1
|
Kim S, Yeop Baek S, Cha C. Bioactive Microgels with Tunable Microenvironment as a 3D Platform to Guide the Complex Physiology of Hepatocellular Carcinoma Spheroids. Chembiochem 2024:e202400482. [PMID: 39226234 DOI: 10.1002/cbic.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Miniaturized three-dimensional tissue models, such as spheroids, have become a highly useful and efficient platform to investigate tumor physiology and explore the effect of chemotherapeutic efficacy over traditional two-dimensional monolayer culture, since they can provide more in-depth analysis, especially in regards to intercellular interactions and diffusion. The development of most tumor spheroids relies on the high proliferative capacity and self-aggregation behavior of tumor cells. However, it often disregards the effect of microenvironmental factors mediated by extracellular matrix, which are indispensable components of tissue structure. In this study, hepatocellular carcinoma (HCC) cells are encapsulated in bioactive microgels consisting of gelatin and hyaluronic acid designed to emulate tumor microenvironment in order to induce hepatic tumor spheroid formation. Two different subtypes of HCC's, HepG2 and Hep3B cell lines, are explored. The physicomechanical and biochemical properties of the microgels, controlled by changing the crosslinking density and polymer composition, are clearly shown to have substantial influence over the formation and spheroid formation. Moreover, the spheroids made from different cells and microgel properties display highly variable chemoresistance effects, further highlighting the importance of microenvironmental factors guiding tumor spheroid physiology.
Collapse
Affiliation(s)
- Suntae Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seung Yeop Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|
2
|
Tan RZ. Tumour Growth Mechanisms Determine Effectiveness of Adaptive Therapy in Glandular Tumours. Interdiscip Sci 2024; 16:73-90. [PMID: 37776475 DOI: 10.1007/s12539-023-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
In cancer treatment, adaptive therapy holds promise for delaying the onset of recurrence through regulating the competition between drug-sensitive and drug-resistant cells. Adaptive therapy has been studied in well-mixed models assuming free mixing of all cells and spatial models considering the interactions of single cells with their immediate adjacent cells. Both models do not reflect the spatial structure in glandular tumours where intra-gland cellular interaction is high, while inter-gland interaction is limited. Here, we use mathematical modelling to study the effects of adaptive therapy on glandular tumours that expand using either glandular fission or invasive growth. A two-dimensional, lattice-based model of sites containing sensitive and resistant cells within individual glands is developed to study the evolution of glandular tumour cells under continuous and adaptive therapies. We found that although both growth models benefit from adaptive therapy's ability to prevent recurrence, invasive growth benefits more from it than fission growth. This difference is due to the migration of daughter cells into neighboring glands that is absent in fission but present in invasive growth. The migration resulted in greater mixing of cells, enhancing competition induced by adaptive therapy. By varying the initial spatial spread and location of the resistant cells within the tumour, we found that modifying the conditions within the resistant cells containing glands affect both fission and invasive growth. However, modifying the conditions surrounding these glands affect invasive growth only. Our work reveals the interplay between growth mechanism and tumour topology in modulating the effectiveness of cancer therapy.
Collapse
Affiliation(s)
- Rui Zhen Tan
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore.
| |
Collapse
|
3
|
Zhao X, Xie N, Zhang H, Zhou W, Ding J. Bacterial Drug Delivery Systems for Cancer Therapy: "Why" and "How". Pharmaceutics 2023; 15:2214. [PMID: 37765183 PMCID: PMC10534357 DOI: 10.3390/pharmaceutics15092214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that endanger human health. However, the use of anticancer drugs is accompanied by a series of side effects. Suitable drug delivery systems can reduce the toxic side effects of drugs and enhance the bioavailability of drugs, among which targeted drug delivery systems are the main development direction of anticancer drug delivery systems. Bacteria is a novel drug delivery system that has shown great potential in cancer therapy because of its tumor-targeting, oncolytic, and immunomodulatory properties. In this review, we systematically describe the reasons why bacteria are suitable carriers of anticancer drugs and the mechanisms by which these advantages arise. Secondly, we outline strategies on how to load drugs onto bacterial carriers. These drug-loading strategies include surface modification and internal modification of bacteria. We focus on the drug-loading strategy because appropriate strategies play a key role in ensuring the stability of the delivery system and improving drug efficacy. Lastly, we also describe the current state of bacterial clinical trials and discuss current challenges. This review summarizes the advantages and various drug-loading strategies of bacteria for cancer therapy and will contribute to the development of bacterial drug delivery systems.
