1
|
Wang N, Xu B, Wang X, Lang J, Zhang H. Chemical and Structural Elucidation of Lignin and Cellulose Isolated Using DES from Bagasse Based on Alkaline and Hydrothermal Pretreatment. Polymers (Basel) 2022; 14:2756. [PMID: 35890532 PMCID: PMC9325185 DOI: 10.3390/polym14142756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
The separation of cellulose, hemicellulose, and lignin components using deep eutectic solvent, which is a green solvent, to obtain corresponding chemicals can realize the effective separation and high-value utilization of these components at low cost. In this study, we used waste biomass sugarcane bagasse as the raw material, choline chloride as the hydrogen bond acceptor, and lactic acid as the hydrogen bond donor to synthesize a deep eutectic solvent of choline chloride/lactic acid (L-DES) and treated sugarcane bagasse pretreated by alkali or hydrothermal methods to separate cellulose, hemicellulose, and lignin. In addition, we comparatively studied the effect of different pretreatment methods on lignin removal by DES and found that the lignin removal rate by L-DES after alkaline pretreatment was significantly higher than that after hydrothermal pretreatment, and the mechanism of action causing this difference is discussed.
Collapse
Affiliation(s)
- Na Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
| | - Baoming Xu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
| | - Xinhui Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
| | - Jinyan Lang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
| | - Heng Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
- Guangdong Provincial Key Lab of Green Chemical Product Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Structural Changes of Alkali Lignin under Ozone Treatment and Effect of Ozone-Oxidized Alkali Lignin on Cellulose Digestibility. Processes (Basel) 2022. [DOI: 10.3390/pr10030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, the structural changes of alkali lignin induced by ozonation were investigated, and the effect of ozone-treated alkali lignin and its mechanism on Avicel enzymatic hydrolysis was examined. The physicochemical properties of alkali lignin were analyzed by FTIR, 1H-13C HSQC NMR, and GPC. It was revealed that ozone pretreatment increased the content of carboxyl and/or aldehyde groups and the negative zeta potential of alkali lignin, which enhanced the electrostatic repulsion between alkali lignin and cellulase; The S/G ratio was reduced, indicating the hydrophobic interaction was diminished. The Langmuir adsorption isotherm showed that the cellulase binding strength of ozone pretreated alkali lignin (OL-pH3, OL-pH7, and OL-pH12 were 16.67, 13.87, and 44.05 mL/g, respectively) was significantly lower than that of alkali lignin (161.29 mL/g). The 72 h hydrolysis yields of Avicel added with OL-pH3, OL-pH7, and OL-pH12 were 55.4%, 58.6%, and 54.9% respectively, which were 2.6–6.3% higher than that of Avicel added with AL (52.3%). This research aimed to reduce the non-productive adsorption between cellulase and lignin by investigating the structural changes of lignin caused by ozone treatment. For the first time, we discovered that ozone-treated alkali lignin has a further promotion effect on the enzymatic digestion of cellulose, providing a green and feasible pretreatment process for the enzymatic hydrolysis of lignocellulose and aiding in the more efficient utilization of biomass.
Collapse
|
3
|
Cory AB, Chanton JP, Spencer RGM, Ogles OC, Rich VI, McCalley CK, Wilson RM. Quantifying the inhibitory impact of soluble phenolics on anaerobic carbon mineralization in a thawing permafrost peatland. PLoS One 2022; 17:e0252743. [PMID: 35108267 PMCID: PMC8809605 DOI: 10.1371/journal.pone.0252743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/01/2022] [Indexed: 11/24/2022] Open
Abstract
The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum-rich peatlands (“bogs”) are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulating the concentration of free soluble phenolics in anaerobic bog and fen peat incubations using water-soluble polyvinylpyrrolidone (“PVP”), a compound that binds with and inactivates phenolics, preventing phenolic-enzyme interactions. CO2 and CH4 production rates (end-products of anaerobic C mineralization) generally correlated positively with PVP concentration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters, we estimated that the extent to which phenolics inhibit anaerobic CO2 production was significantly higher in the bog—62 ± 16%—than the fen—14 ± 4%. This difference was found to be more substantial with regards to methane production—wherein phenolic inhibition for the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consistent with this habitat difference, we observed significantly higher soluble phenolic content in bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could contribute to bogs’ extraordinary recalcitrance and high (relative to other peatland habitats) CO2:CH4 production ratios.
