1
|
Wang C, Zhang Y, Wang J, Han Y, Wang Y, Sun M, Liang Y, Huang M, Yu Y, Hu H, Liu H, Han L. Single-Cell Isolation Chip Integrated with Multicolor Barcode Array for High-Throughput Single-Cell Exosome Profiling in Tissue Samples. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411259. [PMID: 39659120 DOI: 10.1002/adma.202411259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Indexed: 12/12/2024]
Abstract
Exosomes, functional biomarkers involved in cancer progression, have gained widespread attention for promoting tumor formation, growth, and metastasis. Current bulk exosome detections in bodily fluids enable cancer functional analysis, but average secretion levels from cell populations, losing parent cell information and ignoring exosome heterogeneity from diverse cell subgroups, necessitating an effective platform for analyzing single-cell exosome functional heterogeneity. Here, a high-throughput platform is presented, capable of efficient single-cell isolation and multi-color exosome phenotype analysis, as well as quantifying trace exosomes secreted by single cells. Photothermal-driven single-cell chips achieve significant single-cell isolation efficiency (≈97%) within 5 min, facilitating the ultra-high throughput single-cell exosome analysis. By conducting mass spectrometry and protein interaction of breast cancer exosome phenotypic proteins, key exosome phenotypes are identified. Tens of thousands of single cells from breast cancer cell lines, and clinical tissues are analyzed, revealing various subgroup differences. The study finds more CD44 and EGFR co-expressing exosome subgroups in breast cancer cell lines, while immune-evasion PD-L1 high-phenotype exosome subgroups are primarily presented in complex tumor microenvironments, especially in HER2-positive tissues. This platform offers powerful single-cell isolation, exosome quantification, and phenotypic analysis capabilities, making it a powerful tool for advancing single-cell exosome analysis in cancer research.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
- Department of Integrated Circuits, Shandong University, Jinan, 250100, China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Yunrui Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yanbo Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Miao Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yang Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huili Hu
- School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
- Department of Integrated Circuits, Shandong University, Jinan, 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Wang C, Qiu J, Liu M, Wang Y, Yu Y, Liu H, Zhang Y, Han L. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics and Exosomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401263. [PMID: 38767182 PMCID: PMC11267386 DOI: 10.1002/advs.202401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Single-cell multiomic and exosome analyses are potent tools in various fields, such as cancer research, immunology, neuroscience, microbiology, and drug development. They facilitate the in-depth exploration of biological systems, providing insights into disease mechanisms and aiding in treatment. Single-cell isolation, which is crucial for single-cell analysis, ensures reliable cell isolation and quality control for further downstream analyses. Microfluidic chips are small lightweight systems that facilitate efficient and high-throughput single-cell isolation and real-time single-cell analysis on- or off-chip. Therefore, most current single-cell isolation and analysis technologies are based on the single-cell microfluidic technology. This review offers comprehensive guidance to researchers across different fields on the selection of appropriate microfluidic chip technologies for single-cell isolation and analysis. This review describes the design principles, separation mechanisms, chip characteristics, and cellular effects of various microfluidic chips available for single-cell isolation. Moreover, this review highlights the implications of using this technology for subsequent analyses, including single-cell multiomic and exosome analyses. Finally, the current challenges and future prospects of microfluidic chip technology are outlined for multiplex single-cell isolation and multiomic and exosome analyses.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Jiaoyan Qiu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Mengqi Liu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yihe Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yang Yu
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinan250100China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Yu Zhang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Lin Han
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence ApplicationJinan250100China
| |
Collapse
|
3
|
Chang X, Zheng Y, Xu K. Single-Cell RNA Sequencing: Technological Progress and Biomedical Application in Cancer Research. Mol Biotechnol 2024; 66:1497-1519. [PMID: 37322261 PMCID: PMC11217094 DOI: 10.1007/s12033-023-00777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Single-cell RNA-seq (scRNA-seq) is a revolutionary technology that allows for the genomic investigation of individual cells in a population, allowing for the discovery of unusual cells associated with cancer and metastasis. ScRNA-seq has been used to discover different types of cancers with poor prognosis and medication resistance such as lung cancer, breast cancer, ovarian cancer, and gastric cancer. Besides, scRNA-seq is a promising method that helps us comprehend the biological features and dynamics of cell development, as well as other disorders. This review gives a concise summary of current scRNA-seq technology. We also explain the main technological steps involved in implementing the technology. We highlight the present applications of scRNA-seq in cancer research, including tumor heterogeneity analysis in lung cancer, breast cancer, and ovarian cancer. In addition, this review elucidates potential applications of scRNA-seq in lineage tracing, personalized medicine, illness prediction, and disease diagnosis, which reveals that scRNA-seq facilitates these events by producing genetic variations on the single-cell level.
Collapse
Affiliation(s)
- Xu Chang
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yunxi Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
4
|
Kwok SJJ, Forward S, Fahlberg MD, Assita ER, Cosgriff S, Lee SH, Abbott GR, Zhu H, Minasian NH, Vote AS, Martino N, Yun SH. High-dimensional multi-pass flow cytometry via spectrally encoded cellular barcoding. Nat Biomed Eng 2024; 8:310-324. [PMID: 38036616 DOI: 10.1038/s41551-023-01144-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/21/2023] [Indexed: 12/02/2023]
Abstract
Advances in immunology, immuno-oncology, drug discovery and vaccine development demand improvements in the capabilities of flow cytometry to allow it to measure more protein markers per cell at multiple timepoints. However, the size of panels of fluorophore markers is limited by overlaps in fluorescence-emission spectra, and flow cytometers typically perform cell measurements at one timepoint. Here we describe multi-pass high-dimensional flow cytometry, a method leveraging cellular barcoding via microparticles emitting near-infrared laser light to track and repeatedly measure each cell using more markers and fewer colours. By using live human peripheral blood mononuclear cells, we show that the method enables the time-resolved characterization of the same cells before and after stimulation, their analysis via a 10-marker panel with minimal compensation for spectral spillover and their deep immunophenotyping via a 32-marker panel, where the same cells are analysed in 3 back-to-back cycles with 10-13 markers per cycle, reducing overall spillover and simplifying marker-panel design. Cellular barcoding in flow cytometry extends the utility of the technique for high-dimensional multi-pass single-cell analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Han Zhu
- LASE Innovation Inc., Woburn, MA, USA
| | | | | | - Nicola Martino
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, USA.
| |
Collapse
|
5
|
McRae O, Walls PLL, Natarajan V, Antoniou C, Bird JC. Elucidating the effects of microbubble pinch-off dynamics on mammalian cell viability. Biotechnol Bioeng 2024; 121:524-534. [PMID: 37902645 DOI: 10.1002/bit.28582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 10/15/2023] [Indexed: 10/31/2023]
Abstract
In the biotechnology industry, ensuring the health and viability of mammalian cells, especially Chinese Hamster Ovary (CHO) cells, plays a significant role in the successful production of therapeutic agents. These cells are typically cultivated in aerated bioreactors, where they encounter fluid stressors from rapidly deforming bubbles. These stressors can disrupt essential biological processes and potentially lead to cell death. However, the impact of these transient, elevated stressors on cell viability remains elusive. In this study, we first employ /cgqamicrofluidics to expose CHO cells near to bubbles undergoing pinch-off, subsequently collecting and assaying the cells to quantify the reduction in viability. Observing a significant impact, we set out to understand this phenomenon. We leverage computational fluid dynamics and numerical particle tracking to map the stressor field history surrounding a rapidly deforming bubble. Separately, we expose CHO cells to a known stressor level in a flow constriction device, collecting and assaying the cells to quantify the reduction in viability. By integrating the numerical data and results from the flow constriction device experiments, we develop a predictive model for cell viability reduction. We validate this model by comparing its predictions to the earlier microfluidic results, observing good agreement. Our findings provide critical insights into the relationship between bubble-induced fluid stressors and mammalian cell viability, with implications for bioreactor design and cell culture protocol optimization in the biotechnology sector.
Collapse
Affiliation(s)
- Oliver McRae
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Peter L L Walls
- Department of Mechanical Engineering, Dunwoody College of Technology, Minneapolis, Minnesota, USA
| | | | - Chris Antoniou
- Global Processing Engineering, Biogen, Cambridge, Massachusetts, USA
| | - James C Bird
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lan Y, Zhou Y, Wu M, Jia C, Zhao J. Microfluidic based single cell or droplet manipulation: Methods and applications. Talanta 2023; 265:124776. [PMID: 37348357 DOI: 10.1016/j.talanta.2023.124776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The isolation of single cell or droplet is first and crucial step to single-cell analysis, which is important for cancer research and diagnostic methods. This review provides an overview of technologies that are currently used or in development to realize the isolation. Microfluidic based manipulation is an emerging technology with the distinct advantages of miniaturization and low cost. Therefore, recent developments in microfluidic isolated methods have attracted extensive attention. We introduced herein five strategies based on microfluid: trap, microfluidic discrete manipulation, bioprinter, capillary and inertial force. For every technology, their basic principles and features were discussed firstly. Then some modified approaches and applications were listed as the extension. Finally, we compared the advantages and drawbacks of these methods, and analyzed the trend of the manipulation based on microfluidics.