Collapse
Affiliation(s)
- Xiangcheng Zhao
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Nuli Xie
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Hailong Zhang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
- Changsha Jingyi Pharmaceutical Technology Co., Ltd., Changsha 410006, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| |
Collapse
|
4
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Ji H, Jiang Z, Wei C, Ma Y, Zhao J, Wang F, Zhao B, Wang D, Tang D. Intratumoural microbiota: from theory to clinical application. Cell Commun Signal 2023; 21:164. [PMID: 37381018 DOI: 10.1186/s12964-023-01134-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/22/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is a major cause of high morbidity and mortality worldwide. Several environmental, genetic and lifestyle factors are associated with the development of cancer in humans and result in suboptimal treatment. The human microbiota has been implicated in the pathophysiological process of cancer and has been used as a diagnostic, prognostic and risk assessment tool in cancer management. Notably, both extratumoural and intratumoural microbiota are important components of the tumor microenvironment, subtly influencing tumorigenesis, progression, treatment and prognosis. The potential oncogenic mechanisms of action of the intratumoural microbiota include induction of DNA damage, influence on cell signaling pathways and impairment of immune responses. Some naturally occurring or genetically engineered microorganisms can specifically accumulate and replicate in tumors and then initiate various anti-tumor programs, ultimately promoting the therapeutic effect of tumor microbiota and reducing the toxic and side effects of conventional tumor treatments, which may be conducive to the pursuit of accurate cancer treatment. In this review, we summarise evidence revealing the impact of the intratumoural microbiota on cancer occurrence and progress and potential therapeutic and diagnostic applications, which may be a promising novel strategy to inhibit tumor development and enhance therapeutic efficacy. Video Abstract.
Collapse
Affiliation(s)
- Hao Ji
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Chen Wei
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Yichao Ma
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Jiahao Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Fei Wang
- Clinical Medical College, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bin Zhao
- Clinical Medical College, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
6
|
Liu X, Peng S, Tang G, Xu G, Xie Y, Shen D, Zhu M, Huang Y, Wang X, Yu H, Huang M, Luo Y. Fasting-mimicking diet synergizes with ferroptosis against quiescent, chemotherapy-resistant cells. EBioMedicine 2023; 90:104496. [PMID: 36863257 PMCID: PMC9996234 DOI: 10.1016/j.ebiom.2023.104496] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND More than ten randomized clinical trials are being tested to evaluate the efficacy, effectiveness and safety of a fasting-mimicking diet (FMD) combined with different antitumor agents. METHODS UMI-mRNA sequencing, Cell-cycle analysis, Label retention, metabolomics, Multilabeling et al. were used to explore mechanisms. A tandem mRFP-GFP-tagged LC3B, Annexin-V-FITC Apoptosis, TUNEL, H&E, Ki-67 and animal model was used to search for synergistic drugs. FINDINGS Here we showed that fasting or FMD retards tumor growth more effectively but does not increase 5-fluorouracil/oxaliplatin (5-FU/OXA) sensitivity to apoptosis in vitro and in vivo. Mechanistically, we demonstrated that CRC cells would switch from an active proliferative to a slow-cycling state during fasting. Furthermore, metabolomics shows cell proliferation was decreased to survive nutrient stress in vivo, as evidenced by a low level of adenosine and deoxyadenosine monophosphate. CRC cells would decrease proliferation to achieve increased survival and relapse after chemotherapy. In addition, these fasting-induced quiescent cells were more prone to develop drug-tolerant persister (DTP) tumor cells postulated to be responsible for cancer relapse and metastasis. Then, UMI-mRNA sequencing uncovered the ferroptosis pathway as the pathway most influenced by fasting. Combining fasting with ferroptosis inducer treatment leads to tumor inhibition and eradication of quiescent cells by boosting autophagy. INTERPRETATION Our results suggest that ferroptosis could improve the antitumor activity of FMD + chemotherapy and highlight a potential therapeutic opportunity to avoid DTP cells-driven tumor relapse and therapy failure. FUNDING A full list of funding bodies can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| | - Shaoyong Peng