Collapse
Affiliation(s)
- Alexandra B. Cory
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
- * E-mail:
| | - Jeffrey P. Chanton
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
| | - Robert G. M. Spencer
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
| | - Olivia C. Ogles
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
| | - Virginia I. Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Carmody K. McCalley
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | | | | | - Rachel M. Wilson
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
| |
Collapse
|
4
|
Combining analytical approaches for better lignocellulosic biomass degradation: a way of improving fungal enzymatic cocktails? Biotechnol Lett 2021; 43:2283-2298. [PMID: 34708264 DOI: 10.1007/s10529-021-03201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE In this study, a combinatory approach was undertaken to assay the efficiency of fungal enzymatic cocktails from different fermentation conditions to degrade different lignocellulosic biomasses with the aim of finely characterizing fungal enzymatic cocktails. METHODS Enzymatic assays (AZO and pNP-linked substrates and ABTS) were used to assess the composition of the fungal enzymatic cocktails for cellulase, xylanase and laccase activities. Comparisons were made with a new range of chromogenic substrates based on complex biomass (CBS substrates). The saccharification efficiency of the cocktails was evaluated as a quantification of the sugar monomers released from the different biomasses after incubation with the enzymatic cocktails. RESULTS The results obtained showed striking differences between the AZO and pNP-linked substrates and the CBS substrates for the same enzymatic cocktails. On AZO and pNP-linked substrates, different hydrolysis profiles were observed between the different fungi species with Aspergillus oryzae being the most efficient. However, the results on CBS substrates were more contrasted depending on the biomass tested. Altogether, the results highlighted that assessing laccase activities and taking into account the complexity of the biomass to degrade were key in order to provide the best enzymatic cocktails. CONCLUSION The complementary experiments performed in this study showed that different approaches needed to be taken in order to accurately assess the ability of an enzymatic cocktail to be efficient when it comes to lignocellulosic biomass degradation. The saccharification assay proved to be essential to validate the data obtained from both simple and complex substrates.
Collapse
|
5
|
de Freitas EN, Alnoch RC, Contato AG, Nogueira KMV, Crevelin EJ, de Moraes LAB, Silva RN, Martínez CA, Polizeli MDLTM. Enzymatic Pretreatment with Laccases from Lentinus sajor-caju Induces Structural Modification in Lignin and Enhances the Digestibility of Tropical Forage Grass ( Panicum maximum) Grown under Future Climate Conditions. Int J Mol Sci 2021; 22:ijms22179445. [PMID: 34502353 PMCID: PMC8431176 DOI: 10.3390/ijms22179445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/25/2023] Open
Abstract
Since laccase acts specifically in lignin, the major contributor to biomass recalcitrance, this biocatalyst represents an important alternative to the pretreatment of lignocellulosic biomass. Therefore, this study investigates the laccase pretreatment and climate change effects on the hydrolytic performance of Panicum maximum. Through a Trop-T-FACE system, P. maximum grew under current (Control (C)) and future climate conditions: elevated temperature (2 °C more than the ambient canopy temperature) combined with elevated atmospheric CO2 concentration(600 μmol mol−1), name as eT+eC. Pretreatment using a laccase-rich crude extract from Lentinus sajor caju was optimized through statistical strategies, resulting in an increase in the sugar yield of P. maximum biomass (up to 57%) comparing to non-treated biomass and enabling hydrolysis at higher solid loading, achieving up to 26 g L−1. These increments are related to lignin removal (up to 46%) and lignin hydrophilization catalyzed by laccase. Results from SEM, CLSM, FTIR, and GC-MS supported the laccase-catalyzed lignin removal. Moreover, laccase mitigates climate effects, and no significant differences in hydrolytic potential were found between C and eT+eC groups. This study shows that crude laccase pretreatment is a potential and sustainable method for biorefinery solutions and helped establish P. maximum as a promising energy crop.
Collapse
Affiliation(s)
- Emanuelle Neiverth de Freitas
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Robson Carlos Alnoch
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (R.C.A.); (C.A.M.)
| | - Alex Graça Contato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Karoline Maria V. Nogueira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Eduardo José Crevelin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (E.J.C.); (L.A.B.d.M.)
| | - Luiz Alberto Beraldo de Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (E.J.C.); (L.A.B.d.M.)
| | - Roberto Nascimento Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Carlos Alberto Martínez
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (R.C.A.); (C.A.M.)
| | - Maria de Lourdes T. M. Polizeli
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (R.C.A.); (C.A.M.)
