1
|
Liu S, Li J, Cheng Q, Duan K, Wang Z, Yan S, Tian S, Wang H, Wu S, Lei X, Yang Y, Ma N. A Single-Step Method for Harvesting Influenza Viral Particles from MDCK Cell Culture Supernatant with High Yield and Effective Impurity Removal. Viruses 2024; 16:768. [PMID: 38793649 PMCID: PMC11125750 DOI: 10.3390/v16050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.
Collapse
Affiliation(s)
- Sixu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Jingqi Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- GenScript (Shanghai) Biotech Co., Ltd., Shanghai 200131, China
| | - Qingtian Cheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Kangyi Duan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Zhan Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Shuang Yan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Shuaishuai Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Hairui Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Qilu Pharmaceutical Co., Ltd., Jinan 250104, China
| | - Shaobin Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing 100176, China
| | - Xinkui Lei
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing 100176, China
| | - Yu Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| |
Collapse
|
2
|
Li F, Liu B, Xiong Y, Zhang Z, Zhang Q, Qiu R, Peng F, Nian X, Wu D, Li X, Liu J, Li Z, Tu H, Wu W, Wang Y, Zhang J, Yang X. Enhanced Downstream Processing for a Cell-Based Avian Influenza (H5N1) Vaccine. Vaccines (Basel) 2024; 12:138. [PMID: 38400122 PMCID: PMC10891636 DOI: 10.3390/vaccines12020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
H5N1 highly pathogenic avian influenza virus (HPAIV) infections pose a significant threat to human health, with a mortality rate of around 50%. Limited global approval of H5N1 HPAIV vaccines, excluding China, prompted the need to address safety concerns related to MDCK cell tumorigenicity. Our objective was to improve vaccine safety by minimizing residual DNA and host cell protein (HCP). We developed a downstream processing method for the cell-based H5N1 HPAIV vaccine, employing CaptoTM Core 700, a multimodal resin, for polishing. Hydrophobic-interaction chromatography (HIC) with polypropylene glycol as a functional group facilitated the reversible binding of virus particles for capture. Following the two-step chromatographic process, virus recovery reached 68.16%. Additionally, HCP and DNA levels were reduced to 2112.60 ng/mL and 6.4 ng/mL, respectively. Western blot, high-performance liquid chromatography (HPLC), and transmission electron microscopy (TEM) confirmed the presence of the required antigen with a spherical shape and appropriate particle size. Overall, our presented two-step downstream process demonstrates potential as an efficient and cost-effective platform technology for cell-based influenza (H5N1 HPAIV) vaccines.
Collapse
Affiliation(s)
- Fang Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Yu Xiong
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Qingmei Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Feixia Peng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Dongping Wu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jing Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Ze Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Hao Tu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Wenyi Wu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Yu Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (F.L.); (B.L.); (Y.X.); (Z.Z.); (Q.Z.); (R.Q.); (F.P.); (X.N.); (D.W.); (X.L.); (J.L.); (Z.L.); (H.T.); (W.W.); (Y.W.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research, Development of Emerging Infectious Diseases, Wuhan 430207, China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan 430207, China
- China National Biotec Group Company Limited, Beijing 100029, China
| |
Collapse
|
3
|
Lothert K, Wolff MW. Affinity and Pseudo-Affinity Membrane Chromatography for Viral Vector and Vaccine Purifications: A Review. MEMBRANES 2023; 13:770. [PMID: 37755191 PMCID: PMC10537005 DOI: 10.3390/membranes13090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Several chromatographic approaches have been established over the last decades for the production of pharmaceutically relevant viruses. Due to the large size of these products compared to other biopharmaceuticals, e.g., proteins, convective flow media have proven to be superior to bead-based resins in terms of process productivity and column capacity. One representative of such convective flow materials is membranes, which can be modified to suit the particular operating principle and are also suitable for economical single-use applications. Among the different membrane variants, affinity surfaces allow for the most selective separation of the target molecule from other components in the feed solution, especially from host cell-derived DNA and proteins. A successful membrane affinity chromatography, however, requires the identification and implementation of ligands, which can be applied economically while at the same time being stable during the process and non-toxic in the case of any leaching. This review summarizes the current evaluation of membrane-based affinity purifications for viruses and virus-like particles, including traditional resin and monolith approaches and the advantages of membrane applications. An overview of potential affinity ligands is given, as well as considerations of suitable affinity platform technologies, e.g., for different virus serotypes, including a description of processes using pseudo-affinity matrices, such as sulfated cellulose membrane adsorbers.