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guannan Tang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Gaopo Xu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yumo Xie
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Dingcheng Shen
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Mingxuan Zhu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yaoyi Huang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Huichuan Yu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Meijin Huang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
7
|
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, Shao ZM. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol 2021; 14:98. [PMID: 34172088 PMCID: PMC8234625 DOI: 10.1186/s13045-021-01103-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Tumors are not only aggregates of malignant cells but also well-organized complex ecosystems. The immunological components within tumors, termed the tumor immune microenvironment (TIME), have long been shown to be strongly related to tumor development, recurrence and metastasis. However, conventional studies that underestimate the potential value of the spatial architecture of the TIME are unable to completely elucidate its complexity. As innovative high-flux and high-dimensional technologies emerge, researchers can more feasibly and accurately detect and depict the spatial architecture of the TIME. These findings have improved our understanding of the complexity and role of the TIME in tumor biology. In this review, we first epitomized some representative emerging technologies in the study of the spatial architecture of the TIME and categorized the description methods used to characterize these structures. Then, we determined the functions of the spatial architecture of the TIME in tumor biology and the effects of the gradient of extracellular nonspecific chemicals (ENSCs) on the TIME. We also discussed the potential clinical value of our understanding of the spatial architectures of the TIME, as well as current limitations and future prospects in this novel field. This review will bring spatial architectures of the TIME, an emerging dimension of tumor ecosystem research, to the attention of more researchers and promote its application in tumor research and clinical practice.
Collapse
Affiliation(s)
- Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei-Jie Dai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Nik Nabil WN, Xi Z, Song Z, Jin L, Zhang XD, Zhou H, De Souza P, Dong Q, Xu H. Towards a Framework for Better Understanding of Quiescent Cancer Cells. Cells 2021; 10:cells10030562. [PMID: 33807533 PMCID: PMC7999675 DOI: 10.3390/cells10030562] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Quiescent cancer cells (QCCs) are cancer cells that are reversibly suspended in G0 phase with the ability to re-enter the cell cycle and initiate tumor growth, and, ultimately, cancer recurrence and metastasis. QCCs are also therapeutically challenging due to their resistance to most conventional cancer treatments that selectively act on proliferating cells. Considering the significant impact of QCCs on cancer progression and treatment, better understanding of appropriate experimental models, and the evaluation of QCCs are key questions in the field that have direct influence on potential pharmacological interventions. Here, this review focuses on existing and emerging preclinical models and detection methods for QCCs and discusses their respective features and scope for application. By providing a framework for selecting appropriate experimental models and investigative methods, the identification of the key players that regulate the survival and activation of QCCs and the development of more effective QCC-targeting therapeutic agents may mitigate the consequences of QCCs.
Collapse
Affiliation(s)
- Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
- Pharmaceutical Services Programme, Ministry of Health, Petaling Jaya 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Zejia Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Paul De Souza
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Correspondence: (Q.D.); (H.X.)
