1
|
Kouzuma S, Fujii K. Biochemical characteristics of cellulose and a green alga degradation by Gilvimarinus japonicas 12-2 T, and its application potential for seaweed saccharification. Biosci Biotechnol Biochem 2018; 82:2198-2204. [PMID: 30198387 DOI: 10.1080/09168451.2018.1516542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cellulose is one of the major constituents of seaweeds, but reports of mechanisms in microbial seaweed degradation in marine environment are limited, in contrast to the multitude of reports for lignocellulose degradation in terrestrial environment. We studied the biochemical characteristics for marine cellulolytic bacterium Gilvimarinus japonicas 12-2T in seaweed degradation. The bacterial strain was found to degrade green and red algae, but not brown algae. It was shown that the bacterial strain employs various polysaccharide hydrolases (endocellulase, agarase, carrageenanase, xylanase, and laminarinase) to degrade seaweed polysaccharides. Electrophoretic analysis and peptide sequencing showed that the major protein bands on the electrophoresis gel were homologous to known glucanases and glycoside hydrolases. A seaweed hydrolysate harvested from the bacterial culture was found useful as a substrate for yeasts to produce ethanol. These findings will provide insights into possible seaweed decomposition mechanisms of Gilvimarinus, and its biotechnological potential for ethanol production from inedible seaweeds.
Collapse
Affiliation(s)
- Shousei Kouzuma
- a Faculty of Agriculture , Yamaguchi University , Yoshida , Japan
| | - Katsuhiko Fujii
- a Faculty of Agriculture , Yamaguchi University , Yoshida , Japan.,b Graduate School of Science and Technology for Innovation , Yamaguchi University , Yoshida , Japan
| |
Collapse
|
2
|
Tan H, Zhao J, Zhang H, Zhai Q, Chen W. Isolation of Low-Abundant Bacteroidales in the Human Intestine and the Analysis of Their Differential Utilization Based on Plant-Derived Polysaccharides. Front Microbiol 2018; 9:1319. [PMID: 29971058 PMCID: PMC6018473 DOI: 10.3389/fmicb.2018.01319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 01/18/2023] Open
Abstract
Bacteroidales are the most abundant Gram-negative bacteria flourished in the human intestine with great underlying benefits to be discovered and developed as the next-generation probiotics. However, the traditional isolation method limits the mining of low-abundant species. In this study, modified selective medium was established using xylan as the sole carbohydrate source to enrich low-abundant species such as Prevotella copri and Bacteroides xylanisolvens from healthy human fecal samples. The growth rate, transcriptomics, and metabolomics profiles of the enriched low-abundant species were then evaluated. The considerable upregulated genes encoding xylan-associated hydrolysis and transportation, along with the increased xylose production detected in the culture of the enriched Bacteroidales strains based on xylan, were considered as positive proof of the feasibility of the modified methodology.
Collapse
Affiliation(s)
- Huizi Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
Sawant SS, Salunke BK, Kim BS. Consolidated bioprocessing for production of polyhydroxyalkanotes from red algae Gelidium amansii. Int J Biol Macromol 2018; 109:1012-1018. [DOI: 10.1016/j.ijbiomac.2017.11.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022]
|
4
|
Yun EJ, Yu S, Kim S, Kim KH. Metabolomic response of a marine bacterium to 3,6-anhydro- l -galactose, the rare sugar from red macroalgae, as the sole carbon source. J Biotechnol 2018; 270:12-20. [DOI: 10.1016/j.jbiotec.2018.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
|
5
|
Jonnadula R, Imran M, Poduval PB, Ghadi SC. Effect of polysaccharide admixtures on expression of multiple polysaccharide-degrading enzymes in Microbulbifer strain CMC-5. ACTA ACUST UNITED AC 2018. [PMID: 29541601 PMCID: PMC5849783 DOI: 10.1016/j.btre.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microbulbifer strain CMC-5 produces agarase, alginate lyase, xylanase, carboxymethyl cellulase and carrageenase. The extracellular production of the above carbohydrases was investigated by growing Microbulbifer strain CMC-5 in a sea water based medium containing homologous/heterologous polysaccharides as a single substrate or as a combination of mixed assorted substrate. Presence of singular homologous polysaccharides in the growth medium induces respective carbohydrase at high levels. Any two polysaccharides in various combinations produced high level of homologous carbohydrase and low level of other heterologous carbohydrase. All five carbohydrases were consistently produced by strain CMC-5, when carboxymethyl cellulose was included as one of the substrate in dual substrate combination, or in presence of mix blends of all five polysaccharides. Interestingly, thalli of Gracilaria sp. that contain agar and cellulose predominantly in their cell wall induces only agarase expression in strain CMC-5.