Collapse
Affiliation(s)
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| |
Collapse
|
4
|
Hillebrandt N, Hubbuch J. Size-selective downstream processing of virus particles and non-enveloped virus-like particles. Front Bioeng Biotechnol 2023; 11:1192050. [PMID: 37304136 PMCID: PMC10248422 DOI: 10.3389/fbioe.2023.1192050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Non-enveloped virus-like particles (VLPs) are versatile protein nanoparticles with great potential for biopharmaceutical applications. However, conventional protein downstream processing (DSP) and platform processes are often not easily applicable due to the large size of VLPs and virus particles (VPs) in general. The application of size-selective separation techniques offers to exploit the size difference between VPs and common host-cell impurities. Moreover, size-selective separation techniques offer the potential for wide applicability across different VPs. In this work, basic principles and applications of size-selective separation techniques are reviewed to highlight their potential in DSP of VPs. Finally, specific DSP steps for non-enveloped VLPs and their subunits are reviewed as well as the potential applications and benefits of size-selective separation techniques are shown.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
5
|
Fabrication and Characterization of a Cellulose Monolith-like Particle for Virus Purification. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Gautam S, Xin D, Garcia AP, Spiesschaert B. Single-step rapid chromatographic purification and characterization of clinical stage oncolytic VSV-GP. Front Bioeng Biotechnol 2022; 10:992069. [PMID: 36394051 PMCID: PMC9649487 DOI: 10.3389/fbioe.2022.992069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
Purification of viruses, especially for therapeutic purposes, is a tedious and challenging task. The challenges arise due to the size and surface complexity of the virus particles. VSV-GP is a promising oncolytic virus, which has been approved for phase I clinical trials by the Food and Drug Administration (FDA) of United States and Paul Ehrlich Institute (PEI) of Germany. The virus particles of VSV-GP are larger in size than vectors commonly used for gene therapy (e.g., adenovirus, adeno-associated virus, etc.). The current established proprietary clinical-grade manufacturing process for the purification of VSV-GP encompasses several chromatographic and non-chromatographic steps. In this study, we describe a new single-step purification process for the purification of VSV-GP virus, using cation exchange convective flow column with relatively higher yields. The purified virus was characterized for its quality attributes using TCID50 assay (for viral infectivity), host cell protein contaminant ELISA, SDS-PAGE, size exclusion chromatography (SEC), and cryo-electron microscopy. Furthermore, the purified viral therapeutic material was tested in vivo for its efficacy and safety. All these characterization methods demonstrated a therapeutic virus preparation of high purity and yield, which can be readily used for various studies.
Collapse
Affiliation(s)
- Saurabh Gautam
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- ViraTherapeutics GmbH, Rum, Austria
| | - Dongyue Xin
- Boehringer Ingelheim Pharmaceutical, Inc., Ridgefield, CT, United States
| | - Alan Pardo Garcia
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- ViraTherapeutics GmbH, Rum, Austria
| | - Bart Spiesschaert
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- ViraTherapeutics GmbH, Rum, Austria
| |
Collapse
|
7
|
Continuous purification of influenza A virus particles using pseudo-affinity membrane chromatography. J Biotechnol 2021; 342:139-148. [PMID: 34678401 DOI: 10.1016/j.jbiotec.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Robust and flexible continuous unit operations that enable the establishment of intensified bioprocesses is one of the most relevant trends in manufacturing of biopharmaceuticals, including virus-based products. Sulfated cellulose membrane adsorbers (SCMA) are one of the most promising matrices for chromatographic purification of virus particles, like influenza viruses. Here, a three 'column' periodical counter current set-up was used to continuously purify influenza A/PR/8/34 virus particles using SCMA in bind-elute mode. It was possible to recover 67.4% of the HA-activity and to remove 67.4% and 99.8% of the total protein and DNA, respectively. The performance of the continuous process operated over a total of 10 loops, was slightly inferior to was obtained in a comparable batch process. Nevertheless, it was possible to increase the effective usage of binding capacity to 80%, resulting on a productivity of 22.8 kHAU mlmemb-1 min-1. As a proof-of-principle, SCMA were successfully used as matrix for purification of cell-derived influenza virus particles, in continuous mode.
Collapse
|
8
|
Fei C, Gao J, Fei C, Ma L, Zhu W, He L, Wu Y, Song S, Li W, Zhou J, Liao G. A flow-through chromatography purification process for Vero cell-derived influenza virus (H7N9). J Virol Methods 2021; 301:114408. [PMID: 34896455 DOI: 10.1016/j.jviromet.2021.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
Immunization is the most effective way to respond to an influenza epidemic. To produce Vero cell-derived influenza vaccines, a more efficient, stable and economical purification process is required. In this study, we purified the H7N9 influenza virus grown in Vero cells that were cultured in a serum-free medium by using a combination of anion exchange chromatography (AEC) and ligand-activated core chromatography (LCC), which avoids the virus capture step. After purification, 99.95 % host cell DNA (hcDNA) (final concentration: 28.69 pg/dose) and 98.87 % host cell protein (HCP) (final concentration: 28.28 ng/dose) were removed. The albumin content was 11.36 ng/dose. All these remnants met the current Chinese Pharmacopoeia and WHO requirements. The final virus recovery rate was 58.74 %, with the concentration of hemagglutinin recorded at 132.12 μg/mL. The flow-through chromatography purification process represents an alternative to the existing processes for cell-derived influenza viruses and might be suitable for the purification of other viruses as well.