Collapse
Affiliation(s)
- Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Cell-type specific profiling of histone post-translational modifications in the adult mouse striatum. Nat Commun 2022; 13:7720. [PMID: 36513652 PMCID: PMC9747932 DOI: 10.1038/s41467-022-35384-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic gene regulation in the heterogeneous brain remains challenging to decipher with current strategies. Bulk tissue analysis from pooled subjects reflects the average of cell-type specific changes across cell-types and individuals, which obscures causal relationships between epigenetic modifications, regulation of gene expression, and complex pathology. To address these limitations, we optimized a hybrid protocol, ICuRuS, for the isolation of nuclei tagged in specific cell-types and histone post translational modification profiling from the striatum of a single mouse. We combined affinity-based isolation of the medium spiny neuron subtypes, Adenosine 2a Receptor or Dopamine Receptor D1, with cleavage of histone-DNA complexes using an antibody-targeted micrococcal nuclease to release DNA complexes for paired end sequencing. Unlike fluorescence activated cell sorting paired with chromatin immunoprecipitation, ICuRuS allowed for robust epigenetic profiling at cell-type specific resolution. Our analysis provides a framework to understand combinatorial relationships between neuronal-subtype-specific epigenetic modifications and gene expression.
Collapse
|
8
|
Tang W, Li M, Teng F, Cui J, Dong J, Wang W. Single-cell RNA-sequencing in asthma research. Front Immunol 2022; 13:988573. [PMID: 36524132 PMCID: PMC9744750 DOI: 10.3389/fimmu.2022.988573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Asthma is a complex and heterogeneous disease with multicellular involvement, and knowledge gaps remain in our understanding of the pathogenesis of asthma. Efforts are still being made to investigate the immune pathogenesis of asthma in order to identify possible targets for prevention. Single cell RNA sequencing (scRNA-seq) technology is a useful tool for exploring heterogeneous diseases, identifying rare cell types and distinct cell subsets, enabling elucidation of key processes of cell differentiation, and understanding regulatory gene networks that predict immune function. In this article, we provide an overview of the importance of scRNA-seq for asthma research, followed by an in-depth discussion of the results in recent years, in order to provide new ideas for the pathogenesis, drug development and treatment of asthma.
Collapse
Affiliation(s)
- Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China,*Correspondence: Wenqian Wang, ; Jingcheng Dong,
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China,*Correspondence: Wenqian Wang, ; Jingcheng Dong,
| |
Collapse
|
9
|
Bernhard P, Feilen T, Rogg M, Fröhlich K, Cosenza-Contreras M, Hause F, Schell C, Schilling O. Proteome alterations during clonal isolation of established human pancreatic cancer cell lines. Cell Mol Life Sci 2022; 79:561. [PMID: 36271971 PMCID: PMC9587952 DOI: 10.1007/s00018-022-04584-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
Abstract
Clonal isolation is an integral step of numerous workflows in genome editing and cell engineering. It comprises the isolation of a single progenitor cell from a defined cell line population with subsequent expansion to obtain a monoclonal cell population. This process is associated with transient loss of cell–cell contacts and absence of a multicellular microenvironment. Previous studies have revealed transcriptomic changes upon clonal isolation with cell line specific extent. Since transcriptome alterations are only partially reflected on the proteome level, we sought to investigate the impact of clonal isolation on the cellular proteome to a depth of > 6000 proteins in three established pancreatic cancer cell lines. We show that clonal isolation does have an impact on the cellular proteome, however, with cell line specific extent, affecting different biological processes, and also depending on the isolation method. We demonstrate a different impact of clonal isolation on mesenchymal- and epithelial-derived cell lines mainly affecting cell proliferation, metabolism, cell adhesion and cellular stress. The results bear relevance to the field of genomic editing and cell engineering and highlight the need to consider the impact of clonal isolation when interpreting data stemming from experiments that include this step.
Collapse
Affiliation(s)
- P Bernhard
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - T Feilen
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - M Rogg
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany
| | - K Fröhlich
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - M Cosenza-Contreras
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - F Hause
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany
| | - C Schell
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - O Schilling
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany. .,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
10
|
Tian B, Li Q. Single-Cell Sequencing and Its Applications in Liver Cancer. Front Oncol 2022; 12:857037. [PMID: 35574365 PMCID: PMC9097917 DOI: 10.3389/fonc.2022.857037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
As one of the most lethal cancers, primary liver cancer (PLC) has high tumor heterogeneity, including the heterogeneity between cancer cells. Traditional methods which have been used to identify tumor heterogeneity for a long time are based on large mixed cell samples, and the research results usually show average level of the cell population, ignoring the heterogeneity between cancer cells. In recent years, single-cell sequencing has been increasingly applied to the studies of PLCs. It can detect the heterogeneity between cancer cells, distinguish each cell subgroup in the tumor microenvironment (TME), and also reveal the clonal characteristics of cancer cells, contributing to understand the evolution of tumor. Here, we introduce the process of single-cell sequencing, review the applications of single-cell sequencing in the heterogeneity of cancer cells, TMEs, oncogenesis, and metastatic mechanisms of liver cancer, and discuss some of the current challenges in the field.
Collapse
|
11
|
Wang C, Wang C, Wu Y, Gao J, Han Y, Chu Y, Qiang L, Qiu J, Gao Y, Wang Y, Song F, Wang Y, Shao X, Zhang Y, Han L. High-Throughput, Living Single-Cell, Multiple Secreted Biomarker Profiling Using Microfluidic Chip and Machine Learning for Tumor Cell Classification. Adv Healthc Mater 2022; 11:e2102800. [PMID: 35368151 DOI: 10.1002/adhm.202102800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Secreted proteins provide abundant functional information on living cells and can be used as important tumor diagnostic markers, of which profiling at the single-cell level is helpful for accurate tumor cell classification. Currently, achieving living single-cell multi-index, high-sensitivity, and quantitative secretion biomarker profiling remains a great challenge. Here, a high-throughput living single-cell multi-index secreted biomarker profiling platform is proposed, combined with machine learning, to achieve accurate tumor cell classification. A single-cell culture microfluidic chip with self-assembled graphene oxide quantum dots (GOQDs) enables high-activity single-cell culture, ensuring normal secretion of biomarkers and high-throughput single-cell separation, providing sufficient statistical data for machine learning. At the same time, the antibody barcode chip with self-assembled GOQDs performs multi-index, highly sensitive, and quantitative detection of secreted biomarkers, in which each cell culture chamber covers a whole barcode array. Importantly, by combining the K-means strategy with machine learning, thousands of single tumor cell secretion data are analyzed, enabling tumor cell classification with a recognition accuracy of 95.0%. In addition, further profiling of the grouping results reveals the unique secretion characteristics of subgroups. This work provides an intelligent platform for high-throughput living single-cell multiple secretion biomarker profiling, which has broad implications for cancer investigation and biomedical research.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Chunhua Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Wu
- Obstetrics and Gynecology Department Peking University Third Hospital Beijing 100191 China
| | - Jianwei Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yingkuan Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yujin Chu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Le Qiang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yakun Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yanhao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Fangteng Song
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yihe Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Xiaowei Shao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Zhang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Lin Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| |
Collapse
|
12
|
Hannart H, Berger A, Aeberli L, Forchelet D, Uffer N, Muller G, Barrandon Y, Renaud P, Bonzon D. Traceable impedance-based single-cell pipetting, from a research set-up to a robust and fast automated robot: DispenCell-S1. SLAS Technol 2022; 27:121-129. [DOI: 10.1016/j.slast.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Lee S, de Rutte J, Dimatteo R, Koo D, Di Carlo D. Scalable Fabrication and Use of 3D Structured Microparticles Spatially Functionalized with Biomolecules. ACS NANO 2022; 16:38-49. [PMID: 34846855 PMCID: PMC10874522 DOI: 10.1021/acsnano.1c05857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microparticles with defined shapes and spatial chemical modification can interface with cells and tissues at the cellular scale. However, conventional methods to fabricate shaped microparticles have trade-offs between the throughput of manufacture and the precision of particle shape and chemical functionalization. Here, we achieved scalable production of hydrogel microparticles at rates of greater than 40 million/hour with localized surface chemistry using a parallelized step emulsification device and temperature-induced phase-separation. The approach harnesses a polymerizable polyethylene glycol (PEG) and gelatin aqueous two-phase system (ATPS) which conditionally phase separates within microfluidically generated droplets. Following droplet formation, phase separation is induced and phase separated droplets are subsequently cross-linked to form uniform crescent and hollow shell particles with gelatin functionalization on the boundary of the cavity. The gelatin localization enabled deterministic cell loading in subnanoliter-sized crescent-shaped particles, which we refer to as nanovials, with cavity dimensions tuned to the size of cells. Loading on nanovials also imparted improved cell viability during analysis and sorting using standard fluorescence activated cell sorters, presumably by protecting cells from shear stress. This localization effect was further exploited to selectively functionalize capture antibodies to nanovial cavities enabling single-cell secretion assays with reduced cross-talk in a simplified format.