Collapse
Affiliation(s)
- RaviChand Jonnadula
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403206, India
| | - Md Imran
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403206, India
| | - Preethi B Poduval
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403206, India
| | - Sanjeev C Ghadi
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
6
|
Sawant SS, Tran TK, Salunke BK, Kim BS. Potential of Saccharophagus degradans for production of polyhydroxyalkanoates using cellulose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Brognaro H, Almeida VM, de Araujo EA, Piyadov V, Santos MAM, Marana SR, Polikarpov I. Biochemical Characterization and Low-Resolution SAXS Molecular Envelope of GH1 β-Glycosidase from Saccharophagus degradans. Mol Biotechnol 2017; 58:777-788. [PMID: 27670285 DOI: 10.1007/s12033-016-9977-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The marine bacteria Saccharophagus degradans (also known as Microbulbifer degradans), are rod-shaped and gram-negative motile γ-proteobacteria, capable of both degrading a variety of complex polysaccharides and fermenting monosaccharides into ethanol. In order to obtain insights into structure-function relationships of the enzymes, involved in these biochemical processes, we characterized a S. degradans β-glycosidase from glycoside hydrolase family 1 (SdBgl1B). SdBgl1B has the optimum pH of 6.0 and a melting temperature T m of approximately 50 °C. The enzyme has high specificity toward short D-glucose saccharides with β-linkages with the following preferences β-1,3 > β-1,4 ≫ β-1,6. The enzyme kinetic parameters, obtained using artificial substrates p-β-NPGlu and p-β-NPFuc and also the disaccharides cellobiose, gentiobiose and laminaribiose, revealed SdBgl1B preference for p-β-NPGlu and laminaribiose, which indicates its affinity for glucose and also preference for β-1,3 linkages. To better understand structural basis of the enzyme activity its 3D model was built and analysed. The 3D model fits well into the experimentally retrieved low-resolution SAXS-based envelope of the enzyme, confirming monomeric state of SdBgl1B in solution.
Collapse
Affiliation(s)
- Hevila Brognaro
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Vitor Medeiros Almeida
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, Bloco 10, Sala 1054, São Paulo, SP, 05508-900, Brazil
| | - Evandro Ares de Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Vasily Piyadov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Maria Auxiliadora Morim Santos
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Sandro Roberto Marana
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, Bloco 10, Sala 1054, São Paulo, SP, 05508-900, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil.
| |
Collapse
|
8
|
Nelson CE, Rogowski A, Morland C, Wilhide JA, Gilbert HJ, Gardner JG. Systems analysis in Cellvibrio japonicus resolves predicted redundancy of β-glucosidases and determines essential physiological functions. Mol Microbiol 2017; 104:294-305. [PMID: 28118504 DOI: 10.1111/mmi.13625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/29/2022]
Abstract
Degradation of polysaccharides forms an essential arc in the carbon cycle, provides a percentage of our daily caloric intake, and is a major driver in the renewable chemical industry. Microorganisms proficient at degrading insoluble polysaccharides possess large numbers of carbohydrate active enzymes (CAZymes), many of which have been categorized as functionally redundant. Here we present data that suggests that CAZymes that have overlapping enzymatic activities can have unique, non-overlapping biological functions in the cell. Our comprehensive study to understand cellodextrin utilization in the soil saprophyte Cellvibrio japonicus found that only one of four predicted β-glucosidases is required in a physiological context. Gene deletion analysis indicated that only the cel3B gene product is essential for efficient cellodextrin utilization in C. japonicus and is constitutively expressed at high levels. Interestingly, expression of individual β-glucosidases in Escherichia coli K-12 enabled this non-cellulolytic bacterium to be fully capable of using cellobiose as a sole carbon source. Furthermore, enzyme kinetic studies indicated that the Cel3A enzyme is significantly more active than the Cel3B enzyme on the oligosaccharides but not disaccharides. Our approach for parsing related CAZymes to determine actual physiological roles in the cell can be applied to other polysaccharide-degradation systems.