Collapse
Affiliation(s)
- ChengRui Fei
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - JingXia Gao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - ChengHua Fei
- Kunming Maternal and Child Health Hospital, 650031, China
| | - Lei Ma
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - WenYong Zhu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - LingYu He
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - YaNan Wu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - ShaoHui Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - WeiDong Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Jian Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| | - GuoYang Liao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
9
|
Bissinger T, Wu Y, Marichal-Gallardo P, Riedel D, Liu X, Genzel Y, Tan WS, Reichl U. Towards integrated production of an influenza A vaccine candidate with MDCK suspension cells. Biotechnol Bioeng 2021; 118:3996-4013. [PMID: 34219217 DOI: 10.1002/bit.27876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Seasonal influenza epidemics occur both in northern and southern hemispheres every year. Despite the differences in influenza virus surface antigens and virulence of seasonal subtypes, manufacturers are well-adapted to respond to this periodical vaccine demand. Due to decades of influenza virus research, the development of new influenza vaccines is relatively straight forward. In similarity with the ongoing coronavirus disease 2019 pandemic, vaccine manufacturing is a major bottleneck for a rapid supply of the billions of doses required worldwide. In particular, egg-based vaccine production would be difficult to schedule and shortages of other egg-based vaccines with high demands also have to be anticipated. Cell culture-based production systems enable the manufacturing of large amounts of vaccines within a short time frame and expand significantly our options to respond to pandemics and emerging viral diseases. In this study, we present an integrated process for the production of inactivated influenza A virus vaccines based on a Madin-Darby Canine Kidney (MDCK) suspension cell line cultivated in a chemically defined medium. Very high titers of 3.6 log10 (HAU/100 µl) were achieved using fast-growing MDCK cells at concentrations up to 9.5 × 106 cells/ml infected with influenza A/PR/8/34 H1N1 virus in 1 L stirred tank bioreactors. A combination of membrane-based steric-exclusion chromatography followed by pseudo-affinity chromatography with a sulfated cellulose membrane adsorber enabled full recovery for the virus capture step and up to 80% recovery for the virus polishing step. Purified virus particles showed a homogenous size distribution with a mean diameter of 80 nm. Based on a monovalent dose of 15 µg hemagglutinin (single-radial immunodiffusion assay), the level of total protein and host cell DNA was 58 µg and 10 ng, respectively. Furthermore, all process steps can be fully scaled up to industrial quantities for commercial manufacturing of either seasonal or pandemic influenza virus vaccines. Fast production of up to 300 vaccine doses per liter within 4-5 days makes this process competitive not only to other cell-based processes but to egg-based processes as well.
Collapse
Affiliation(s)
- Thomas Bissinger
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yixiao Wu
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Pavel Marichal-Gallardo
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Xuping Liu
- Shanghai BioEngine Sci-Tech Co., Shanghai, China
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai BioEngine Sci-Tech Co., Shanghai, China
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair of Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
11
|
Hein MD, Arora P, Marichal-Gallardo P, Winkler M, Genzel Y, Pöhlmann S, Schughart K, Kupke SY, Reichl U. Cell culture-based production and in vivo characterization of purely clonal defective interfering influenza virus particles. BMC Biol 2021; 19:91. [PMID: 33941189 PMCID: PMC8091782 DOI: 10.1186/s12915-021-01020-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/01/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Infections with influenza A virus (IAV) cause high morbidity and mortality in humans. Additional to vaccination, antiviral drugs are a treatment option. Besides FDA-approved drugs such as oseltamivir or zanamivir, virus-derived defective interfering (DI) particles (DIPs) are considered promising new agents. IAV DIPs typically contain a large internal deletion in one of their eight genomic viral RNA (vRNA) segments. Consequently, DIPs miss the genetic information necessary for replication and can usually only propagate by co-infection with infectious standard virus (STV), compensating for their defect. In such a co-infection scenario, DIPs interfere with and suppress STV replication, which constitutes their antiviral potential. RESULTS In the present study, we generated a genetically engineered MDCK suspension cell line for production of a purely clonal DIP preparation that has a large deletion in its segment 1 (DI244) and is not contaminated with infectious STV as egg-derived material. First, the impact of the multiplicity of DIP (MODIP) per cell on DI244 yield was investigated in batch cultivations in shake flasks. Here, the highest interfering efficacy was observed for material produced at a MODIP of 1E-2 using an in vitro interference assay. Results of RT-PCR suggested that DI244 material produced was hardly contaminated with other defective particles. Next, the process was successfully transferred to a stirred tank bioreactor (500 mL working volume) with a yield of 6.0E+8 PFU/mL determined in genetically modified adherent MDCK cells. The produced material was purified and concentrated about 40-fold by membrane-based steric exclusion chromatography (SXC). The DI244 yield was 92.3% with a host cell DNA clearance of 97.1% (99.95% with nuclease digestion prior to SXC) and a total protein reduction of 97.2%. Finally, the DIP material was tested in animal experiments in D2(B6).A2G-Mx1r/r mice. Mice infected with a lethal dose of IAV and treated with DIP material showed a reduced body weight loss and all animals survived. CONCLUSION In summary, experiments not only demonstrated that purely clonal influenza virus DIP preparations can be obtained with high titers from animal cell cultures but confirmed the potential of cell culture-derived DIPs as an antiviral agent.