Collapse
Affiliation(s)
- Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Joseph de Rutte
- Partillion Bioscience, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California- Los Angeles, Los Angeles, California 90095, USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Doyeon Koo
- Department of Bioengineering, University of California- Los Angeles, Los Angeles, California 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California- Los Angeles, Los Angeles, California 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California- Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
The challenges of hydrodynamic forces on cells used in cell manufacturing and therapy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Tajti G, Szanto TG, Csoti A, Racz G, Evaristo C, Hajdu P, Panyi G. Immunomagnetic separation is a suitable method for electrophysiology and ion channel pharmacology studies on T cells. Channels (Austin) 2021; 15:53-66. [PMID: 33356811 PMCID: PMC7781520 DOI: 10.1080/19336950.2020.1859753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels play pivotal role in the physiological and pathological function of immune cells. As immune cells represent a functionally diverse population, subtype-specific functional studies, such as single-cell electrophysiology require proper subset identification and separation. Magnetic-activated cell sorting (MACS) techniques provide an alternative to fluorescence-activated cell sorting (FACS), however, the potential impact of MACS-related beads on the biophysical and pharmacological properties of the ion channels were not studied yet. We studied the aforementioned properties of the voltage-gated Kv1.3 K+ channel in activated CD4+ T-cells as well as the membrane capacitance using whole-cell patch-clamp following immunomagnetic positive separation, using the REAlease® kit. This kit allows three experimental configurations: bead-bound configuration, bead-free configuration following the removal of magnetic beads, and the label-free configuration following removal of CD4 recognizing antibody fragments. As controls, we used FACS separation as well as immunomagnetic negative selection. The membrane capacitance and of the biophysical parameters of Kv1.3 gating, voltage-dependence of steady-state activation and inactivation kinetics of the current were not affected by the presence of MACS-related compounds on the cell surface. We found subtle differences in the activation kinetics of the Kv1.3 current that could not be explained by the presence of MACS-related compounds. Neither the equilibrium block of Kv1.3 by TEA+ or charybdotoxin (ChTx) nor the kinetics of ChTx block are affected by the presence of the magnetics beads on the cell surface. Based on our results MACS is a suitable method to separate cells for studying ion channels in non-excitable cells, such as T-lymphocytes.
Collapse
Affiliation(s)
- Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Gabor Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Greta Racz
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - César Evaristo
- R&D Reagents Chemical Biology, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Box A, DeLay M, Tighe S, Chittur SV, Bergeron A, Cochran M, Lopez P, Meyer EM, Saluk A, Thornton S, Brundage K. Evaluating the Effects of Cell Sorting on Gene Expression. J Biomol Tech 2021; 31:100-111. [PMID: 32982601 DOI: 10.7171/jbt.20-3103-004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell sorting is a commonly used technology to isolate highly purified cell populations for downstream applications. Because the sorted cells are destined for further analysis, i.e., gene expression assays or functional assays, ensuring that the sorting process itself has little effect on the cells is of utmost importance. Previous studies examining the effects of sorting on cellular function have primarily focused on a specific cell type or condition. One of the goals of the Flow Cytometry Research Group of the Association of Biomolecular Resource Facilities is to establish best practice guidelines for cell sorting conditions that minimize cell stress, perturbation, or injury to the sorted cell population. In this study, the effects of nozzle size, sample pressure, UV exposure, and instrument type were evaluated for their effects on gene expression and cell cycle using both established cell lines and primary cells across several flow cytometry shared facilities. Results indicate that nozzle size and pressure, as well as UV exposure and instrument type, have only minor effects on gene expression, which were diminished by subsequent culturing of the sorted cells. In this assessment, these data demonstrate that cell sorting itself, regardless of instrumentation used, has minimal effects on downstream cellular applications.
Collapse
Affiliation(s)
- Andrew Box
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Monica DeLay
- Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Scott Tighe
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Albany, New York, USA
| | | | - Matthew Cochran
- University of Rochester Medical Center, West Henrietta, New York, USA
| | - Peter Lopez
- New York University Langone Medical Center, New York City, New York, USA
| | - E Michael Meyer
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Alan Saluk
- The Scripps Research Institute, San Diego, California, USA
| | - Sherry Thornton
- Department of Pediatrics and Cincinnati Children's Hospital, University of Cincinnati Medical Center, Cincinnati, Ohio, USA; and
| | | |
Collapse
|
17
|
Wiegand S, Dam HT, Riba J, Vollmers J, Kaster AK. Printing Microbial Dark Matter: Using Single Cell Dispensing and Genomics to Investigate the Patescibacteria/Candidate Phyla Radiation. Front Microbiol 2021; 12:635506. [PMID: 34220732 PMCID: PMC8241940 DOI: 10.3389/fmicb.2021.635506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
As of today, the majority of environmental microorganisms remain uncultured. They are therefore referred to as "microbial dark matter." In the recent past, cultivation-independent methods like single-cell genomics (SCG) enabled the discovery of many previously unknown microorganisms, among them the Patescibacteria/Candidate Phyla Radiation (CPR). This approach was shown to be complementary to metagenomics, however, the development of additional and refined sorting techniques beyond the most commonly used fluorescence-activated cell sorting (FACS) is still desirable to enable additional downstream applications. Adding image information on the number and morphology of sorted cells would be beneficial, as would be minimizing cell stress caused by sorting conditions such as staining or pressure. Recently, a novel cell sorting technique has been developed, a microfluidic single-cell dispenser, which assesses the number and morphology of the cell in each droplet by automated light microscopic processing. Here, we report for the first time the successful application of the newly developed single-cell dispensing system for label-free isolation of individual bacteria from a complex sample retrieved from a wastewater treatment plant, demonstrating the potential of this technique for single cell genomics and other alternative downstream applications. Genome recovery success rated above 80% with this technique-out of 880 sorted cells 717 were successfully amplified. For 50.1% of these, analysis of the 16S rRNA gene was feasible and led to the sequencing of 50 sorted cells identified as Patescibacteria/CPR members. Subsequentially, 27 single amplified genomes (SAGs) of 15 novel and distinct Patescibacteria/CPR members, representing yet unseen species, genera and families could be captured and reconstructed. This phylogenetic distinctness of the recovered SAGs from available metagenome-assembled genomes (MAGs) is accompanied by the finding that these lineages-in whole or in part-have not been accessed by genome-resolved metagenomics of the same sample, thereby emphasizing the importance and opportunities of SCGs.
Collapse
Affiliation(s)
- Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hang T. Dam
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julian Riba
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
18
|
Vitelli M, Budman H, Pritzker M, Tamer M. Applications of flow cytometry sorting in the pharmaceutical industry: A review. Biotechnol Prog 2021; 37:e3146. [PMID: 33749147 DOI: 10.1002/btpr.3146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The article reviews applications of flow cytometry sorting in manufacturing of pharmaceuticals. Flow cytometry sorting is an extremely powerful tool for monitoring, screening and separating single cells based on any property that can be measured by flow cytometry. Different applications of flow cytometry sorting are classified into groups and discussed in separate sections as follows: (a) isolation of cell types, (b) high throughput screening, (c) cell surface display, (d) droplet fluorescent-activated cell sorting (FACS). Future opportunities are identified including: (a) sorting of particular fractions of the cell population based on a property of interest for generating inoculum that will result in improved outcomes of cell cultures and (b) the use of population balance models in combination with FACS to design and optimize cell cultures.