Collapse
Affiliation(s)
- Cassandra E Nelson
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA
| | - Artur Rogowski
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Carl Morland
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Joshua A Wilhide
- Molecular Characterization and Analysis Complex, University of Maryland - Baltimore County, Maryland, USA
| | - Harry J Gilbert
- Molecular Characterization and Analysis Complex, University of Maryland - Baltimore County, Maryland, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
9
|
GC×GC-TOFMS for the Analysis of Metabolites Produced by Termites (Reticulitermes flavipes) Bred on Different Carbon Sources. SEPARATIONS 2016. [DOI: 10.3390/separations3020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
A laboratory case study of efficient polyhydoxyalkonates production by Bacillus cereus, a contaminant in Saccharophagus degradans ATCC 43961 in minimal sea salt media. Curr Microbiol 2014; 69:832-8. [PMID: 25085545 DOI: 10.1007/s00284-014-0664-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
Abstract
A contaminating bacterium growing along with the stock culture of Saccharophagus degradans ATCC 43961 (Sde 2-40) on marine agar plate was isolated and investigated for its ability to produce polyhydoxyalkonates (PHA). Preliminary screening by Sudan black B and Nile blue A staining indicated positive characteristic of the isolate to produce PHA. The isolate was able to grow and produce PHA in minimal sea salt medium broth. PHA quantification studies with gas chromatographic analyses of the dry cells derived from culture broths revealed accumulation of PHA in bacterial cells. PHA production started after 20 h and increased with cell growth and attained maximum values of 61 % of dry cell weight at 70 h of cultivation. After 70 h, a slight decrease in the level of PHA content was observed. The nature/type of PHA was found to be poly(3-hydroxybutyraye) by Fourier transform-infrared spectroscopy. Microbiological and 16S rRNA gene sequencing analyses suggested that the PHA producing bacterial isolate belongs to Bacillus genera and shows 100 % nucleotide sequence similarity with Bacillus cereus species in GenBank. This study is a first report for ability of Bacillus species to grow in marine sea salt media and produce PHA. The media used for the polymer production was novel in the context of the genus Bacillus and the production of PHA was three-fold higher than Sde 2-40 using same growth medium. This study shows that the contaminant bacteria once properly investigated can be used for advantageous characteristic of metabolites production in place of original cultures.
Collapse
|
11
|
Li Z, Gao L, Wang YT, Zhu W, Ye JL, Li GH. Carbohydrate metabolism changes in Prunus persica gummosis infected with Lasiodiplodia theobromae. PHYTOPATHOLOGY 2014; 104:445-52. [PMID: 24283537 DOI: 10.1094/phyto-01-13-0025-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Peach gummosis represents a significant global disease of stone fruit trees and a major disease in the south peach production area of the Yangtze River of China. In this study, the carbohydrate composition of peach shoots during infection by Lasiodiplodia theobromae was examined. The expression of genes related to metabolic enzymes was also investigated. Control wounded and noninoculated tissue, lesion tissue, and wounded and inoculated surrounding lesion tissue of peach shoots were analyzed. Soluble sugars, glucose, mannose, arabinose, and xylose significantly increased in inoculated tissues of peach shoots compared with control tissues at different times after inoculation. Accumulation of polysaccharides was also observed by section observation and periodic acid Schiff's reagent staining during infection. Analysis using quantitative reverse-transcription polymerase chain reaction revealed that the abundance of key transcripts on the synthesis pathway of uridine diphosphate (UDP)-D-glucuronate, UDP-D-galactose, and UDP-D-arabinose increased but the synthesis of L-galactose and guanosine diphosphate-L-galactose were inhibited. After inoculation, the transcript levels of sugar transport-related genes (namely, SUT, SOT, GMT, and UGT) was induced. These changes in sugar content and gene expression were directly associated with peach gum polysaccharide formation and may be responsible for the symptoms of peach gummosis.