Collapse
Affiliation(s)
- Marc D Hein
- Otto-von-Guericke-University Magdeburg, Chair of Bioprocess Engineering, Magdeburg, Germany
| | - Prerna Arora
- German Primate Center-Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany.,University Göttingen, Faculty of Biology and Psychology, Göttingen, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Michael Winkler
- German Primate Center-Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany.,University Göttingen, Faculty of Biology and Psychology, Göttingen, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Stefan Pöhlmann
- German Primate Center-Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany.,University Göttingen, Faculty of Biology and Psychology, Göttingen, Germany
| | - Klaus Schughart
- Helmholtz Centre for Infection Research, Department of Infection Genetics, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany.,University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Sascha Y Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Udo Reichl
- Otto-von-Guericke-University Magdeburg, Chair of Bioprocess Engineering, Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
12
|
Development of a downstream process for the production of an inactivated whole hepatitis C virus vaccine. Sci Rep 2020; 10:16261. [PMID: 33004836 PMCID: PMC7530675 DOI: 10.1038/s41598-020-72328-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
There is a large unmet need for a prophylactic hepatitis C virus (HCV) vaccine to control the ongoing epidemic with this deadly pathogen. Many antiviral vaccines employ whole viruses as antigens. For HCV, this approach became feasible following the development of infectious cell culture systems for virus production. However, the lack of efficient downstream processes (DSP) for HCV purification poses a roadblock for the development of a whole virus vaccine. Using cell culture-derived genotype 1a HCV we developed a scalable and efficient DSP train, employing commonly used clarification and ultrafiltration techniques, followed by two membrane-based chromatography steps. For virus capture, steric exclusion chromatography using cellulose membranes was established, resulting in a virtually complete virus recovery with > 99% protein and 84% DNA depletion. Virus polishing was achieved by sulphated cellulose membrane adsorbers with ~ 50% virus recovery and > 99% protein and 90% DNA depletion. Additional nuclease digestion resulted in 99% overall DNA depletion with final DNA concentrations of 2 ng/mL. Process results were comparable for cell culture-derived HCV of another major genotype (5a). This study provides proof-of-concept for establishment of an efficient and economically attractive DSP with potential application for production of an inactivated whole virus vaccine against HCV for human use.
Collapse
|
13
|
Lothert K, Dekevic G, Loewe D, Salzig D, Czermak P, Wolff MW. Upstream and Downstream Processes for Viral Nanoplexes as Vaccines. Methods Mol Biol 2020; 2183:217-248. [PMID: 32959247 DOI: 10.1007/978-1-0716-0795-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The increasing medical interest in viral nanoplexes, such as viruses or virus-like particles used for vaccines, gene therapy products, or oncolytic agents, raises the need for fast and efficient production processes. In general, these processes comprise upstream and downstream processing. For the upstream process, efficiency is mainly characterized by robustly achieving high titer yields, while reducing process times and costs with regard to the cell culture medium, the host cell selection, and the applied process conditions. The downstream part, on the other hand, should effectively remove process-related contaminants, such as host cells/cell debris as well as host cell DNA and proteins, while maintaining product stability and reducing product losses. This chapter outlines a combination of process steps to successfully produce virus particles in the controlled environment of a stirred tank bioreactor, combined with a platform-based purification approach using filtration-based clarification and steric exclusion chromatography. Additionally, suggestions for off-line analytics in terms of virus characterization and quantification as well as for contaminant estimation are provided.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany
| | - Gregor Dekevic
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany
| | - Daniel Loewe
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany.,Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, Giessen, Germany.,Division Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany.
| |
Collapse
|
14
|
Lothert K, Pagallies F, Feger T, Amann R, Wolff MW. Selection of chromatographic methods for the purification of cell culture-derived Orf virus for its application as a vaccine or viral vector. J Biotechnol 2020; 323:62-72. [PMID: 32763261 PMCID: PMC7403136 DOI: 10.1016/j.jbiotec.2020.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/02/2022]
Abstract
Estimation of the isoelectric point and size of Vero cell-derived Orf virus. Limited dynamic binding capacity of tested Orf virus to sulfated cellulose. Purification of Orf virus by steric exclusion chromatography lead to 84 % recovery. Hydrophobic interaction chromatography suitable for Orf virus purification. Promising unit operations for a scalable DSP to produce Orf virus viral vectors.
In recent years, the Orf virus has become a promising tool for protective recombinant vaccines and oncolytic therapy. However, suitable methods for an Orf virus production, including up- and downstream, are very limited. The presented study focuses on downstream processing, describing the evaluation of different chromatographic unit operations. In this context, ion exchange-, pseudo-affinity- and steric exclusion chromatography were employed for the purification of the cell culture-derived Orf virus, aiming at a maximum in virus recovery and contaminant depletion. The most promising chromatographic methods for capturing the virus particles were the steric exclusion- or salt-tolerant anion exchange membrane chromatography, recovering 84 % and 86 % of the infectious virus. Combining the steric exclusion chromatography with a subsequent Capto™ Core 700 resin or hydrophobic interaction membrane chromatography as a secondary chromatographic step, overall virus recoveries of up to 76 % were achieved. Furthermore, a complete cellular protein removal and a host cell DNA depletion of up to 82 % was possible for the steric exclusion membranes and the Capto™ Core 700 combination. The study reveals a range of possible unit operations suited for the chromatographic purification of the cell culture-derived Orf virus, depending on the intended application, i.e. a human or veterinary use, and the required purity.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
15
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
16
|
Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther 2019; 20:451-465. [PMID: 31773998 DOI: 10.1080/14712598.2020.1693541] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of novel complex biotherapeutics led to new challenges in biopharmaceutical industry. The potential of these particles has been demonstrated by the approval of several products, in the different fields of gene therapy, oncolytic therapy, and tumor vaccines. However, their manufacturing still presents challenges related to the high dosages and purity required.Areas covered: The main challenges that biopharmaceutical industry faces today and the most recent developments in the manufacturing of different biotherapeutic particles are reported here. Several unit operations and downstream trains to purify virus, virus-like particles and extracellular vesicles are described. Innovations on the different purification steps are also highlighted with an eye on the implementation of continuous and integrated processes.Expert opinion: Manufacturing platforms that consist of a low number of unit operations, with higher-yielding processes and reduced costs will be highly appreciated by the industry. The pipeline of complex therapeutic particles is expanding and there is a clear need for advanced tools and manufacturing capacity. The use of single-use technologies, as well as continuous integrated operations, are gaining ground in the biopharmaceutical industry and should be supported by more accurate and faster analytical methods.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ricardo J S Silva