- Correspondence:
| |
Collapse
|
6
|
Chan KL, Ko CH, Chang KL, Leu SY. Construction of a structural enzyme adsorption/kinetics model to elucidate additives associated lignin-cellulase interactions in complex bioconversion system. Biotechnol Bioeng 2021; 118:4065-4075. [PMID: 34245458 DOI: 10.1002/bit.27883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 11/07/2022]
Abstract
Enzymatic hydrolysis is a rate-limiting process in lignocellulose biorefinery. The reaction involves complex enzyme-substrate and enzyme-lignin interactions in both liquid and solid phases, and has not been well characterized numerically. In this study, a kinetic model was developed to incorporate dynamic enzyme adsorption and product inhibition parameters into hydrolysis simulation. The enzyme adsorption coefficients obtained from Langmuir isotherm were fed dynamically into first-order kinetics for simulating the equilibrium enzyme adsorption in hydrolysis. A fractal and product inhibition kinetics was introduced and successfully applied to improve the simulation accuracy on adsorbed enzyme and glucose concentrations at different enzyme loadings, lignin contents, and in the presence of bovine serum albumin (BSA) and lysozyme. The model provided numerical proof quantifying the beneficial effects of both additives, which improved the hydrolysis rate by reducing the nonproductive adsorption of enzyme on lignin. The hydrolysis rate coefficient and fractal exponent both increased with increasing enzyme loadings, and lignin inhibition exhibited with increasing fractal exponent. Compared with BSA, the addition of lysozyme exhibited higher hydrolysis rates, which was reflected in the larger hydrolysis rate coefficients and smaller fractal exponents in the simulation. The model provides new insights to support process development, control, and optimization.
Collapse
Affiliation(s)
- Ka-Lai Chan
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Chun-Han Ko
- Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong.,School of Forest and Resources Conservation, National Taiwan University, Taipei, Taiwan
| | - Ken-Lin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong.,Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
7
|
Xu R, Liu K, Du H, Liu H, Cao X, Zhao X, Qu G, Li X, Li B, Si C. Falling Leaves Return to Their Roots: A Review on the Preparation of γ-Valerolactone from Lignocellulose and Its Application in the Conversion of Lignocellulose. CHEMSUSCHEM 2020; 13:6461-6476. [PMID: 32961026 DOI: 10.1002/cssc.202002008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
γ-Valerolactone (GVL), derived from renewable lignocellulosic biomass, has been considered as a cost-competitive and green platform chemical. With the increasingly prominent environmental problems, a deep understanding of the preparation and transformation of GVL is highly needed. Based on the latest progress made with GVL, preparation and applications of GVL are summarized and discussed in this Review. In particular, the state-of-the-art in catalytic production of GVL is described based on the use of noble-metal and non-noble-metal catalysts. The application of GVL for the valorization of lignocellulose would improve the yield of target products such as sugar monomers and furfural. Thus, GVL can be produced from lignocellulose and simultaneously it can also be used for the valorization of lignocellulose, just as in the sustainable and renewable cycle, "the falling leaves returns to their roots". This Review is expected to provide valuable reference and new proposal for the further development and better utilization of GVL.