Collapse
Affiliation(s)
- Michael Vitelli
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Hector Budman
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Mark Pritzker
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Melih Tamer
- Department of Manufacturing Technology, Sanofi Pasteur, Toronto, Canada
| |
Collapse
|
19
|
Optimization of high-throughput lipid screening of the microalga Nannochloropsis oceanica using BODIPY 505/515. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Box A, DeLay M, Tighe S, Chittur SV, Bergeron A, Cochran M, Lopez P, Meyer EM, Saluk A, Thornton S, Brundage K. Evaluating the Effects of Cell Sorting on Gene Expression. J Biomol Tech 2020; 31:jbt.20-3103-004. [PMID: 32831654 DOI: 10.7171/jbt.2020-3103-004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell sorting is a commonly used technology to isolate highly purified cell populations for downstream applications. Because the sorted cells are destined for further analysis, i.e., gene expression assays or functional assays, ensuring that the sorting process itself has little effect on the cells is of utmost importance. Previous studies examining the effects of sorting on cellular function have primarily focused on a specific cell type or condition. One of the goals of the Flow Cytometry Research Group of the Association of Biomolecular Resource Facilities is to establish best practice guidelines for cell sorting conditions that minimize cell stress, perturbation, or injury to the sorted cell population. In this study, the effects of nozzle size, sample pressure, UV exposure, and instrument type were evaluated for their effects on gene expression and cell cycle using both established cell lines and primary cells across several flow cytometry shared facilities. Results indicate that nozzle size and pressure, as well as UV exposure and instrument type, have only minor effects on gene expression, which were diminished by subsequent culturing of the sorted cells. In this assessment, these data demonstrate that cell sorting itself, regardless of instrumentation used, has minimal effects on downstream cellular applications.
Collapse
Affiliation(s)
- Andrew Box
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Monica DeLay
- Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Scott Tighe
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Albany, New York, USA
| | | | - Matthew Cochran
- University of Rochester Medical Center, West Henrietta, New York, USA
| | - Peter Lopez
- New York University Langone Medical Center, New York City, New York, USA
| | - E Michael Meyer
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Alan Saluk
- The Scripps Research Institute, San Diego, California, USA
| | - Sherry Thornton
- Department of Pediatrics and Cincinnati Children's Hospital, University of Cincinnati Medical Center, Cincinnati, Ohio, USA; and
| | | |
Collapse
|
21
|
Wierzchowski K, Grabowska I, Pilarek M. Efficient propagation of suspended HL-60 cells in a disposable bioreactor supporting wave-induced agitation at various Reynolds number. Bioprocess Biosyst Eng 2020; 43:1973-1985. [PMID: 32519077 PMCID: PMC7511289 DOI: 10.1007/s00449-020-02386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
Growth of human nonadherent HL-60 cell cultures performed in disposable bioreactor under various hydrodynamic conditions of 2-D wave-assisted agitation has been compared and discussed. Influence of Reynolds number for liquid (ReL) and the kLa coefficient, as key parameters characterized the bioprocessing of HL-60 cells in ReadyToProcess WAVETM 25 system, on reached values of the apparent maximal specific growth rate (μmax) and the specific yield of biomass (Y*X/S) has been identified. The values of ReL (i.e., 510–10,208), as well as kLa coefficient (i.e., 2.83–13.55 h−1), have been estimated for the cultures subjected to wave-induced mixing, based on simplified dimensionless correlation for various presents of WAVE 25 system. The highest values of apparent μmax = 0.038 h−1 and Y*X/S = 25.64 × 108 cells gglc−1 have been noted for cultures independently performed at wave-induced agitation characterized by ReL equaled to 5104 and 510, respectively. The presented results have high applicability potential in scale-up of bioprocesses focused on nonadherent animal cells, or in the case of any application of disposable bioreactors presenting similitude.
Collapse
Affiliation(s)
- Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Iwona Grabowska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.
| |
Collapse
|
22
|
Yumoto M, Hemmi N, Sato N, Kawashima Y, Arikawa K, Ide K, Hosokawa M, Seo M, Takeyama H. Evaluation of the effects of cell-dispensing using an inkjet-based bioprinter on cell integrity by RNA-seq analysis. Sci Rep 2020; 10:7158. [PMID: 32346113 PMCID: PMC7189371 DOI: 10.1038/s41598-020-64193-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Bioprinting technology is expected to be applied in the fields of regenerative medicine and drug discovery. There are several types of bioprinters, especially inkjet-based bioprinter, which can be used not only as a printer for arranging cells but also as a precision cell-dispensing device with controlled cell numbers similar to a fluorescence activated cell sorter (FACS). Precise cell dispensers are expected to be useful in the fields of drug discovery and single-cell analysis. However, there are enduring concerns about the impacts of cell dispensers on cell integrity, particularly on sensitive cells, such as stem cells. In response to the concerns stated above, we developed a stress-free and media-direct-dispensing inkjet bioprinter. In the present study, in addition to conventional viability assessments, we evaluated the gene expression using RNA-seq to investigate whether the developed bioprinter influenced cell integrity in mouse embryonic stem cells. We evaluated the developed bioprinter based on three dispensing methods: manual operation using a micropipette, FACS and the developed inkjet bioprinter. According to the results, the developed inkjet bioprinter exhibited cell-friendly dispensing performance, which was similar to the manual dispensing operation, based not only on cell viability but also on gene expression levels.
Collapse
Affiliation(s)
- Masayuki Yumoto
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Biomedical Business Center, Healthcare Business Group, Ricoh Company, Ltd., 3-25-22 Tonomachi LIC 322, Kawasaki, Kanagawa, 210-0821, Japan
| | - Natsuko Hemmi
- Biomedical Business Center, Healthcare Business Group, Ricoh Company, Ltd., 3-25-22 Tonomachi LIC 322, Kawasaki, Kanagawa, 210-0821, Japan
| | - Naoki Sato
- Biomedical Business Center, Healthcare Business Group, Ricoh Company, Ltd., 3-25-22 Tonomachi LIC 322, Kawasaki, Kanagawa, 210-0821, Japan
| | - Yudai Kawashima
- Biomedical Business Center, Healthcare Business Group, Ricoh Company, Ltd., 3-25-22 Tonomachi LIC 322, Kawasaki, Kanagawa, 210-0821, Japan
| | - Koji Arikawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Keigo Ide
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahito Hosokawa
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Manabu Seo
- Biomedical Business Center, Healthcare Business Group, Ricoh Company, Ltd., 3-25-22 Tonomachi LIC 322, Kawasaki, Kanagawa, 210-0821, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| |
Collapse
|
23
|
Nan L, Lai MYA, Tang MYH, Chan YK, Poon LLM, Shum HC. On-Demand Droplet Collection for Capturing Single Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902889. [PMID: 31448532 DOI: 10.1002/smll.201902889] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Droplet-based microfluidic techniques are extensively used in efficient manipulation and genome-wide analysis of individual cells, probing the heterogeneity among populations of individuals. However, the extraction and isolation of single cells from individual droplets remains difficult due to the inevitable sample loss during processing. Herein, an automated system for accurate collection of defined numbers of droplets containing single cells is presented. Based on alternate sorting and dispensing in three branch channels, the droplet number can be precisely controlled down to single-droplet resolution. While encapsulating single cells and reserving one branch as a waste channel, sorting can be seamlessly integrated to enable on-demand collection of single cells. Combined with a lossless recovery strategy, this technique achieves capture and culture of individual cells with a harvest rate of over 95%. The on-demand droplet collection technique has great potential to realize quantitative processing and analysis of single cells for elucidating the role of cell-to-cell variations.