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Correspondence: (Q.D.); (H.X.)
| |
Collapse
|
9
|
Wang D, Wei X, Kalvakolanu DV, Guo B, Zhang L. Perspectives on Oncolytic Salmonella in Cancer Immunotherapy-A Promising Strategy. Front Immunol 2021; 12:615930. [PMID: 33717106 PMCID: PMC7949470 DOI: 10.3389/fimmu.2021.615930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Since the first reported spontaneous regression of tumors in patients with streptococcus infection, cancer biological therapy was born and it evolved into today's immunotherapy over the last century. Although the original strategy was unable to impart maximal therapeutic benefit at the beginning, it laid the foundations for the development of immune checkpoint blockade and CAR-T which are currently used for cancer treatment in the clinics. However, clinical applications have shown that current cancer immunotherapy can cause a series of adverse reactions and are captious for patients with preexisting autoimmune disorders. Salmonellae was first reported to exert antitumor effect in 1935. Until now, numerous studies have proved its potency as an antitumor agent in the near future. In this review, we summarize the currently available data on the antitumor effects of Salmonella, and discussed a possibility of integrating Salmonella into cancer immunotherapy to overcome current obstacles.
Collapse
Affiliation(s)
- Ding Wang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaodong Wei
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V. Kalvakolanu
- Department of Microbiology and Immunology and Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
10
|
Guo Y, Chen Y, Liu X, Min JJ, Tan W, Zheng JH. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium. Cancer Lett 2020; 469:102-110. [DOI: 10.1016/j.canlet.2019.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
|
11
|
Cumsille P, Coronel A, Conca C, Quiñinao C, Escudero C. Proposal of a hybrid approach for tumor progression and tumor-induced angiogenesis. Theor Biol Med Model 2015; 12:13. [PMID: 26133367 PMCID: PMC4509478 DOI: 10.1186/s12976-015-0009-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/12/2015] [Indexed: 11/26/2022] Open
Abstract
One of the main challenges in cancer modelling is to improve the knowledge of tumor progression in areas related to tumor growth, tumor-induced angiogenesis and targeted therapies efficacy. For this purpose, incorporate the expertise from applied mathematicians, biologists and physicians is highly desirable. Despite the existence of a very wide range of models, involving many stages in cancer progression, few models have been proposed to take into account all relevant processes in tumor progression, in particular the effect of systemic treatments and angiogenesis. Composite biological experiments, both in vitro and in vivo, in addition with mathematical modelling can provide a better understanding of theses aspects. In this work we proposed that a rational experimental design associated with mathematical modelling could provide new insights into cancer progression. To accomplish this task, we reviewed mathematical models and cancer biology literature, describing in detail the basic principles of mathematical modelling. We also analyze how experimental data regarding tumor cells proliferation and angiogenesis in vitro may fit with mathematical modelling in order to reconstruct in vivo tumor evolution. Additionally, we explained the mathematical methodology in a comprehensible way in order to facilitate its future use by the scientific community.
Collapse
Affiliation(s)
- Patricio Cumsille
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Campus Fernando May, Av. Andrés Bello s/n, Casilla 447 Chillán, Chile.
- Centre for Biotechnology and Bioengineering, University of Chile, Beaucheff 851, Santiago, Chile.
- Group of Applied Mathematics (GMA), Chillán, Chile.
- Group of Investigation in Tumor Angiogenesis (GIANT), Chillán, Chile.
| | - Aníbal Coronel
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Campus Fernando May, Av. Andrés Bello s/n, Casilla 447 Chillán, Chile.
- Group of Applied Mathematics (GMA), Chillán, Chile.
| | - Carlos Conca
- Centre for Biotechnology and Bioengineering, University of Chile, Beaucheff 851, Santiago, Chile.
- Department of Mathematical Engineering (DIM) and Center for Mathematical Modelling (CMM), University of Chile, (UMI CNRS 2807), Beaucheff 851, Correo 3 Santiago, P.O. Box 170-3, Chile.
| | - Cristóbal Quiñinao
- Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie and Mathematical Neuroscience Team, CIRB, Collège de France, (UMR CNRS 7598), 4 place de Jussieu, Paris, F-75005, France.
| | - Carlos Escudero
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Campus Fernando May, Av. Andrés Bello s/n, Casilla 447 Chillán, Chile.