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Cristina Peixoto
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| |
Collapse
|
17
|
Use of sulfated cellulose membrane adsorbers for chromatographic purification of cell cultured-derived influenza A and B viruses. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Hydrophobic-interaction chromatography for purification of influenza A and B virus. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:103-117. [DOI: 10.1016/j.jchromb.2019.03.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/17/2022]
|
19
|
B Carvalho S, Fortuna AR, Wolff MW, Peixoto C, M Alves P, Reichl U, JT Carrondo M. Purification of influenza virus-like particles using sulfated cellulose membrane adsorbers. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:1988-1996. [PMID: 30008506 PMCID: PMC6033026 DOI: 10.1002/jctb.5474] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Vaccines based on virus-like particles (VLPs) are an alternative to inactivated viral vaccines that combine good safety profiles with strong immunogenicity. In order to be economically competitive, efficient manufacturing is required, in particular downstream processing, which often accounts for major production costs. This study describes the optimization and establishment of a chromatography capturing technique using sulfated cellulose membrane adsorbers (SCMA) for purification of influenza VLPs. RESULTS Using a design of experiments approach, the critical factors for SCMA performance were described and optimized. For optimal conditions (membrane ligand density: 15.4 µmol cm-2, salt concentration of the loading buffer: 24 mmol L-1 NaCl, and elution buffer: 920 mmol L-1 NaCl, as well as the corresponding flow rates: 0.24 and 1.4 mL min-1), a yield of 80% in the product fraction was obtained. No loss of VLPs was detected in the flowthrough fraction. Removal of total protein and DNA impurities were higher than 89% and 80%, respectively. CONCLUSION Use of SCMA represents a significant improvement compared with conventional ion exchanger membrane adsorbers. As the method proposed is easily scalable and reduces the number of steps required compared with conventional purification methods, SCMA could qualify as a generic platform for purification of VLP-based influenza vaccines. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - A Raquel Fortuna
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Michael W Wolff
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGießenGermany
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Otto von Guericke University MagdeburgMagdeburgGermany
| | - Manuel JT Carrondo
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
| |
Collapse
|
20
|
Purification of cell culture-derived influenza A virus via continuous anion exchange chromatography on monoliths. Vaccine 2018; 36:3153-3160. [DOI: 10.1016/j.vaccine.2017.06.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/18/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023]
|
21
|
Fortuna AR, Taft F, Villain L, Wolff MW, Reichl U. Optimization of cell culture-derived influenza A virus particles purification using sulfated cellulose membrane adsorbers. Eng Life Sci 2017; 18:29-39. [PMID: 32624858 DOI: 10.1002/elsc.201700108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 11/08/2022] Open
Abstract
Downstream processing remains one of the biggest challenges in manufacturing of biologicals and vaccines. This work focuses on a Design of Experiments approach to understand factors influencing the performance of sulfated cellulose membrane adsorbers for the chromatographic purification of a cell culture-derived H1N1 influenza virus strain (A/Puerto Rico/8/34). Membranes with a medium ligand density together with low conductivity and a high virus titer in the feed stream resulted in optimum virus yields and low protein and DNA content in the product fraction. Flow rate and salt concentration in the buffer used for elution were of secondary importance while membrane permeability had no significant impact on separation performance. A virus loss of 2.1% in the flow through, a yield of 57.4% together with a contamination level of 5.1 pgDNA HAU-1 and 1.2 ngprot HAU-1 were experimentally confirmed for the optimal operating point predicted. The critical process parameters identified and their optimal settings should support the optimization of sulfated cellulose membrane adsorbers based purification trains for other influenza virus strains, streamlining cell culture-derived vaccine manufacturing.
Collapse
Affiliation(s)
- Ana Raquel Fortuna
- Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Florian Taft
- R&D Membrane Modification Sartorius Stedim Biotech GmbH Göttingen Germany
| | - Louis Villain
- R&D Membrane Modification Sartorius Stedim Biotech GmbH Göttingen Germany
| | - Michael W Wolff
- Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany.,Institute of Bioprocess Engineering and Pharmaceutical Technology University of Applied Sciences Mittelhessen Gießen Germany
| | - Udo Reichl
- Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany.,Chair of Bioprocess Engineering Otto-von-Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
22
|
Ribeiro DA, Passos DF, Ferraz HC, Castilho LR. Intermediate purification of CHO-derived recombinant human Factor IX using hydrophobic interaction membrane-based chromatography and its comparison to a sulfated resin. Electrophoresis 2017; 38:2900-2908. [DOI: 10.1002/elps.201700226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/26/2017] [Accepted: 08/27/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel A. Ribeiro
- Federal University of Rio de Janeiro (UFRJ), COPPE, Chemical Engineering Program; Rio de Janeiro/RJ Brazil
| | - Douglas F. Passos
- Federal University of Rio de Janeiro (UFRJ), COPPE, Chemical Engineering Program; Rio de Janeiro/RJ Brazil
| | - Helen C. Ferraz
- Federal University of Rio de Janeiro (UFRJ), COPPE, Chemical Engineering Program; Rio de Janeiro/RJ Brazil
| | - Leda R. Castilho
- Federal University of Rio de Janeiro (UFRJ), COPPE, Chemical Engineering Program; Rio de Janeiro/RJ Brazil
| |
Collapse
|
23
|
A fast and efficient purification platform for cell-based influenza viruses by flow-through chromatography. Vaccine 2017; 36:3146-3152. [PMID: 28342667 DOI: 10.1016/j.vaccine.2017.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023]
Abstract
Since newly emerging influenza viruses with pandemic potentials occurred in recent years, the demand for producing pandemic influenza vaccines for human use is high. For the development of a quick and efficient vaccine production, we proposed an efficient purification platform from the harvest to the purified bulk for the cell-based influenza vaccine production. This platform based on flow-through chromatography and filtration steps and the process only involves a few purification steps, including depth filtration, inactivation by formaldehyde, microfiltration, ultrafiltration, anion-exchange and ligand-core chromatography and sterile filtration. In addition, in the proposed chromatography steps, no virus capture steps were employed, and the purification results were not affected by the virus strain variation, host cells and culturing systems. The results from different virus strains which produced by Vero or MDCK cells in different culturing systems also obtained 33-46% HA recovery yields by this platform. The overall removal rates of the protein and DNA concentration in the purified bulk were over 96.1% and 99.7%, respectively. The low residual cellular DNA concentrations were obtained ranged from 30 to 130pg per human dose (15µg/dose). All influenza H5N1 purified bulks met the regulatory requirements for human vaccine use.