Collapse
Affiliation(s)
- Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Man Yuk Alison Lai
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Matthew Yuk Heng Tang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Yau Kei Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Leo Lit Man Poon
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| |
Collapse
|
24
|
Schwarz H, Zhang Y, Zhan C, Malm M, Field R, Turner R, Sellick C, Varley P, Rockberg J, Chotteau V. Small-scale bioreactor supports high density HEK293 cell perfusion culture for the production of recombinant Erythropoietin. J Biotechnol 2020; 309:44-52. [DOI: 10.1016/j.jbiotec.2019.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022]
|
25
|
Li C, Teng X, Peng H, Yi X, Zhuang Y, Zhang S, Xia J. Novel scale-up strategy based on three-dimensional shear space for animal cell culture. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Andrä I, Ulrich H, Dürr S, Soll D, Henkel L, Angerpointner C, Ritter J, Przibilla S, Stadler H, Effenberger M, Busch DH, Schiemann M. An Evaluation of T‐Cell Functionality After Flow Cytometry Sorting Revealed p38 MAPK Activation. Cytometry A 2020; 97:171-183. [DOI: 10.1002/cyto.a.23964] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Immanuel Andrä
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Hanna Ulrich
- Institute for Systemic Inflammation ResearchUniversität zu Lübeck Lübeck Germany
| | - Susi Dürr
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Dominik Soll
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Lynette Henkel
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Corinne Angerpointner
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Julia Ritter
- Institute for Systemic Inflammation ResearchUniversität zu Lübeck Lübeck Germany
| | | | - Herbert Stadler
- Cell.Copedia GmbH Leipzig Germany
- IBA GmbH, IBA Lifesciences Göttingen Lower Saxony Germany
| | - Manuel Effenberger
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
- Focus Group 'Clinical Cell Processing and Purification'Institute for Advanced Study, TUM Munich Germany
- National Centre for Infection Research (DZIF) Munich Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| |
Collapse
|
27
|
Methods for Single-Cell Isolation and Preparation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:7-27. [PMID: 32949387 DOI: 10.1007/978-981-15-4494-1_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Within the last decade, single-cell analysis has revolutionized our understanding of cellular processes and heterogeneity across all disciplines of life science. As the transcriptome, genome, or epigenome of individual cells can nowadays be analyzed at low cost and in high-throughput within a few days by modern techniques, tremendous improvements in disease diagnosis on the one hand and the investigation of disease-relevant mechanisms on the other were achieved so far. This relies on the parallel development of reliable cell capturing and single-cell sequencing approaches that have paved the way for comprehensive single-cell studies. Apart from single-cell isolation methods in high-throughput, a variety of methods with distinct specializations were developed, allowing for correlation of transcriptomics with cellular parameters like electrophysiology or morphology.For all single-cell-based approaches, accurate and reliable isolation with proper quality controls is prerequisite, whereby different options exist dependent on sample type and tissue properties. Careful consideration of an appropriate method is required to avoid incorrect or biased data that may lead to misinterpretations.In this chapter, we will provide a broad overview of the current state of the art in matters of single-cell isolation methods mostly applied for sequencing-based downstream analysis, and their respective advantages and drawbacks. Distinct technologies will be discussed in detail addressing key parameters like sample compatibility, viability, purity, throughput, and isolation efficiency.
Collapse
|
28
|
Liu Y, Zhang L, Zhang Y, Zhou L. Effects of Sparger Holes on Gas‐Liquid Hydrodynamics in Bubble Columns. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Liu
- Taizhou UniversityCollege of Aerospace Engineering 1139 Shifu Road 318000 Taizhou Zhejiang China
| | - Li Zhang
- Taizhou UniversityCollege of Aerospace Engineering 1139 Shifu Road 318000 Taizhou Zhejiang China
| | - Yongju Zhang
- Taizhou UniversityCollege of Aerospace Engineering 1139 Shifu Road 318000 Taizhou Zhejiang China
| | - Lixing Zhou
- Tsinghua UniversityDepartment of Engineering Mechanics Shuangqing Road 10084 Beijing China
| |
Collapse
|
29
|
Soitu C, Deroy C, Castrejón-Pita AA, Cook PR, Walsh EJ. Using Fluid Walls for Single-Cell Cloning Provides Assurance in Monoclonality. SLAS Technol 2019; 25:267-275. [PMID: 31815577 DOI: 10.1177/2472630319891135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-cell isolation and cloning are essential steps in many applications, ranging from the production of biotherapeutics to stem cell therapy. Having confidence in monoclonality in such applications is essential from both research and commercial perspectives, for example, to ensure that data are of high quality and regulatory requirements are met. Consequently, several approaches have been developed to improve confidence in monoclonality. However, ensuring monoclonality using standard well plate formats remains challenging, primarily due to edge effects; the solid wall around a well can prevent a clear view of how many cells might be in a well. We describe a method that eliminates such edge effects: solid confining walls are replaced by transparent fluid ones, and standard low-cost optics can confirm monoclonality.
Collapse
Affiliation(s)
- Cristian Soitu
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Cyril Deroy
- Department of Engineering Science, University of Oxford, Oxford, UK
| | | | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Edmond J Walsh
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Chung MT, Kurabayashi K, Cai D. Single-cell RT-LAMP mRNA detection by integrated droplet sorting and merging. LAB ON A CHIP 2019; 19:2425-2434. [PMID: 31187105 DOI: 10.1039/c9lc00161a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent advances in transcriptomic analysis at single-cell resolution reveal cell-to-cell heterogeneity in a biological sample with unprecedented resolution. Partitioning single cells in individual micro-droplets and harvesting each cell's mRNA molecules for next-generation sequencing has proven to be an effective method for profiling transcriptomes from a large number of cells at high throughput. However, the assays to recover the full transcriptomes are time-consuming in sample preparation and require expensive reagents and sequencing cost. Many biomedical applications, such as pathogen detection, prefer highly sensitive, reliable and low-cost detection of selected genes. Here, we present a droplet-based microfluidic platform that permits seamless on-chip droplet sorting and merging, which enables completing multi-step reaction assays within a short time. By sequentially adding lysis buffers and reactant mixtures to micro-droplet reactors, we developed a novel workflow of single-cell reverse transcription loop-mediated-isothermal amplification (scRT-LAMP) to quantify specific mRNA expression levels in different cell types within one hour. Including single cell encapsulation, sorting, lysing, reactant addition, and quantitative mRNA detection, the fully on-chip workflow provides a rapid, robust, and high-throughput experimental approach for a wide variety of biomedical studies.
Collapse
Affiliation(s)
- Meng Ting Chung
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105, USA. and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105, USA. and Department of Electrical Engineering and Computer Sci., University of Michigan, Ann Arbor, MI 48105, USA
| | - Dawen Cai
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA. and Biophysics, College of LS&A, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
31
|
Numerical Simulation of Bubble-Liquid Two-Phase Turbulent Flows in Shallow Bioreactor. ENERGIES 2019. [DOI: 10.3390/en12122269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An improved second-order moment bubble-liquid two-phase turbulent model is developed to predict the hydrodynamic characteristics of the shallow bioreactor using two height-to-diameter ratios of H/D = 1.4 and H/D = 2.9. The two-phase hydrodynamic parameters, the bubble normal and shear stress, the bubble energy dissipation rate, the bubble turbulent kinetic energy, etc. were numerically simulated. These parameters increased along with flow direction and constituted a threat to cells living at far distance away from the gas jetting inlet regions, rather than a finding of higher cell damage at near the jetting inlet region, as reported by Babosa et al. 2003. A new correlation named the turbulent energy production of bubble-liquid two-phase flow was proposed to successfully verify this experimental observation. A smaller H/D ratio makes more contributions to the generation of lower turbulent energy productions, which are in favor of the alleviation of cell damage. The extremely long and narrow shape of the bioreactor is deteriorative for cell living.
Collapse
|
32
|
Nan L, Yang Z, Lyu H, Lau KYY, Shum HC. A Microfluidic System for One-Chip Harvesting of Single-Cell-Laden Hydrogels in Culture Medium. ACTA ACUST UNITED AC 2019; 3:e1900076. [PMID: 32648695 DOI: 10.1002/adbi.201900076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/27/2019] [Indexed: 12/28/2022]
Abstract
Single-cell analysis has shown great potential to fully quantify the distribution of cellular behaviors among a population of individuals. Through isolation and preservation of single cells in the aqueous phase, droplet encapsulation followed by gelation enables high-throughput analysis in biocompatible microgels. However, the lack of control over the number of cells encapsulated and complicated gelation processes significantly limit its efficiency. Here, a microfluidic system for one-chip harvesting of single-cell-laden microgels is presented. Through ultraviolet irradiation, an on-chip gelation technique is seamlessly combined with droplet generation to realize high-throughput fabrication of microscale hydrogels in microfluidic channel. Moreover, a sorting module is introduced to simultaneously complete cell-laden microgel selection and transfer into culture medium. To demonstrate the efficiency of this method, two types of single cells are respectively encapsulated and collected, showing desirable single-cell encapsulation and cell viability. This technique realizes integrated droplet gelation, microgel sorting, and transfer into culture medium, allowing high-throughput analysis of single cells and comprehensive understanding of the cellular specificity.