Collapse
|
12
|
Feasibility test of utilizing Saccharophagus degradans 2-40(T) as the source of crude enzyme for the saccharification of lignocellulose. Bioprocess Biosyst Eng 2013; 37:707-10. [PMID: 23990129 DOI: 10.1007/s00449-013-1040-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
In the conversion of lignocellulose into high-value products, including fuels and chemicals, the production of cellulase and the enzymatic hydrolysis for producing fermentable sugar are the largest contributors to the cost of production of the final products. The marine bacterium Saccharophagus degradans 2-40(T) can degrade more than ten different complex polysaccharides found in the ocean, including cellulose and xylan. Accordingly, S. degradans has been actively considered as a practical source of crude enzymes needed for the saccharification of lignocellulose to produce ethanol by others including a leading commercial company. However, the overall enzyme system of S. degradans for hydrolyzing cellulose and hemicellulose has not been quantitatively evaluated yet in comparison with commercial enzymes. In this study, the inductions and activities of cellulase and xylanase of cell-free lysate of S. degradans were investigated. The growth of S. degradans cells and the activities of cellulase and xylanase were promoted by adding 2 % of cellulose and xylan mixture (cellulose:xylan = 4:3 in mass ratio) to the aquarium salt medium supplemented with 0.2 % glucose. The specific cellulase activity of the cell-free lysate of S. degradans, as determined by the filter paper activity assay, was approximately 70 times lower than those of commercial cellulases, including Celluclast 1.5 L and Accellerase 1000. These results imply that significant improvement in the cellulase activity of S. degradans is needed for the industrial uses of S. degradans as the enzyme source.
Collapse
|
13
|
Hwang S, Choi KH, Kim J, Cha J. Biochemical characterization of 4-α-glucanotransferase from Saccharophagus degradans 2-40 and its potential role in glycogen degradation. FEMS Microbiol Lett 2013; 344:145-51. [PMID: 23627584 DOI: 10.1111/1574-6968.12167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/29/2022] Open
Abstract
4-α-Glucanotransferase, an enzyme encoded by malQ, transfers 1,4-α-glucan to an acceptor carbohydrate to produce long linear maltodextrins of varying lengths. To investigate the biochemical characteristics of the malQ gene (Sde0986) from Saccharophagus degradans 2-40 and to understand its physiological role in vivo, the malQ gene was cloned and expressed in Escherichia coli. The amino acid sequence of MalQ was found to be 36-47% identical to that of amylomaltases from gammaproteobacteria. MalQ is a monomeric enzyme that belongs to a family of 77 glycoside hydrolases, with a molecular mass of 104 kDa. The optimal pH and temperature for MalQ toward maltotriose were determined to be 8.5 and 35 °C, respectively. Furthermore, the enzyme displayed glycosyl transfer activity on maltodextrins of various sizes to yield glucose and long linear maltodextrins. MalQ, however, could be distinguished from other bacterial and archaeal amylomaltases in that it did not produce maltose and cyclic glucan. Reverse transcription PCR results showed that malQ was not induced by maltose and was highly expressed in the stationary phase. These data suggest that the main physiological role of malQ in S. degradans is in the degradation of glycogen, although the gene is commonly known to be involved in maltose metabolism in E. coli.
Collapse
Affiliation(s)
- Sungmin Hwang
- The Microbiological Resource Research Institute, Pusan National University, Busan, Korea
| | | | | | | |
Collapse
|
14
|
Chi WJ, Chang YK, Hong SK. Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 2012; 94:917-30. [PMID: 22526785 DOI: 10.1007/s00253-012-4023-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
Abstract
Agar is a mixture of heterogeneous galactans, mainly composed of 3,6-anhydro-L-galactoses (or L-galactose-6-sulfates) D-galactoses and L-galactoses (routinely in the forms of 3,6-anhydro-L-galactoses or L-galactose-6-sulfates) alternately linked by β-(1,4) and α-(1,3) linkages. It is a major component of the cell walls of red algae and has been used in a variety of laboratory and industrial applications, owing to its jellifying properties. Many microorganisms that can hydrolyze and metabolize agar as a carbon and energy source have been identified in seawater and marine sediments. Agarolytic microorganisms commonly produce agarases, which catalyze the hydrolysis of agar. Numerous agarases have been identified in microorganisms of various genera. They are classified according to their cleavage pattern into three types-α-agarase, β-agarase, and β-porphyranase. Although, in a broad sense, many other agarases are involved in complete hydrolysis of agar, most of those identified are β-agarases. In this article we review agarolytic microorganisms and their agar-hydrolyzing systems, covering β-agarases as well as α-agarases, α-neoagarobiose hydrolases, and β-porphyranases, with emphasis on the recent discoveries. We also present an overview of the biochemical and structural characteristics of the various types of agarases. Further, we summarize and compare the agar-hydrolyzing systems of two specific microorganisms: Gram-negative Saccharophagus degradans 2-40 and Gram-positive Streptomyces coelicolor A3(2). We conclude with a brief discussion of the importance of agarases and their possible future application in producing oligosaccharides with various nutraceutical activities and in sustainably generating stock chemicals for biorefinement and bioenergy.