Collapse
Affiliation(s)
- Rui Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, P. R. China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, 212 Rolls Hall, Auburn, Alabama 36849, USA
| | - Huayu Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Xuefei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, P. R. China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
8
|
Wu J, Chandra RP, Takada M, Liu LY, Renneckar S, Kim KH, Kim CS, Saddler JN. Enhancing Enzyme-Mediated Cellulose Hydrolysis by Incorporating Acid Groups Onto the Lignin During Biomass Pretreatment. Front Bioeng Biotechnol 2020; 8:608835. [PMID: 33282856 PMCID: PMC7691530 DOI: 10.3389/fbioe.2020.608835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Lignin is known to limit the enzyme-mediated hydrolysis of biomass by both restricting substrate swelling and binding to the enzymes. Pretreated mechanical pulp (MP) made from Aspen wood chips was incubated with either 16% sodium sulfite or 32% sodium percarbonate to incorporate similar amounts of sulfonic and carboxylic acid groups onto the lignin (60 mmol/kg substrate) present in the pulp without resulting in significant delignification. When Simon's stain was used to assess potential enzyme accessibility to the cellulose, it was apparent that both post-treatments enhanced accessibility and cellulose hydrolysis. To further elucidate how acid group addition might influence potential enzyme binding to lignin, Protease Treated Lignin (PTL) was isolated from the original and modified mechanical pulps and added to a cellulose rich, delignified Kraft pulp. As anticipated, the PTLs from both the oxidized and sulfonated substrates proved less inhibitory and adsorbed less enzymes than did the PTL derived from the original pulp. Subsequent analyses indicated that both the sulfonated and oxidized lignin samples contained less phenolic hydroxyl groups, resulting in enhanced hydrophilicity and a more negative charge which decreased the non-productive binding of the cellulase enzymes to the lignin.
Collapse
Affiliation(s)
- Jie Wu
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Richard P Chandra
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Masatsugu Takada
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada.,International Advanced Energy Science Research and Education Center, Graduate School of Energy Science, Kyoto University, Kyoto, Japan
| | - Li-Yang Liu
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Kwang Ho Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Chang Soo Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jack N Saddler
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Effects of Biosurfactants on Enzymatic Saccharification and Fermentation of Pretreated Softwood. Molecules 2020; 25:molecules25163559. [PMID: 32764287 PMCID: PMC7465028 DOI: 10.3390/molecules25163559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022] Open
Abstract
The enzymatic hydrolysis of cellulose is inhibited by non-productive adsorption of cellulases to lignin, and that is particularly problematic with lignin-rich materials such as softwood. Although conventional surfactants alleviate non-productive adsorption, using biosurfactants in softwood hydrolysis has not been reported. In this study, the effects of four biosurfactants, namely horse-chestnut escin, Pseudomonas aeruginosa rhamnolipid, and saponins from red and white quinoa varieties, on the enzymatic saccharification of steam-pretreated spruce were investigated. The used biosurfactants improved hydrolysis, and the best-performing one was escin, which led to cellulose conversions above 90%, decreased by around two-thirds lignin inhibition of Avicel hydrolysis, and improved hydrolysis of pretreated spruce by 24%. Red quinoa saponins (RQS) addition resulted in cellulose conversions above 80%, which was around 16% higher than without biosurfactants, and it was more effective than adding rhamnolipid or white quinoa saponins. Cellulose conversion improved with the increase in RQS addition up to 6 g/100 g biomass, but no significant changes were observed above that dosage. Although saponins are known to inhibit yeast growth, no inhibition of Saccharomyces cerevisiae fermentation of hydrolysates produced with RQS addition was detected. This study shows the potential of biosurfactants for enhancing the enzymatic hydrolysis of steam-pretreated softwood.
Collapse
|
10
|
Kumar V, Patel SKS, Gupta RK, Otari SV, Gao H, Lee J, Zhang L. Enhanced Saccharification and Fermentation of Rice Straw by Reducing the Concentration of Phenolic Compounds Using an Immobilized Enzyme Cocktail. Biotechnol J 2019; 14:e1800468. [DOI: 10.1002/biot.201800468] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Virendra Kumar
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research InstituteFujian Agriculture and Forestry University Fuzhou Fujian Province 350002 P. R. China
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Sanjay K. S. Patel
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Rahul K. Gupta
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Sachin V. Otari
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Hui Gao
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Jung‐Kul Lee