Collapse
Affiliation(s)
- Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhenyu Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hao Lyu
- School of Chemical Engineering, Sichuan University, Chengdu, 610207, China
| | - Kitty Yu Yeung Lau
- Medical Engineering Programme, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
33
|
Park KJJ, Kim J, Testoff T, Adams J, Poklar M, Zborowski M, Venere M, Chalmers JJ. Quantitative characterization of the regulation of iron metabolism in glioblastoma stem-like cells using magnetophoresis. Biotechnol Bioeng 2019; 116:1644-1655. [PMID: 30906984 DOI: 10.1002/bit.26973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 01/10/2023]
Abstract
This study focuses on different iron regulation mechanisms of glioblastoma (GBM) cancer stem-like cells (CSCs) and non-stem tumor cells (NSTCs) using multiple approaches: cell viability, density, and magnetophoresis. GBM CSCs and NSTCs were exposed to elevated iron concentration, and their magnetic susceptibility was measured using single cell magnetophoresis (SCM), which tracks the magnetic and settling velocities of thousands of individual cells passing through the magnetic field with a constant energy gradient. Our results consistently demonstrate that GBM NSTCs have higher magnetic susceptibility distribution at increased iron concentration compared with CSCs, and we speculate that it is because CSCs have the ability to store a high amount of iron in ferritin, whereas the free iron ions inside the NSTCs lead to higher magnetic susceptibility and reduced cell viability and growth. Further, their difference in magnetic susceptibility has led us to pursue a separate experiment using a quadrupole magnetic separator (QMS), a novel microfluidic device that uses a concentric channel and permanent magnets in a special configuration to separate samples based on their magnetic susceptibilities. GBM CSCs and NSTCs were exposed to elevated iron concentration, stained with two different trackers, mixed and introduced into QMS; subsequently, the separated fractions were analyzed by fluorescent microscopy. The separation results portray a successful label-less magnetic separation of the two populations.
Collapse
Affiliation(s)
- Kyoung-Joo J Park
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - James Kim
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Thomas Testoff
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Joseph Adams
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Miranda Poklar
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Maciej Zborowski
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Monica Venere
- Department of Radiation Oncology and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jeffrey J Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
34
|
Kim J, Gómez-Pastora J, Weigand M, Potgieter M, A Walters N, Reátegui E, F Palmer A, Yazer M, Zborowski M, Chalmers JJ. A Subpopulation of Monocytes in Normal Human Blood Has Significant Magnetic Susceptibility: Quantification and Potential Implications. Cytometry A 2019; 95:478-487. [PMID: 30958642 DOI: 10.1002/cyto.a.23755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
Abstract
The presence of iron in circulating monocytes is well known as they play essential roles in iron recycling. Also, the storage of this metal as well as its incorrect uptake and/or release are important data to diagnose different pathologies. It has been demonstrated that iron storage in human blood cells can be measured through their magnetic behavior with high accuracy; however, the magnetic characteristics of monocytes have not been reported so far to the best of our knowledge. Therefore, in this work, we report, for the first time, the physical and magnetic properties of human monocytes, along with plasma platelets, oxyhemoglobin red blood cells (oxyHb-RBCs), and methemoglobin red blood cells (metHb-RBCs). The different cell populations were separated by Ficoll-density gradient centrifugation, followed by a flow sorting step to isolate monocytes from peripheral blood mononuclear cells. The different fractions were analyzed by Coulter Counter (for determining the size distribution and concentration) and the sorted monocytes were qualitatively analyzed on ImageStream, a state-of-the-art imaging cytometer. The analysis of the Coulter Counter and ImageStream data suggests that although there exists contamination in the monocyte fraction, the integrity of the sorted monocytes appears to be intact and the concentration was high enough to precisely measure their magnetic velocity by Cell Tracking Velocimetry. Surprisingly, monocytes reported the highest magnetic mobility from the four fractions under analysis, with an average magnetic velocity 7.8 times higher than MetHb-RBCs, which is the only type of cells with positive magnetic velocities. This value is equivalent to a susceptibility 2.5 times higher than the value reported by fresh MetHb-RBCs. It should be noted that this is the first study that reports that a subpopulation of human monocytes is much more magnetic than MetHb-RBCs, opening the door to the possible isolation of human monocytes by label-free magnetic techniques. Further, it is suggested that these magnetic monocytes could "contaminate" positively selected, immunomagnetically labeled blood cells (i.e., during a process using magnetically conjugated antibodies targeting cells, such as CD34 positive cells). Conversely, these magnetic monocytes could be inadvertently removed from a desired blood population when one is using a negative magnetic isolation technique to target cells for removal. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- James Kim
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jenifer Gómez-Pastora
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Mitchell Weigand
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Marnie Potgieter
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Nicole A Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Mark Yazer
- Department of Pathology, University of Pittsburgh and The Institute for Transfusion Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maciej Zborowski
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Jeffrey J Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
35
|
Kim J, Weigand M, Palmer AF, Zborowski M, Yazer MH, Chalmers JJ. Single cell analysis of aged RBCs: quantitative analysis of the aged cells and byproducts. Analyst 2019; 144:935-942. [PMID: 30617361 PMCID: PMC6506859 DOI: 10.1039/c8an01904e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study initially focused on characterizing the aging process of red blood cells by correlating the loss of hemoglobin and the translocation of phosphatidylserine (PS) in expired human red blood cells, hRBCs. Five pre-storage, leukoreduced hRBC units in AS-5 solution were stored between 1 and 6 °C for 42 days. Aliquots from each of these units were stained with Annexin-V FLUOS, which binds to externalized PS, and the hemoglobin within the cells was placed in a methemoglobin state with sodium nitrite, metHb. These aliquots were subsequently sorted into four sub-populations, ranging from no PS expression to high PS expression using a BD FACS ARIAIII. Each of these sub-fractions were introduced into the cell tracking velocimetry apparatus which measured both the magnetically-induced and the gravity-induced velocity. Subsequently, the samples were removed from the cell tracking velocimetry instrument and characterized using the Multisizer 4e Coulter Counter. From the magnetically-induced velocity, the amount of hemoglobin, in pg Hb per cell can be determined, and using an average value of the density of RBCs, the size can be determined. For the PS negative sub-fraction of RBCs, the size of the RBC was as expected but the average hemoglobin, Hb, content was below the threshold which defines anemia. In contrast, unexpected results were observed with the various levels of expression of PS. First, virtually all of the PS expressing cells were significantly smaller, on the order of 1 micron, than a normal RBC after 42 days of storage; yet the density of these small cells/microvesicles was such that they had settling velocities similar to normal-sized RBCs. Further, while the total amount of Hb per small cell/microvesicle was only approximately 25% of the full-sized RBCs, the volume of these small cells/microvesicles is only 1/200 of the PS negative RBCs. This suggests that these PS expressing cells are shrunken RBCs, or shrunken microvesicles from RBCs that concentrated the Hb internally. These results suggest not only a relationship between the loss of hemoglobin and the amount of PS exposed on the cellular outer wall, but also a mechanism by which these aged RBCs break down. It is not known at this time whether this is an artifact of storage or similar mechanisms occur in circulation within the human body.
Collapse
Affiliation(s)
- James Kim
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 320 Koffolt Laboratories, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Scarcelli JJ, Hone M, Beal K, Ortega A, Figueroa B, Starkey JA, Anderson K. Analytical subcloning of a clonal cell line demonstrates cellular heterogeneity that does not impact process consistency or robustness. Biotechnol Prog 2018; 34:602-612. [PMID: 29693321 PMCID: PMC6099511 DOI: 10.1002/btpr.2646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Indexed: 12/20/2022]
Abstract
During development of a cell line intended to support production of an IgG2 monoclonal antibody, a sequence variant caused by a genetic mutation was identified in the bulk drug substance. Gene copy number analysis together with the level of the observed variant in genomic DNA indicated that the master cell bank was a mixed population of cells; some harboring the variant copy and some mutation free. Since the cell bank had been single‐cell cloned, this variant could be used as a biomarker to demonstrate either that the bank was not derived from a single cell, or that the variant was a result of a post‐cloning genetic event, leading to a mixed population of cells. The sequence variant was only present in a small percentage of subclones, confirming the hypothesis that the cell bank was indeed a mixed population. Interrogation of subclones via Southern blot analysis revealed that almost all subclones had very similar transgene integrant structures, suggesting that the cell bank was likely derived from a single cell, and the cellular event that yielded the sequence variant was a post‐cloning event. Further, there were likely several other post‐cloning events that impacted transgene loci, leading to a population of related, yet genetically distinct cells comprising the cell bank. Despite this, the heterogeneous bank performed consistently in a bioprocess across generational age with comparable product quality. These results experimentally demonstrate the heterogeneity of a cell bank derived from a single cell, and its relationship to process consistency. © 2018 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:602–612, 2018
Collapse
Affiliation(s)
- John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Megan Hone
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Kathryn Beal
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Alejaida Ortega
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Bruno Figueroa
- Culture Process Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| | - Jason A Starkey
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, 63017
| | - Karin Anderson
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, 01810
| |
Collapse
|
37
|
Wang H, Xia J, Zheng Z, Zhuang YP, Yi X, Zhang D, Wang P. Hydrodynamic investigation of a novel shear-generating device for the measurement of anchorage-dependent cell adhesion intensity. Bioprocess Biosyst Eng 2018; 41:1371-1382. [DOI: 10.1007/s00449-018-1964-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/05/2018] [Indexed: 01/09/2023]
|
38
|
Quantifying the potential for bursting bubbles to damage suspended cells. Sci Rep 2017; 7:15102. [PMID: 29118382 PMCID: PMC5678173 DOI: 10.1038/s41598-017-14531-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/09/2017] [Indexed: 11/12/2022] Open
Abstract
Bubbles that rise to the surface of a cell suspension can damage cells when they pop. This phenomenon is particularly problematic in the biotechnology industry, as production scale bioreactors require continuous injection of oxygen bubbles to maintain cell growth. Previous studies have linked cell damage to high energy dissipation rates (EDR) and have predicted that for small bubbles the EDR could exceed values that would kill many cells used in bioreactors, including Chinese Hamster Ovary (CHO) cells. However, it’s unclear how many cells would be damaged by a particular bursting bubble, or more precisely how much volume around the bubble experiences these large energy dissipation rates. Here we quantify these volumes using numerical simulations and demonstrate that even though the volume exceeding a particular EDR increases with bubble size, on a volume-to-volume basis smaller bubbles have a more significant impact. We validate our model with high-speed experiments and present our results in a non-dimensionalized framework, enabling predictions for a variety of liquids and bubble sizes. The results are not restricted to bubbles in bioreactors and may be relevant to a variety of applications ranging from fermentation processes to characterizing the stress levels experienced by microorganisms within the sea surface microlayer.