Collapse
Affiliation(s)
- Won-Jae Chi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Korea
| | | | | |
Collapse
|
15
|
Goulitquer S, Potin P, Tonon T. Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. Mar Drugs 2012; 10:849-880. [PMID: 22690147 PMCID: PMC3366679 DOI: 10.3390/md10040849] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/13/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023] Open
Abstract
Marine systems are very diverse and recognized as being sources of a wide range of biomolecules. This review provides an overview of metabolite profiling based on mass spectrometry (MS) approaches in marine organisms and their environments, focusing on recent advances in the field. We also point out some of the technical challenges that need to be overcome in order to increase applications of metabolomics in marine systems, including extraction of chemical compounds from different matrices and data management. Metabolites being important links between genotype and phenotype, we describe added value provided by integration of data from metabolite profiling with other layers of omics, as well as their importance for the development of systems biology approaches in marine systems to study several biological processes, and to analyze interactions between organisms within communities. The growing importance of MS-based metabolomics in chemical ecology studies in marine ecosystems is also illustrated.
Collapse
Affiliation(s)
- Sophie Goulitquer
- Plate-forme MetaboMER, CNRS & UPMC, FR2424, Station Biologique, 29680 Roscoff, France
| | - Philippe Potin
- UMR 7139 Marine Plants and Biomolecules, UPMC Univ Paris 6, Station Biologique, 29680 Roscoff, France; (P.P.); (T.T.)
- UMR 7139 Marine Plants and Biomolecules, CNRS, Station Biologique, 29680 Roscoff, France
| | - Thierry Tonon
- UMR 7139 Marine Plants and Biomolecules, UPMC Univ Paris 6, Station Biologique, 29680 Roscoff, France; (P.P.); (T.T.)
- UMR 7139 Marine Plants and Biomolecules, CNRS, Station Biologique, 29680 Roscoff, France
| |
Collapse
|
16
|
Hutcheson SW, Zhang H, Suvorov M. Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides. Mar Drugs 2011; 9:645-665. [PMID: 21731555 PMCID: PMC3124978 DOI: 10.3390/md9040645] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/01/2011] [Accepted: 04/13/2011] [Indexed: 11/16/2022] Open
Abstract
Saccharophagus degradans 2-40 is a γ-subgroup proteobacterium capable of using many of the complex polysaccharides found in the marine environment for growth. To utilize these complex polysaccharides, this bacterium produces a plethora of carbohydrases dedicated to the processing of a carbohydrate class. Aiding in the identification of the contributing genes and enzymes is the known genome sequence for this bacterium. This review catalogs the genes and enzymes of the S. degradans genome that are likely to function in the systems for the utilization of agar, alginate, α- and β-glucans, chitin, mannans, pectins, and xylans and discusses the cell biology and genetics of each system as it functions to transfer carbon back to the bacterium.
Collapse
Affiliation(s)
- Steven W. Hutcheson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Haitao Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Zymetis, Inc., 387 Technology Drive, College Park, MD 20742, USA; E-Mails: (H.Z.); (M.S.)
| | - Maxim Suvorov
- Zymetis, Inc., 387 Technology Drive, College Park, MD 20742, USA; E-Mails: (H.Z.); (M.S.)