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Liaoyuan Zhang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research InstituteFujian Agriculture and Forestry University Fuzhou Fujian Province 350002 P. R. China
| |
Collapse
|
11
|
Ázar RISL, Morgan T, Barbosa MHP, Guimarães VM, Ximenes E, Ladisch M. Impact of protein blocking on enzymatic saccharification of bagasse from sugarcane clones. Biotechnol Bioeng 2019; 116:1584-1593. [DOI: 10.1002/bit.26962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Rafaela I. S. Ladeira Ázar
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering Purdue University West Lafayette Indiana
- Department of Biochemistry and Molecular Biology Federal University of Viçosa Viçosa Minas Gerais Brazil
| | - Túlio Morgan
- Department of Biochemistry and Molecular Biology Federal University of Viçosa Viçosa Minas Gerais Brazil
| | - Márcio H. P. Barbosa
- Department of Crop Science Federal University of Viçosa Viçosa Minas Gerais Brazil
| | - Valéria M. Guimarães
- Department of Biochemistry and Molecular Biology Federal University of Viçosa Viçosa Minas Gerais Brazil
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering Purdue University West Lafayette Indiana
| | - Michael Ladisch
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering Purdue University West Lafayette Indiana
| |
Collapse
|
12
|
NMR Analysis on Molecular Interaction of Lignin with Amino Acid Residues of Carbohydrate-Binding Module from Trichoderma reesei Cel7A. Sci Rep 2019; 9:1977. [PMID: 30760856 PMCID: PMC6374431 DOI: 10.1038/s41598-018-38410-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Lignocellulosic biomass is anticipated to serve as a platform for green chemicals and fuels. Nonproductive binding of lignin to cellulolytic enzymes should be avoided for conversion of lignocellulose through enzymatic saccharification. Although carbohydrate-binding modules (CBMs) of cellulolytic enzymes strongly bind to lignin, the adsorption mechanism at molecular level is still unclear. Here, we report NMR-based analyses of binding sites on CBM1 of cellobiohydrolase I (Cel7A) from a hyper-cellulase-producing fungus, Trichoderma reesei, with cellohexaose and lignins from Japanese cedar (C-MWL) and Eucalyptus globulus (E-MWL). A method was established to obtain properly folded TrCBM1. Only TrCBM1 that was expressed in freshly transformed E. coli had intact conformation. Chemical shift perturbation analyses revealed that TrCBM1 adsorbed cellohexaose in highly specific manner via two subsites, flat plane surface and cleft, which were located on the opposite side of the protein surface. Importantly, MWLs were adsorbed at multiple binding sites, including the subsites, having higher affinity than cellohexaose. G6 and Q7 were involved in lignin binding on the flat plane surface of TrCBM1, while cellohexaose preferentially interacted with N29 and Q34. TrCBM1 used much larger surface area to bind with C-MWL than E-MWL, indicating the mechanisms of adsorption toward hardwood and softwood lignins are different.
Collapse
|
13
|
Brondi MG, Vasconcellos VM, Giordano RC, Farinas CS. Alternative Low-Cost Additives to Improve the Saccharification of Lignocellulosic Biomass. Appl Biochem Biotechnol 2018; 187:461-473. [DOI: 10.1007/s12010-018-2834-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022]
|
14
|
Zhou L, da Costa Sousa L, Dale BE, Feng JX, Balan V. The effect of alkali-soluble lignin on purified core cellulase and hemicellulase activities during hydrolysis of extractive ammonia-pretreated lignocellulosic biomass. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171529. [PMID: 30110471 PMCID: PMC6030313 DOI: 10.1098/rsos.171529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/14/2018] [Indexed: 05/31/2023]
Abstract
Removing alkali-soluble lignin using extractive ammonia (EA) pretreatment of corn stover (CS) is known to improve biomass conversion efficiency during enzymatic hydrolysis. In this study, we investigated the effect of alkali-soluble lignin on six purified core glycosyl hydrolases and their enzyme synergies, adopting 31 enzyme combinations derived by a five-component simplex centroid model, during EA-CS hydrolysis. Hydrolysis experiment was carried out using EA-CS(-) (approx. 40% lignin removed during EA pretreatment) and EA-CS(+) (where no lignin was extracted). Enzymatic hydrolysis experiments were done at three different enzyme mass loadings (7.5, 15 and 30 mg protein g-1 glucan), using a previously developed high-throughput microplate-based protocol, and the sugar yields of glucose and xylose were detected. The optimal enzyme combinations (based on % protein mass loading) of six core glycosyl hydrolases for EA-CS(-) and EA-CS(+) were determined that gave high sugar conversion. The inhibition of lignin on optimal enzyme ratios was studied, by adding fixed amount of alkali-soluble lignin fractions to EA-CS(-), and pure Avicel, beechwood xylan and evaluating their sugar conversion. The optimal enzyme ratios that gave higher sugar conversion for EA-CS(-) were CBH I: 27.2-28.2%, CBH II: 18.2-22.2%, EG I: 29.2-34.3%, EX: 9.0-14.1%, βX: 7.2-10.2%, βG: 1.0-5.0% (at 7.5-30 mg g-1 protein mass loading). Endoglucanase was inhibited to a greater extent than other core cellulases and xylanases by lignin during enzyme hydrolysis. We also found that alkali-soluble lignin inhibits cellulase more strongly than hemicellulase during the course of enzyme hydrolysis.