Collapse
|
24
|
Marichal-Gallardo P, Pieler MM, Wolff MW, Reichl U. Steric exclusion chromatography for purification of cell culture-derived influenza A virus using regenerated cellulose membranes and polyethylene glycol. J Chromatogr A 2016; 1483:110-119. [PMID: 28069171 DOI: 10.1016/j.chroma.2016.12.076] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/12/2016] [Accepted: 12/27/2016] [Indexed: 01/08/2023]
Abstract
Steric exclusion chromatography has been used for the purification of proteins and bacteriophages using monoliths. The operation is carried out by mixing a crude sample containing the target species with a predetermined concentration and molecular weight of polyethylene glycol (PEG) and loading it onto a non-reactive hydrophilic surface. Product capture occurs by the mutual steric exclusion of PEG between the product and the matrix. Selectivity is significantly influenced by target product size. Product elution is achieved by decreasing the PEG concentration. In this study, a 75cm2 cellulose membrane adsorber was used for the purification of a clarified and inactivated influenza A virus broth produced in a 5L bioreactor using suspension Madin Darby canine kidney cells. Product recovery was above 95% based on hemagglutination activity and single radial immunodiffusion assays. Maximum depletion of double stranded host cell DNA and total protein was 99.7% and 92.4%, respectively. Purified virus particles showed no aggregation with a monodisperse peak around 84nm. 250mL of the clarified inactivated virus broth was purified within 40min. The surface area productivity based on the recovery of the viral hemagglutinin antigen was 28-50mgm-2h-1 depending on the feed and loading conditions.
Collapse
Affiliation(s)
- Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | - Michael M Pieler
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Michael W Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Wiesenstrasse 14, 35390 Gießen, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
25
|
Wang W, Voigt A, Sundmacher K. The interaction of protein-coated bionanoparticles and surface receptors reevaluated: how important is the number of bonds? SOFT MATTER 2016; 12:6451-6462. [PMID: 27411954 DOI: 10.1039/c6sm00995f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Specifically designed bionanoparticles with a function-oriented protein-coating layer interact with self-prepared receptor surfaces as the counterpart. Based on surface plasmon resonance biosensing experiments, a model framework is validated to estimate the number of bonds formed between these bionanoparticles and the receptor surface based on multivalent interactions. Our multi-site kinetic model is able to analyze the adsorption rate constants and the number of bonds from experimental data of natural and synthetic bionanoparticles. The influence of the mass transport on the adsorption kinetics is modeled including a diffusional boundary layer where a helpful analytical solution has been derived. Our model framework extends previous studies to include a higher number of bonds, ranging from 1 up to 1000. An almost linear relationship between the number of bonds and the adsorption amount of bionanoparticles makes the model framework suitable to predict, for example, ligand density and to further assess coating performance. The proposed model framework can serve as a design tool for multivalent interaction experiments under variable process conditions.
Collapse
Affiliation(s)
- Wenjing Wang
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, D-39106 Magdeburg, Germany.
| | | | | |
Collapse
|
26
|
Weigel T, Solomaier T, Wehmeyer S, Peuker A, Wolff MW, Reichl U. A membrane-based purification process for cell culture-derived influenza A virus. J Biotechnol 2015; 220:12-20. [PMID: 26712479 DOI: 10.1016/j.jbiotec.2015.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/24/2022]
Abstract
A simple membrane-based purification process for cell culture-derived influenza virus was established that relies on only two chromatographic unit operations to achieve the contamination limits required according to regulatory authorities. After clarification and concentration, a pseudo-affinity membrane adsorber (sulfated cellulose, SCMA) was applied for virus capture. The subsequent polishing step consisted of a salt-tolerant anion exchange membrane adsorber (STMA) to bind residual DNA. For the presented process neither a buffer exchange step nor a nuclease step for further DNA digestion were required. As a starting point, a two-salt strategy (including a polyvalent ion) was employed to screen STMA conditions in a 96-well plate format. After optimization on chromatographic laboratory scale, the virus recovery was up to 97% with a residual DNA level below 0.82%. In addition, the STMA was characterized regarding its dynamic binding capacity and the impact of flow rate on yields and contamination levels. Overall, the total virus yield for influenza virus A/PR/8/34 (H1/N1) of this two-step membrane process was 75%, while the protein and the DNA contamination level could be reduced to 24% and at least 0.5%, respectively. With 19.8μg protein and 1.2ng DNA per monovalent dose, this purity level complies with the limits of the European Pharmacopeia for cell culture-derived vaccines for human use. Overall, the presented downstream process might serve as a generic and economic platform technology for production of cell culture-derived viruses and viral vectors.
