/2023]
|
49
|
Hammond S, Lee KH. RNA interference of cofilin in Chinese hamster ovary cells improves recombinant protein productivity. Biotechnol Bioeng 2011; 109:528-35. [PMID: 21915848 DOI: 10.1002/bit.23322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/04/2011] [Accepted: 08/31/2011] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) has been recently applied to improve the yield and quality of recombinant proteins produced in Chinese hamster ovary (CHO) cells, the most commonly used mammalian cell line for production of complex biopharmaceuticals. Proteomic profiling of CHO cells undergoing gene amplification identified cofilin, a key regulatory protein of actin cytoskeletal dynamics, as a cellular target for genetic engineering studies. Transient reduction of cofilin by small interfering RNA (siRNA) enhanced specific productivity in recombinant CHO cells by up to 80%. CHO cell lines expressing cofilin-specific short hairpin RNA (shRNA) vectors showed up to a 65% increase in specific productivity. These results suggest that modulation of cofilin, and its regulatory pathways, may be a new approach to enhance recombinant protein productivity in CHO cells.
Collapse
Affiliation(s)
- Stephanie Hammond
- Department of Chemical Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | | |
Collapse
|
50
|
Insight into the roles of hypoxanthine and thydimine on cultivating antibody-producing CHO cells: cell growth, antibody production and long-term stability. Appl Microbiol Biotechnol 2011; 93:169-78. [DOI: 10.1007/s00253-011-3484-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/30/2011] [Accepted: 07/13/2011] [Indexed: 12/20/2022]
|