Collapse
|
39
|
Rothbauer M, Frauenlob M, Gutkas K, Fischer MB, Sinner EK, Küpcü S, Ertl P. Development of a Multifunctional Nanobiointerface Based on Self-Assembled Fusion-Protein rSbpA/ZZ for Blood Cell Enrichment and Phenotyping. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34423-34434. [PMID: 28920671 DOI: 10.1021/acsami.7b09041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a multifunctional nanobiointerface for blood cell capture and phenotyping applications that features both excellent antifouling properties and high antibody activity. Multifunctionality is accomplished by modifying polymeric materials using self-assembled S-layer fusion-protein rSbpA/ZZ to immobilize high density antibodies at the two protein A binding sites of the rSbpA/ZZ nanolattice structure. Controlled orientation and alignment of the antibodies reduced antibody consumption 100-fold and increased cell capture efficiency 4-fold over standard methodologies. Cell analysis in complex samples was made possible by the remarkable antifouling properties of the rSbpA domain, while at the same time reducing unspecific binding and forgoing tedious blocking procedures. An automated microfluidic in situ cell analysis platform for isolation and phenotyping of primary peripheral blood mononuclear cells was developed as practical application. Results obtained using our automated microfluidic cell analysis platform showed that the multifunctional nanobiointerface can discriminate among T helper and cytotoxic T cells, and thymocytes. Additionally, on-chip cell capture under flow conditions using a high affinity CD 3 selective nanobiointerface preferentially isolated cells with strong surface marker expression. This means that our dynamic microfluidic cell purification method allows the enrichment of 773 CD 8 positive cytotoxic T cells out of a total blood cell population of 7728 PBMCs, which is an increase in cell enrichment of 8-fold with a purity of 85%.
Collapse
Affiliation(s)
- Mario Rothbauer
- Vienna University of Technology , Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry & Institute of Chemical Technologies and Analytics, Getreidemarkt 9, 1060 Vienna, Austria
| | - Martin Frauenlob
- University of Natural Resources and Life Sciences , Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Karoline Gutkas
- University of Natural Resources and Life Sciences , Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Michael B Fischer
- Department of Life Science and Biomedicine, Danube University Krems , Dr. Karl Dorrekstrasse 30, 3500 Krems, Austria
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University Vienna , Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Eva-Kathrin Sinner
- University of Natural Resources and Life Sciences , Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Seta Küpcü
- University of Natural Resources and Life Sciences , Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Peter Ertl
- Vienna University of Technology , Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry & Institute of Chemical Technologies and Analytics, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
40
|
Kasuga K, Katoh Y, Nagase K, Igarashi K. Microproteomics with microfluidic-based cell sorting: Application to 1000 and 100 immune cells. Proteomics 2017; 17. [PMID: 28556466 PMCID: PMC5600086 DOI: 10.1002/pmic.201600420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
Abstract
Ultimately, cell biology seeks to define molecular mechanisms underlying cellular functions. However, heterogeneity within cell populations must be considered for optimal assay design and data interpretation. Although single-cell analyses are desirable for addressing this issue, practical considerations, including assay sensitivity, limit their broad application. Therefore, omics studies on small numbers of cells in defined subpopulations represent a viable alternative for elucidating cell functions at the molecular level. MS-based proteomics allows in-depth proteome exploration, although analyses of small numbers of cells have not been pursued due to loss during the multistep procedure involved. Thus, optimization of the proteomics workflow to facilitate the analysis of rare cells would be useful. Here, we report a microproteomics workflow for limited numbers of immune cells using non-damaging, microfluidic chip-based cell sorting and MS-based proteomics. Samples of 1000 or 100 THP-1 cells were sorted, and after enzymatic digestion, peptide mixtures were subjected to nano-LC-MS analysis. We achieved reasonable proteome coverage from as few as 100-sorted cells, and the data obtained from 1000-sorted cells were as comprehensive as those obtained using 1 μg of whole cell lysate. With further refinement, our approach could be useful for studying cell subpopulations or limited samples, such as clinical specimens.
Collapse
Affiliation(s)
- Kie Kasuga
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.,Division of Medical Sciences, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yasutake Katoh
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keisuke Nagase
- Division of Medical Sciences, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
41
|
Varma S, Fendyur A, Box A, Voldman J. Multiplexed Cell-Based Sensors for Assessing the Impact of Engineered Systems and Methods on Cell Health. Anal Chem 2017; 89:4663-4670. [DOI: 10.1021/acs.analchem.7b00256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Andrew Box
- Cytometry
Shared Resource Laboratory, Stowers Institute for Medical Research, Kansas
City, Missouri 64110, United States
| | | |
Collapse
|
42
|
Attayek PJ, Hunsucker SA, Sims CE, Allbritton NL, Armistead PM. Identification and isolation of antigen-specific cytotoxic T lymphocytes with an automated microraft sorting system. Integr Biol (Camb) 2016; 8:1208-1220. [PMID: 27853786 PMCID: PMC5138107 DOI: 10.1039/c6ib00168h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The simultaneous measurement of T cell function with recovery of individual T cells would greatly facilitate characterizing antigen-specific responses both in vivo and in model systems. We have developed a microraft array methodology that automatically measures the ability of individual T cells to kill a population of target cells and viably sorts specific cells into a 96-well plate for expansion. A human T cell culture was generated against the influenza M1p antigen. Individual microrafts on a 70 × 70 array were loaded with on average 1 CD8+ cell from the culture and a population of M1p presenting target cells. Target cell killing, measured by fluorescence microscopy, was quantified in each microraft. The rates of target cell death among the individual CD8+ T cells varied greatly; however, individual T cells maintained their rates of cytotoxicity throughout the time course of the experiment enabling rapid identification of highly cytotoxic CD8+ T cells. Microrafts with highly active CD8+ T cells were individually transferred to wells of a 96-well plate, using a needle-release device coupled to the microscope. Three sorted T cells clonally expanded. All of these expressed high-avidity T cell receptors for M1p/HLA*02:01 tetramers, and 2 of the 3 receptors were sequenced. While this study investigated single T cell cytotoxicity rates against simple targets with subsequent cell sorting, future studies will involve measuring T cell mediated cytotoxicity in more complex cellular environments, enlarging the arrays to identify very rare antigen specific T cells, and measuring single cell CD4+ and CD8+ T cell proliferation.
Collapse
Affiliation(s)
- Peter J. Attayek
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh NC
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Nancy L. Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
43
|
Kwee E, Herderick EE, Adams T, Dunn J, Germanowski R, Krakosh F, Boehm C, Monnich J, Powell K, Muschler G. Integrated Colony Imaging, Analysis, and Selection Device for Regenerative Medicine. SLAS Technol 2016; 22:217-223. [PMID: 28095177 DOI: 10.1177/2211068216676587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem and progenitor cells derived from human tissues are being developed as cell sources for cell-based assays and therapies. However, tissue-derived stem and progenitor cells are heterogeneous. Differences in observed clones of stem cells likely reflect important aspects of the underlying state of the source cells, as well as future potency for cell therapies. This paper describes a colony analysis and picking device that provides quantitative analysis of heterogeneous cell populations and precise tools for cell picking for research or biomanufacturing applications. We describe an integrated robotic system that enables image acquisition and automated image analysis to be coupled with rapid automated selection of individual colonies in adherent cell cultures. Other automated systems have demonstrated feasibility with picking from semisolid media or off feeder layers. We demonstrate the capability to pick adherent bone-derived stem cells from tissue culture plastic. Cells are efficiently picked from a target site and transferred to a recipient well plate. Cells demonstrate viability and adherence and maintain biologic potential for surface markers CD73 and CD90 based on phase contrast and fluorescence imaging 6 days after transfer. Methods developed here can be applied to the study of other stem cell types and automated culture of cells.