- Group of Investigation in Tumor Angiogenesis (GIANT), Chillán, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| |
Collapse
|
12
|
Zhang M, Forbes NS. Trg-deficient Salmonella colonize quiescent tumor regions by exclusively penetrating or proliferating. J Control Release 2014; 199:180-9. [PMID: 25523033 DOI: 10.1016/j.jconrel.2014.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/04/2014] [Accepted: 12/13/2014] [Indexed: 01/15/2023]
Abstract
Chemotherapeutics fail to effectively treat tumors because they cannot reach quiescent regions far from blood vessels. Motile Salmonella are an attractive delivery system that could break this therapeutic barrier. However, little is known about the dissemination and tissue penetration of individual bacteria in tumors after intravenous administration. We hypothesized that eliminating the Trg receptor would improve accumulation in tumor quiescence. To test this hypothesis, we deleted the trg gene from nonpathogenic Salmonella. To quantify individual bacterial behavior, we measured tissue penetration in a tumor-on-a-chip device and measured colony localization in mouse tumors using immunofluorescence. In tumors in vitro and in mice, trg(-) Salmonella penetrated farther into tissue than control bacteria. This difference in localization was caused by the inability to sense sugars in well perfused tissue. Three distinct bacterial phenotypes were observed: proliferating, penetrating, and inactive. Large proliferating colonies, containing more than 40% of individual bacteria, only formed less than 60μm from blood vessels. Small colonies, in comparison, were present both near (inactive) and far (penetrating) from vessels. The farthest was 361.2μm from a vessel, demonstrating the ability to target avascular regions. In addition, colonization was most pronounced in poorly vascularized tumor regions. We show that deletion of trg amplifies Salmonella accumulation in quiescent tumor regions, and, for the first time, identify biological processes that control bacterial distribution in tumors. Understanding how Salmonella penetrate tissue, target quiescence and specifically replicate in tumors are essential steps toward creating a tightly controlled, tunable bacterial therapy.
Collapse
Affiliation(s)
- Miaomin Zhang
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Pioneer Valley Life Sciences Institute, Springfield, MA, USA
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Pioneer Valley Life Sciences Institute, Springfield, MA, USA.
| |
Collapse
|
13
|
Thurber GM, Reiner T, Yang KS, Kohler RH, Weissleder R. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors. Mol Cancer Ther 2014; 13:986-95. [PMID: 24552776 DOI: 10.1158/1535-7163.mct-13-0801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging, given the complex tumor microenvironment including intra- and intertumor heterogeneity. The difficulty in studying this distribution is even more significant for small-molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small-molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model.
Collapse
Affiliation(s)
- Greg M Thurber
- Authors' Affiliations: Center for Systems Biology, Massachusetts General Hospital; and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
14
|
Kasinskas RW, Venkatasubramanian R, Forbes NS. Rapid uptake of glucose and lactate, and not hypoxia, induces apoptosis in three-dimensional tumor tissue culture. Integr Biol (Camb) 2014; 6:399-410. [PMID: 24503640 DOI: 10.1039/c4ib00001c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The spatial arrangement of cellular metabolism in tumor tissue critically affects the treatment of cancer. However, little is known about how diffusion and cellular uptake relate to intracellular metabolism and cell death in three dimensions. To quantify these mechanisms, fluorescent microscopy and multicellular tumor cylindroids were used to measure pH and oxygen profiles, and quantify the distribution of viable, apoptotic and necrotic cells. Spheroid dissociation, enzymatic analysis, and mass spectrometry were used to measure concentration profiles of glucose, lactate and glutamine. A mathematical model was used to integrate these measurements and calculate metabolic rate parameters. It was found that large cylindroids, >500 μm in diameter, contained apoptotic and necrotic cells, whereas small cylindroids contained apoptotic but not necrotic cells. The center of cylindroids was found to be acidic but not hypoxic. From the edge to the center, concentrations of glucose, lactate and glutamine decreased rapidly. Throughout the cell masses lactate was consumed and not produced. These measurements indicate that apoptosis was the primary mechanism of cell death; acidity was not caused by lactic acid; and cell death was caused by depletion of carbon sources and not hypoxia. The mathematical model showed that the transporter enzymes for glucose and lactate were not saturated; oxygen uptake was limited by intracellular metabolism; and oxygen uptake was not limited by membrane-transport or diffusion. Unsaturated transmembrane uptake may be the cause of both proliferative and apoptotic regimes in cancer. These results suggest that transporter enzymes are excellent targets for treating well oxygenated tumors.