| |
Collapse
|
17
|
Zhang H, Moon YH, Watson BJ, Suvorov M, Santos E, Sinnott CA, Hutcheson SW. Hydrolytic and phosphorolytic metabolism of cellobiose by the marine aerobic bacterium Saccharophagus degradans 2-40T. J Ind Microbiol Biotechnol 2011; 38:1117-25. [PMID: 21327449 DOI: 10.1007/s10295-011-0945-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/21/2011] [Indexed: 11/27/2022]
Abstract
Saccharophagus degradans 2-40 is a marine gamma proteobacterium that can produce polyhydroxyalkanoates from lignocellulosic biomass using a complex cellulolytic system. This bacterium has been annotated to express three surface-associated β-glucosidases (Bgl3C, Ced3A, and Ced3B), two cytoplasmic β-glucosidases (Bgl1A and Bgl1B), and unusual for an aerobic bacterium, two cytoplasmic cellobiose/cellodextrin phosphorylases (Cep94A and Cep94B). Expression of the genes for each of the above enzymes was induced when cells were transferred into a medium containing Avicel as the major carbon source except for Bgl1B. Both hydrolytic and phosphorolytic degradation of cellobiose by crude cell lysates obtained from cellulose-grown cells were demonstrated and all of these activities were cell-associated. With the exception of Cep94B, each purified enzyme exhibited their annotated activity upon cloning and expression in E. coli. The five β-glucosidases hydrolyzed a variety of glucose derivatives containing β-1, (2, 4, or 6) linkages but did not act on any α-linked glucose derivatives. All but one β-glucosidases exhibited transglycosylation activity consistent with the formation of an enzyme-substrate intermediate. The biochemistry and expression of these cellobiases indicate that external hydrolysis by surface-associated β-glucosidases coupled with internal hydrolysis and phosphorolysis are all involved in the metabolism of cellobiose by this bacterium.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yun EJ, Shin MH, Yoon JJ, Kim YJ, Choi IG, Kim KH. Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.07.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Shin MH, Lee DY, Liu KH, Fiehn O, Kim KH. Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Anal Chem 2010; 82:6660-6. [PMID: 20669998 DOI: 10.1021/ac1012656] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolomics is based on the unbiased and global analysis of metabolites of organisms at specific time points. Therefore, the nonselective and reproducible recovery of all existing metabolites while preventing their transformation is the ideal criterion for metabolome sample preparation. We evaluated currently used sampling methods and extraction solvents for global metabolic profiling of a gram-negative bacterium, Saccharophagus degradans, using gas chromatography-time-of-flight mass spectrometry (GC-TOF MS) with an emphasis on three steps: the sampling method, which consisted of cold methanol quenching or fast filtration; the subsequent washing step; and the extraction solvents. After cold methanol quenching with 70% (v/v) methanol at -70 degrees C, washing with 2.3% NaCl produced a serious loss of intracellular metabolites. In addition, when cold methanol quenching and fast filtration were compared, severe cell leakage caused by cold methanol quenching resulted in a significant loss of intracellular metabolites, which was confirmed by spectrometric analysis at 260 and 280 nm. Upon evaluation of extraction solvents such as pure methanol (MeOH), acetonitrile/water (50ACN; 1:1, v/v), acetonitrile/methanol/water mixture (AMW; 2:2:1), and water/isopropanol/methanol (WiPM; 2:2:5). AMW and WiPM were found to be superior extraction solvents for S. degradans based on the total peak intensities of the metabolites, the total number of metabolite peaks, and the reproducibility of recovered metabolite quantities; however, the metabolite profiles differed significantly between AMW and WiPM. This is the first evaluation of each step of sample preparation involved in global scale metabolic analysis by GC-TOF MS, which can be used as a model in the preparation of organism-specific samples for metabolome analysis.
Collapse
Affiliation(s)
- Min Hye Shin
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Global metabolite profiling of agarose degradation by Saccharophagus degradans 2-40. N Biotechnol 2010; 27:156-68. [PMID: 20215059 DOI: 10.1016/j.nbt.2010.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 02/18/2010] [Accepted: 02/28/2010] [Indexed: 11/22/2022]
Abstract
Saccharophagus degradans is a potent degrader of marine and plant cell wall polysaccharides. In particular, it is capable of degrading and metabolizing agarose that is the main component of marine red algae. To understand its degradation and metabolism of agarose along with the agarase expression profile, S. degradans was grown using different carbon sources including galactose, agarose, glucose and cellulose. The metabolite profiling was conducted by using GC-TOF MS and in-house programmed database, BinBase. When the metabolite profiles of cells on galactose and agarose were compared, principal component analysis of 133 identified metabolites revealed clear separations between the groups on galactose and agarose. S. degradans grown on agarose was found to use different carbon catabolic pathways from that grown on other carbon sources. The metabolite profile of cells grown using galactose had increased abundances of glycerol, glycerol derivatives and fatty acids. The use of polysaccharides such as agarose or cellulose led to the increased abundances of amino acids and intermediates of nucleotide biosynthesis.
Collapse
|