Collapse
Affiliation(s)
- Thomas Weigel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany.
| | - Thomas Solomaier
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Faculty of Pharmaceutical Biotechnology, Biberach University of Applied Sciences, 88400 Biberach, Germany
| | - Sebastian Wehmeyer
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Department of Biotechnology, Bielefeld University of Applied Sciences, 33615 Bielefeld, Germany
| | - Alessa Peuker
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Michael W Wolff
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
27
|
Serve A, Pieler MM, Benndorf D, Rapp E, Wolff MW, Reichl U. Comparison of Influenza Virus Particle Purification Using Magnetic Sulfated Cellulose Particles with an Established Centrifugation Method for Analytics. Anal Chem 2015; 87:10708-11. [DOI: 10.1021/acs.analchem.5b02681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anja Serve
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Michael Martin Pieler
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Dirk Benndorf
- Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Michael Werner Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
28
|
A flow-through chromatography process for influenza A and B virus purification. J Virol Methods 2014; 207:45-53. [DOI: 10.1016/j.jviromet.2014.06.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022]
|
29
|
Banjac M, Roethl E, Gelhart F, Kramberger P, Jarc BL, Jarc M, Štrancar A, Muster T, Peterka M. Purification of Vero cell derived live replication deficient influenza A and B virus by ion exchange monolith chromatography. Vaccine 2014; 32:2487-92. [DOI: 10.1016/j.vaccine.2014.02.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022]
|
30
|
Kröber T, Wolff M, Hundt B, Seidel-Morgenstern A, Reichl U. Continuous purification of influenza virus using simulated moving bed chromatography. J Chromatogr A 2013; 1307:99-110. [DOI: 10.1016/j.chroma.2013.07.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/16/2022]
|
31
|
Orr V, Zhong L, Moo-Young M, Chou CP. Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv 2013; 31:450-65. [DOI: 10.1016/j.biotechadv.2013.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/20/2013] [Indexed: 01/03/2023]
|
32
|
Abstract
Manufacturing of cell culture-derived virus particles for vaccination and gene therapy is a rapidly growing field in the biopharmaceutical industry. The process involves a number of complex tasks and unit operations ranging from selection of host cells and virus strains for the cultivation in bioreactors to the purification and formulation of the final product. For the majority of cell culture-derived products, efforts focused on maximization of bioreactor yields, whereas design and optimization of downstream processes were often neglected. Owing to this biased focus, downstream procedures today often constitute a bottleneck in various manufacturing processes and account for the majority of the overall production costs. For efficient production methods, particularly in sight of constantly increasing economic pressure within human healthcare systems, highly productive downstream schemes have to be developed. Here, we discuss unit operations and downstream trains to purify virus particles for use as vaccines and vectors for gene therapy.
Collapse
Affiliation(s)
- Michael W Wolf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
33
|
He C, Yang Z, Tong K. Downstream processing of Vero cell-derived human influenza A virus (H1N1) grown in serum-free medium. J Chromatogr A 2011; 1218:5279-85. [DOI: 10.1016/j.chroma.2011.06.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/21/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022]
|
34
|
Iyer G, Ramaswamy S, Asher D, Mehta U, Leahy A, Chung F, Cheng KS. Reduced surface area chromatography for flow-through purification of viruses and virus like particles. J Chromatogr A 2011; 1218:3973-81. [DOI: 10.1016/j.chroma.2011.04.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 11/26/2022]
|
35
|
Ohtaki N, Takahashi H, Kaneko K, Gomi Y, Ishikawa T, Higashi Y, Todokoro M, Kurata T, Sata T, Kojima A. Purification and concentration of non-infectious West Nile virus-like particles and infectious virions using a pseudo-affinity Cellufine Sulfate column. J Virol Methods 2011; 174:131-5. [DOI: 10.1016/j.jviromet.2011.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 02/09/2011] [Accepted: 03/17/2011] [Indexed: 11/15/2022]
|
36
|
Muschin T, Han S, Kanamoto T, Nakashima H, Yoshida T. Synthesis and specific influenza A virus-adsorptive functionality of alkyl curdlan sulfate-coated membrane filter. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24738] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Pulko I, Smrekar V, Podgornik A, Krajnc P. Emulsion templated open porous membranes for protein purification. J Chromatogr A 2011; 1218:2396-401. [DOI: 10.1016/j.chroma.2010.11.069] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 11/25/2022]
|
38
|
Ma H, Burger C, Hsiao BS, Chu B. Ultrafine Polysaccharide Nanofibrous Membranes for Water Purification. Biomacromolecules 2011; 12:970-6. [DOI: 10.1021/bm1013316] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongyang Ma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Christian Burger
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin Chu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
39
|
Wolff MW, Siewert C, Hansen SP, Faber R, Reichl U. Purification of cell culture-derived modified vaccinia ankara virus by pseudo-affinity membrane adsorbers and hydrophobic interaction chromatography. Biotechnol Bioeng 2010; 107:312-20. [PMID: 20506129 DOI: 10.1002/bit.22797] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A purification scheme for cell culture-derived smallpox vaccines based on an orthogonal downstream process of pseudo-affinity membrane adsorbers (MA) and hydrophobic interaction chromatography (HIC) was investigated. The applied pseudo-affinity chromatography, based on reinforced sulfated cellulose and heparin-MA, was optimized in terms of dynamic binding capacities, virus yield and process productivity. HIC was introduced as a subsequent method to further reduce the DNA content. Therefore, two screens were undertaken. First, several HIC ligands were screened for different adsorption behavior between virus particles and DNA. Second, elution from pseudo-affinity MA and adsorption of virus particles onto the hydrophobic interaction matrix was explored by a series of buffers using different ammonium sulfate concentrations. Eventually, variations between different cultivation batches and buffer conditions were investigated.The most promising combination, a sulfated cellulose membrane adsorber with subsequent phenyl HIC resulted in overall virus particle recoveries ranging from 76% to 55% depending on the product batch and applied conditions. On average, 61% of the recovered virus particles were infective within all tested purification schemes and conditions. Final DNA content varied from 0.01% to 2.5% of the starting material and the level of contaminating protein was below 0.1%.