Collapse
Affiliation(s)
- Rachel W Kasinskas
- N525 Life Sciences Laboratory, Department of Chemical Engineering, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
15
|
Abstract
Drug delivery systems (DDSs) face several challenges including site-specific delivery, stability, and the programmed release of drugs. Engineered nanoparticle (NP) surfaces with responsive moieties can enhance the efficacy of DDSs for in vitro and in vivo systems. This triggering process can be achieved through both endogenous (biologically controlled release) and exogenous (external stimuli controlled release) activation. In this review, we will highlight recent examples of the use of triggered release strategies of engineered nanomaterials for in vitro and in vivo applications.
Collapse
Affiliation(s)
| | | | | | - Vincent M. Rotello
- Corresponding author at: Department of Chemistry, 710 North Pleasant St., University of Massachusetts, Amherst, MA 01003 USA, Tel.: +1 413 545 058; fax: +1 413 545 4490.
| |
Collapse
|
16
|
Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 2012; 64:200-16. [PMID: 21925556 DOI: 10.1016/j.addr.2011.08.006] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery.
Collapse
Affiliation(s)
- Subinoy Rana
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA-01003, USA
| | | | | | | |
Collapse
|
17
|
Toley BJ, Park J, Kim BJ, Venkatasubramanian R, Maharbiz MM, Forbes NS. Micrometer-scale oxygen delivery rearranges cells and prevents necrosis in tumor tissue in vitro. Biotechnol Prog 2012; 28:515-25. [PMID: 22228537 DOI: 10.1002/btpr.1510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/01/2011] [Indexed: 01/12/2023]
Abstract
Oxygen availability plays a critical role in cancer progression and is correlated with poor prognosis. Despite this connection, the independent effects of oxygen gradients on tumor tissues have not been measured. To address this, we developed an oxygen delivery device that uses microelectrodes to generate oxygen directly underneath three-dimensional tumor cylindroids composed of colon carcinoma cells. The extent of cell death was measured using fluorescence staining. Supplying oxygen for 60 h eliminated the necrotic region typically found in the center of cylindroids despite the continued presence of other nutrient gradients. A mathematical model of cylindroid growth showed that the rate of cell death was more sensitive to oxygen than the growth rate. After oxygenation, a ring of dead cells was observed at the outside edge of cylindroids, and dead cells were observed moving outward from cylindroid centers. This movement suggests that dead cells were pushed by viable cells migrating in response to oxygen gradients, a mechanism that may connect transient oxygen gradients to metastasis formation. These measurements show that oxygen gradients are a primary factor governing cell viability and rearrange cells in tumors.