Collapse
Affiliation(s)
- Linchao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Leonardo da Costa Sousa
- DOE Great Lakes Bioenergy Research Center (GLBRC), Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48910, USA
| | - Bruce E. Dale
- DOE Great Lakes Bioenergy Research Center (GLBRC), Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48910, USA
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Venkatesh Balan
- DOE Great Lakes Bioenergy Research Center (GLBRC), Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, Lansing, MI 48910, USA
- Department of Engineering Technology, Biotechnology Division, School of Technology, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
15
|
Properties important for solid-liquid separations change during the enzymatic hydrolysis of pretreated wheat straw. Biotechnol Lett 2018; 40:703-709. [PMID: 29392453 DOI: 10.1007/s10529-018-2521-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The biochemical conversion of lignocellulosic biomass into renewable fuels and chemicals provides new challenges for industrial scale processes. One such process, which has received little attention, but is of great importance for efficient product recovery, is solid-liquid separations, which may occur both after pretreatment and after the enzymatic hydrolysis steps. Due to the changing nature of the solid biomass during processing, the solid-liquid separation properties of the biomass can also change. The objective of this study was to show the effect of enzymatic hydrolysis of cellulose upon the water retention properties of pretreated biomass over the course of the hydrolysis reaction. RESULTS Water retention value measurements, coupled with 1H NMR T2 relaxometry data, showed an increase in water retention and constraint of water by the biomass with increasing levels of cellulose hydrolysis. This correlated with an increase in the fines fraction and a decrease in particle size, suggesting that structural decomposition rather than changes in chemical composition was the most dominant characteristic. CONCLUSIONS With increased water retained by the insoluble fraction as cellulose hydrolysis proceeds, it may prove more difficult to efficiently separate hydrolysis residues from the liquid fraction with improved hydrolysis.
Collapse
|
16
|
Laluce C, Igbojionu LI, Dussán KJ. Fungal Enzymes Applied to Industrial Processes for Bioethanol Production. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications. ENERGIES 2017. [DOI: 10.3390/en11010050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Softwoods represent a significant fraction of the available lignocellulosic biomass for conversion into a variety of bio-based products. Its inherent recalcitrance, however, makes its successful utilization an ongoing challenge. In the current work the research efforts for the fractionation and utilization of softwood biomass with the organosolv process are reviewed. A short introduction into the specific challenges of softwood utilization, the development of the biorefinery concept, as well as the initial efforts for the development of organosolv as a pulping method is also provided for better understanding of the related research framework. The effect of organosolv pretreatment at various conditions, in the fractionation efficiency of wood components, enzymatic hydrolysis and bioethanol production yields is then discussed. Specific attention is given in the effect of the pretreated biomass properties such as residual lignin on enzymatic hydrolysis. Finally, the valorization of organosolv lignin via the production of biofuels, chemicals, and materials is also described.