Collapse
Affiliation(s)
- Michael W Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse. 1, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
40
|
Wolff MW, Siewert C, Lehmann S, Hansen SP, Djurup R, Faber R, Reichl U. Capturing of cell culture-derived modified Vaccinia Ankara virus by ion exchange and pseudo-affinity membrane adsorbers. Biotechnol Bioeng 2010; 105:761-9. [PMID: 19891005 DOI: 10.1002/bit.22595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Smallpox is an acute, highly infectious viral disease unique to humans, and responsible for an estimated 300-500 million deaths in the 20th century. Following successful vaccination campaigns through the 19th and 20th centuries, smallpox was declared eradicated by the World Health Organization in 1980. However, the threat of using smallpox as a biological weapon prompted efforts of some governments to produce smallpox vaccines for emergency preparedness. An additional aspect for the interest in smallpox virus is its potential use as a platform technology for vector vaccines. In particular, the latter requires a high safety level for routine applications. IMVAMUNE, a third generation smallpox vaccine based on the attenuated Modified Vaccinia Ankara (MVA) virus, demonstrates superior safety compared to earlier generations and represents therefore an interesting choice as viral vector. Current downstream production processes of Vaccinia virus and MVA are mainly based on labor-intensive centrifugation and filtration methods, requiring expensive nuclease treatment in order to achieve sufficient low host-cell DNA levels for human vaccines. This study compares different ion exchange and pseudo-affinity membrane adsorbers (MA) to capture chicken embryo fibroblast cell-derived MVA-BN after cell homogenization and clarification. In parallel, the overall performance of classical bead-based resin chromatography (Cellufine sulfate and Toyopearl AF-Heparin) was investigated. The two tested pseudo-affinity MA (i.e., sulfated cellulose and heparin) were superior over the applied ion exchange MA in terms of virus yield and contaminant depletion. Furthermore, studies confirmed an expected increase in productivity resulting from the increased volume throughput of MA compared to classical bead-based column chromatography methods. Overall virus recovery was approximately 60% for both pseudo-affinity MA and the Cellufine sulfate resin. Depletion of total protein ranged between 86% and 102% for all tested matrices. Remaining dsDNA in the product fraction varied between 24% and 7% for the pseudo-affinity chromatography materials. Cellufine sulfate and the reinforced sulfated cellulose MA achieved the lowest dsDNA product contamination. Finally, by a combination of pseudo-affinity with anion exchange MA a further reduction of host-cell DNA was achieved.
Collapse
Affiliation(s)
- Michael W Wolff
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Opitz L, Hohlweg J, Reichl U, Wolff MW. Purification of cell culture-derived influenza virus A/Puerto Rico/8/34 by membrane-based immobilized metal affinity chromatography. J Virol Methods 2009; 161:312-6. [PMID: 19591872 DOI: 10.1016/j.jviromet.2009.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/22/2009] [Accepted: 06/29/2009] [Indexed: 11/18/2022]
Abstract
The presented study focuses on the feasibility of immobilized metal affinity chromatography for purification of Madin Darby canine kidney cell culture-derived influenza virus particles. Therefore, influenza virus A/Puerto Rico/8/34 was screened for adsorption to different transition metal ions attached to iminodiacetic acid. Subsequently, capturing of the same virus strain using zinc-modified iminodiacetic acid membrane adsorbers was characterized regarding viral recoveries, host cell nucleic acid and total protein depletion as well as zinc-ion-leaching. In addition, the effect of the imidazole proton pump on virus stability was studied based on the hemagglutination activity. During adsorption in the presence of 1M sodium chloride the majority of virus particles were recovered in the product (64% hemagglutination activity). Host cell nucleic acid and total protein content were reduced to approximately 7 and 26%, respectively. This inexpensive and rapid method was applied reproducibly for influenza virus A/Puerto Rico/8/34 preparations on the laboratory scale. However, preliminary results with other virus strains indicated clearly a strong strain dependency for viral adsorption.
Collapse
Affiliation(s)
- Lars Opitz
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | | | | |
Collapse
|