Collapse
Affiliation(s)
- Bhushan J Toley
- Dept. of Chemical Engineering University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
18
|
In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther 2011; 18:457-66. [PMID: 21436868 PMCID: PMC3117926 DOI: 10.1038/cgt.2011.10] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Motile bacteria can overcome diffusion resistances that substantially reduce the efficacy of standard cancer therapies. Many reports have also recently described the ability of Salmonella to deliver therapeutic molecules to tumors. Despite this potential, little is known about the spatiotemporal dynamics of bacterial accumulation in solid tumors. Ultimately this timing will affect how these microbes are used therapeutically. To determine how bacteria localize, we intravenously injected Salmonella typhimurium into BALB/c mice with 4T1 mammary carcinoma and measured the average bacterial content as a function of time. Immunohistochemistry was used to measure the extent of apoptosis, the average distance of bacteria from tumor vasculature and the location of bacteria in four different regions: the core, transition, body and edge. Bacteria accumulation was also measured in pulmonary and hepatic metastases. The doubling time of bacterial colonies in tumors was measured to be 16.8 h, and colonization was determined to delay tumor growth by 48 h. From 12 and 48 h after injection, the average distance between bacterial colonies and functional vasculature significantly increased from 130 to 310 μm. After 48 h, bacteria migrated away from the tumor edge toward the central core and induced apoptosis. After 96 h, bacteria began to marginate to the tumor transition zone. All observed metastases contained Salmonella and the extent of bacterial colocalization with metastatic tissue was 44% compared with 0.5% with normal liver parenchyma. These results demonstrate that Salmonella can penetrate tumor tissue and can selectively target metastases, two critical characteristics of a targeted cancer therapeutic.
Collapse
|
19
|
Hunnewell MG, Forbes NS. Active and inactive metabolic pathways in tumor spheroids: determination by GC-MS. Biotechnol Prog 2010; 26:789-96. [PMID: 20014107 DOI: 10.1002/btpr.360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Active metabolic pathways in three-dimensional cancer-cell cultures are potential chemotherapeutic targets that would be effective throughout tumors. Chaotic vasculature creates cellular regions in tumors with distinct metabolic behavior that are only present in aggregate cell masses. To quantify cancer cell metabolism, transformed mouse fibroblasts were grown as spheroids and fed isotopically labeled culture medium. Metabolite uptake and production rates were measured as functions of time. Gas chromatography-mass spectrometry was used to quantify the extent of labeling on amino acids present in cytoplasmic extracts. The labeling pattern identified several active and inactive metabolic pathways: Glutaminolysis was found to be active, and malic enzyme and gluconeogenesis were inactive. Transformed cells in spheroids were also found to actively synthesize serine, cysteine, alanine, aspartate, glutamate, and proline; and not synthesize glutamine. The activities of these pathways suggest that cancer cells consume glutamine for biosynthesis and not to provide cellular energy. Determining active metabolic pathways indicates how cells direct carbon flow and may lead to the discovery of novel molecular targets for anticancer therapy.
Collapse
Affiliation(s)
- Michael G Hunnewell
- Dept. of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
20
|
Kim B, Han G, Toley B, Kim CK, Rotello VM, Forbes NS. Tuning payload delivery in tumour cylindroids using gold nanoparticles. NATURE NANOTECHNOLOGY 2010; 5:465-72. [PMID: 20383126 PMCID: PMC2881185 DOI: 10.1038/nnano.2010.58] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/01/2010] [Indexed: 05/15/2023]
Abstract
Nanoparticles have great potential as controllable drug delivery vehicles because of their size and modular functionality. Timing and location are important parameters when optimizing nanoparticles for delivery of chemotherapeutics. Here, we show that gold nanoparticles carrying either fluorescein or doxorubicin molecules move and localize differently in an in vitro three-dimensional model of tumour tissue, depending on whether the nanoparticles are positively or negatively charged. Fluorescence microscopy and mathematical modelling show that uptake, not diffusion, is the dominant mechanism in particle delivery. Our results indicate that positive particles may be more effective for drug delivery because they are taken up to a greater extent by proliferating cells. Negative particles, which diffuse more quickly, may perform better when delivering drugs deep into tissues. An understanding of how surface charge can control tissue penetration and drug release may overcome some of the current limitations in drug delivery.
Collapse
Affiliation(s)
- Byoungjin Kim
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003-9303
| | - Gang Han
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003-9303
| | - Bhushan Toley
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003-9303
| | - Chae-kyu Kim
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003-9303
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003-9303
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003-9303
| |
Collapse
|