Collapse
|
18
|
Jiang F, Qian C, Esker AR, Roman M. Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin. J Phys Chem B 2017; 121:9607-9620. [DOI: 10.1021/acs.jpcb.7b07716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Feng Jiang
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chen Qian
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alan R. Esker
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Pereira A, Hoeger IC, Ferrer A, Rencoret J, Del Rio JC, Kruus K, Rahikainen J, Kellock M, Gutiérrez A, Rojas OJ. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding. Biomacromolecules 2017; 18:1322-1332. [PMID: 28287708 DOI: 10.1021/acs.biomac.7b00071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lignins were isolated from spruce, wheat straw, and eucalyptus by using the milled wood lignin (MWL) method. Functional groups and compositional analyses were assessed via 2D NMR and 31P NMR to realize their effect on enzyme binding. Films of the lignins were fabricated and ellipsometry, atomic force microscopy, and water contact angle measurements were used for their characterization and to reveal the changes upon enzyme adsorption. Moreover, lignin thin films were deposited on quartz crystal microgravimetry (QCM) and surface plasmon (SPR) resonance sensors and used to gain further insights into the lignin-cellulase interactions. For this purpose, a commercial multicomponent enzyme system and a monocomponent Trichoderma reesei exoglucanase (CBH-I) were considered. Strong enzyme adsorption was observed on the various lignins but compared to the multicomponent cellulases, CBH-I displayed lower surface affinity and higher binding reversibility. This resolved prevalent questions related to the affinity of this enzyme with lignin. Remarkably, a strong correlation between enzyme binding and the syringyl/guaiacyl (S/G) ratio was found for the lignins, which presented a similar hydroxyl group content (31P NMR): higher protein affinity was determined on isolated spruce lignin (99% G units), while the lowest adsorption occurred on isolated eucalyptus lignin (70% S units). The effect of electrostatic interactions in enzyme adsorption was investigated by SPR, which clearly indicated that the screening of charges allowed more extensive protein adsorption. Overall, this work furthers our understanding of lignin-cellulase interactions relevant to biomass that has been subjected to no or little pretreatment and highlights the widely contrasting effects of the nature of lignin, which gives guidance to improve lignocellulosic saccharification and related processes.
Collapse
Affiliation(s)
- Antonio Pereira
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, 10, E-41012 Sevilla, Spain.,Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Ingrid C Hoeger
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Ana Ferrer
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, 10, E-41012 Sevilla, Spain
| | - José C Del Rio
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, 10, E-41012 Sevilla, Spain
| | - Kristiina Kruus
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, FI-02044 Espoo, Finland
| | - Jenni Rahikainen
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, FI-02044 Espoo, Finland
| | - Miriam Kellock
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, FI-02044 Espoo, Finland
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, 10, E-41012 Sevilla, Spain
| | - Orlando J Rojas
- Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076 Espoo, Finland
| |
Collapse
|
20
|
Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Sci Rep 2017; 7:42121. [PMID: 28169340 PMCID: PMC5294454 DOI: 10.1038/srep42121] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/05/2017] [Indexed: 11/09/2022] Open
Abstract
The recalcitrance of woody biomass, particularly its lignin component, hinders its sustainable transformation to fuels and biomaterials. Although the recent discovery of several bacterial ligninases promises the development of novel biocatalysts, these enzymes have largely been characterized using model substrates: direct evidence for their action on biomass is lacking. Herein, we report the delignification of woody biomass by a small laccase (sLac) from Amycolatopsis sp. 75iv3. Incubation of steam-pretreated poplar (SPP) with sLac enhanced the release of acid-precipitable polymeric lignin (APPL) by ~6-fold, and reduced the amount of acid-soluble lignin by ~15%. NMR spectrometry revealed that the APPL was significantly syringyl-enriched relative to the original material (~16:1 vs. ~3:1), and that sLac preferentially oxidized syringyl units and altered interunit linkage distributions. sLac's substrate preference among monoaryls was also consistent with this observation. In addition, sLac treatment reduced the molar mass of the APPL by over 50%, as determined by gel-permeation chromatography coupled with multi-angle light scattering. Finally, sLac acted synergistically with a commercial cellulase cocktail to increase glucose production from SPP ~8%. Overall, this study establishes the lignolytic activity of sLac on woody biomass and highlights the biocatalytic potential of bacterial enzymes.
Collapse
|
21
|
Li M, Pu Y, Ragauskas AJ. Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance. Front Chem 2016; 4:45. [PMID: 27917379 PMCID: PMC5114238 DOI: 10.3389/fchem.2016.00045] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement in application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability-pretreatment and enzymatic hydrolysis of biomass. Specifically, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.