Collapse
Affiliation(s)
- Edward Kwee
- 1 Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA.,2 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Thomas Adams
- 4 Parker Hannifin Electromechanical, Irwin, PA, USA
| | - James Dunn
- 4 Parker Hannifin Electromechanical, Irwin, PA, USA
| | | | | | - Cynthia Boehm
- 1 Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | | | - Kimerly Powell
- 5 Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - George Muschler
- 1 Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
44
|
Ultra scale-down approaches to enhance the creation of bioprocesses at scale: impacts of process shear stress and early recovery stages. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Welker C, Handgretinger R, Schilbach K. Isolation and Ex Vivo Culture of Vδ1+CD4+γδ T Cells, an Extrathymic αβT-cell Progenitor. J Vis Exp 2015:e53482. [PMID: 26709831 DOI: 10.3791/53482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The thymus, the primary organ for the generation of αβ T cells and backbone of the adaptive immune system in vertebrates, has long been considered as the only source of αβT cells. Yet, thymic involution begins early in life leading to a drastically reduced output of naïve αβT cells into the periphery. Nevertheless, even centenarians can build immunity against newly acquired pathogens. Recent research suggests extrathymic αβT cell development, however our understanding of pathways that may compensate for thymic loss of function are still rudimental. γδ T cells are innate lymphocytes that constitute the main T-cell subset in the tissues. We recently ascribed a so far unappreciated outstanding function to a γδ T cell subset by showing that the scarce entity of CD4(+) Vδ1(+)γδ T cells can transdifferentiate into αβT cells in inflammatory conditions. Here, we provide the protocol for the isolation of this progenitor from peripheral blood and its subsequent cultivation. Vδ1 cells are positively enriched from PBMCs of healthy human donors using magnetic beads, followed by a second step wherein we target the scarce fraction of CD4(+) cells with a further magnetic labeling technique. The magnetic force of the second labeling exceeds the one of the first magnetic label, and thus allows the efficient, quantitative and specific positive isolation of the population of interest. We then introduce the technique and culture condition required for cloning and efficiently expanding the cells and for identification of the generated clones by FACS analysis. Thus, we provide a detailed protocol for the purification, culture and ex vivo expansion of CD4(+) Vδ1(+)γδ T cells. This knowledge is prerequisite for studies that relate to this αβT cell progenitor`s biology and for those who aim to identify the molecular triggers that are involved in its transdifferentiation.
Collapse
Affiliation(s)
- Christian Welker
- Deptartment of Hematology and Oncology, Children's University Hospital Tübingen
| | | | - Karin Schilbach
- Deptartment of Hematology and Oncology, Children's University Hospital Tübingen;
| |
Collapse
|
46
|
Ma S, Huck WTS, Balabani S. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing. LAB ON A CHIP 2015; 15:4291-4301. [PMID: 26394745 DOI: 10.1039/c5lc00693g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Water-in-oil-in-water (w/o/w) microfluidics double emulsions offer a new route to compartmentalise reagents into isolated aqueous microenvironments while maintaining an aqueous carrier fluid phase; this enables compatibility with commercial flow cytometry systems such as fluorescence-activated cell sorting (FACS). Double emulsion (inner core) deformation under hydrodynamic focusing conditions that mimic the environment double emulsions experience in flow cytometry applications is of particular importance for droplet stability and cell viability. This paper reports on an experimental study of the dynamic deformation of aqueous cores of w/o/w double emulsions under hydrodynamic focusing, with the sheath flow directed at 45° to the sample flow. A number of factors affecting the inner core deformation and recovery were examined. Deformation was found to depend significantly on the core or shell viscosity, the droplet-to-sheath flow velocity ratio, and core and shell sizes. Core deformation was found to depend more on the type of surfactant rather concentration with high molecular weight surfactant exhibiting a negligible effect on deformation whereas low molecular weight surfactant enhancing deformation at low concentrations due to their lateral mobility at the interface.
Collapse
Affiliation(s)
- Shaohua Ma
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK and Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Wilhelm T S Huck
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK and Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| | - Stavroula Balabani
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
47
|
Chalmers JJ. Mixing, aeration and cell damage, 30+ years later: what we learned, how it affected the cell culture industry and what we would like to know more about. Curr Opin Chem Eng 2015. [DOI: 10.1016/j.coche.2015.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P. Technologies for Single-Cell Isolation. Int J Mol Sci 2015; 16:16897-919. [PMID: 26213926 PMCID: PMC4581176 DOI: 10.3390/ijms160816897] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/06/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022] Open
Abstract
The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.
Collapse
Affiliation(s)
- Andre Gross
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
- Cytena GmbH, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
| | - Jonas Schoendube
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
- Cytena GmbH, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
| | - Maximilian Steeb
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
| | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
- Hahn-Schickard, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79110, Germany.
| | - Peter Koltay
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
- Cytena GmbH, Georges-Koehler-Allee 103, Freiburg 79110, Germany.
| |
Collapse
|
49
|
McClure CD, Southall TD. Getting Down to Specifics: Profiling Gene Expression and Protein-DNA Interactions in a Cell Type-Specific Manner. ADVANCES IN GENETICS 2015; 91:103-151. [PMID: 26410031 PMCID: PMC4604662 DOI: 10.1016/bs.adgen.2015.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The majority of multicellular organisms are comprised of an extraordinary range of cell types, with different properties and gene expression profiles. Understanding what makes each cell type unique and how their individual characteristics are attributed are key questions for both developmental and neurobiologists alike. The brain is an excellent example of the cellular diversity expressed in the majority of eukaryotes. The mouse brain comprises of approximately 75 million neurons varying in morphology, electrophysiology, and preferences for synaptic partners. A powerful process in beginning to pick apart the mechanisms that specify individual characteristics of the cell, as well as their fate, is to profile gene expression patterns, chromatin states, and transcriptional networks in a cell type-specific manner, i.e., only profiling the cells of interest in a particular tissue. Depending on the organism, the questions being investigated, and the material available, certain cell type-specific profiling methods are more suitable than others. This chapter reviews the approaches presently available for selecting and isolating specific cell types and evaluates their key features.
Collapse
Affiliation(s)
- Colin D. McClure
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
50
|
Davies OG, Cooper PR, Shelton RM, Smith AJ, Scheven BA. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab 2015; 33:371-82. [PMID: 24997523 DOI: 10.1007/s00774-014-0601-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022]
Abstract
Stem-cell-based therapies provide a biological basis for the regeneration of mineralised tissues. Stem cells isolated from adipose tissue (ADSCs), bone marrow (BMSCs) and dental pulp (DPSCs) have the capacity to form mineralised tissue. However, studies comparing the capacity of ADSCs with BMSCs and DPSCs for mineralised tissue engineering are lacking, and their ability to regenerate dental tissues has not been fully explored. Characterisation of the cells using fluorescence-activated cell sorting and semi-quantitative reverse transcription PCR for MSC markers indicated that they were immunophenotypically similar. Alizarin red (AR) staining and micro-computed tomography (µCT) analyses demonstrated that the osteogenic potential of DPSCs was significantly greater than that of BMSCs and ADSCs. Scanning electron microscopy and AR staining showed that the pattern of mineralisation in DPSC cultures differed from ADSCs and BMSCs, with DPSC cultures lacking defined mineralised nodules and instead forming a diffuse layer of low-density mineral. Dentine matrix components (DMCs) were used to promote dentinogenic differentiation. Their addition to cultures resulted in increased amounts of mineral deposited in all three cultures and significantly increased the density of mineral deposited in BMSC cultures, as determined by µCT analysis. Addition of DMCs also increased the relative gene expression levels of the dentinogenic markers dentine sialophosphoprotein and dentine matrix protein 1 in ADSC and BMSC cultures. In conclusion, DPSCs show the greatest potential to produce a comparatively high volume of mineralised matrix; however, both dentinogenesis and mineral volume was enhanced in ADSC and BMSC cultures by DMCs, suggesting that these cells show promise for regenerative dental therapies.
Collapse
Affiliation(s)
- O G Davies
- School of Dentistry, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN, UK,
| | | | | | | | | |
Collapse
|