Collapse
Affiliation(s)
- Mi Li
- BioEnergy Science Center, Biosciences Division, Joint Institute of Biological Science, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Yunqiao Pu
- BioEnergy Science Center, Biosciences Division, Joint Institute of Biological Science, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Arthur J Ragauskas
- BioEnergy Science Center, Biosciences Division, Joint Institute of Biological Science, Oak Ridge National LaboratoryOak Ridge, TN, USA; Department of Chemical and Bimolecular Engineering, University of Tennessee KnoxvilleKnoxville, TN, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University Tennessee Institute of AgricultureKnoxville, TN, USA
| |
Collapse
|
22
|
Structural Changes of Lignin after Liquid Hot Water Pretreatment and Its Effect on the Enzymatic Hydrolysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8568604. [PMID: 27563678 PMCID: PMC4987466 DOI: 10.1155/2016/8568604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022]
Abstract
During liquid hot water (LHW) pretreatment, lignin is mostly retained in the pretreated biomass, and the changes in the chemical and structural characteristics of lignin should probably refer to re-/depolymerization, solubilization, or glass transition. The residual lignin could influence the effective enzymatic hydrolysis of cellulose. The pure lignin was used to evaluate the effect of LHW process on its structural and chemical features. The surface morphology of LHW-treated lignin observed with the scanning electron microscopy (SEM) was more porous and irregular than that of untreated lignin. Compared to the untreated lignin, the surface area, total pore volume, and average pore size of LHW-treated lignin tested with the Brunner-Emmet-Teller (BET) measurement were increased. FTIR analysis showed that the chemical structure of lignin was broken down in the LHW process. Additionally, the impact of untreated and treated lignin on the enzymatic hydrolysis of cellulose was also explored. The LHW-treated lignin had little impact on the cellulase adsorption and enzyme activities and somehow could improve the enzymatic hydrolysis of cellulose.
Collapse
|
23
|
Strobel KL, Pfeiffer KA, Blanch HW, Clark DS. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin. J Biol Chem 2015; 290:22818-26. [PMID: 26209638 PMCID: PMC4566252 DOI: 10.1074/jbc.m115.673467] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/13/2015] [Indexed: 11/23/2022] Open
Abstract
The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs.
Collapse
Affiliation(s)
- Kathryn L Strobel
- From the Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720
| | - Katherine A Pfeiffer
- From the Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720
| | - Harvey W Blanch
- From the Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720
| | - Douglas S Clark
- From the Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
24
|
Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production. PLoS One 2015; 10:e0134964. [PMID: 26252208 PMCID: PMC4529190 DOI: 10.1371/journal.pone.0134964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Abundant evidence exists to support a role for lignin as an important element in biomass recalcitrance. However, several independent studies have also shown that factors apart from lignin are also relevant and overall, the relative importance of different recalcitrance traits remains in dispute. In this study we used two genetically distant sugarcane genotypes, and performed a correlational study with the variation in anatomical parameters, cell wall composition, and recalcitrance factors between these genotypes. In addition we also tracked alterations in these characteristics in internodes at different stages of development. Significant differences in the development of the culm between the genotypes were associated with clear differential distributions of lignin content and composition that were not correlated with saccharification and fermentation yield. Given the strong influence of the environment on lignin content and composition, we hypothesized that sampling within a single plant could allow us to more easily interpret recalcitrance and changes in lignin biosynthesis than analysing variations between different genotypes with extensive changes in plant morphology and culm anatomy. The syringyl/guaiacyl (S/G) ratio was higher in the oldest internode of the modern genotype, but S/G ratio was not correlated with enzymatic hydrolysis yield nor fermentation efficiency. Curiously we observed a strong positive correlation between ferulate ester level and cellulose conversion efficiency. Together, these data support the hypothesis that biomass enzymatic hydrolysis recalcitrance is governed by a quantitative heritage rather than a single trait.
Collapse
|
25
|
Jaeger V, Burney P, Pfaendtner J. Comparison of three ionic liquid-tolerant cellulases by molecular dynamics. Biophys J 2015; 108:880-892. [PMID: 25692593 PMCID: PMC4336362 DOI: 10.1016/j.bpj.2014.12.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/20/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022] Open
Abstract
We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme's secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme's behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study.
Collapse
Affiliation(s)
- Vance Jaeger
- Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Patrick Burney
- Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington.
| |
Collapse
|
26
|
Ko JK, Kim Y, Ximenes E, Ladisch MR. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 2014; 112:252-62. [DOI: 10.1002/bit.25349] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Ja Kyong Ko
- Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteIndiana47907‐2022
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndiana47907‐2022
| | - Youngmi Kim
- Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteIndiana47907‐2022
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndiana47907‐2022
| | - Eduardo Ximenes
- Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteIndiana47907‐2022
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndiana47907‐2022
| | - Michael R. Ladisch
- Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteIndiana47907‐2022
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndiana47907‐2022
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndiana47907‐2022
| |
Collapse
|