1
|
Meinen S, Brinkmann S, Viebrock K, Elbardisy B, Menzel H, Krull R, Dietzel A. 2PP-Hydrogel Covered Electrodes to Compensate for Media Effects in the Determination of Biomass in a Capillary Wave Micro Bioreactor. BIOSENSORS 2024; 14:438. [PMID: 39329813 PMCID: PMC11429511 DOI: 10.3390/bios14090438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Microbioreactors increase information output in biopharmaceutical screening applications because they can be operated in parallel without consuming large quantities of the pharmaceutical formulations being tested. A capillary wave microbioreactor (cwMBR) has recently been reported, allowing cost-efficient parallelization in an array that can be activated for mixing as a whole. Although impedance spectroscopy can directly distinguish between dead and viable cells, the monitoring of cells in suspension within bioreactors is challenging because the signal is influenced by the potentially varying properties of the culture medium. In order to address this challenge, an impedance sensor consisting of two sets of microelectrodes in a cwMBR is presented. Only one set of electrodes was covered by a two-photon cross-linked hydrogel to become insensitive to the influence of cells while remaining sensitive to the culture medium. With this impedance sensor, the biomass of Saccharomyces cerevisiae could be measured in a range from 1 to 20 g L-1. In addition, the sensor can compensate for a change in the conductivity of the suspension of 5 to 15 mS cm-1. Moreover, the two-photon cross-linking of hydroxyethyl starch methacrylate hydrogel, which has been studied in detail, recommends itself for even much broader sensing applications in miniaturized bioreactors and biosensors.
Collapse
Affiliation(s)
- Sven Meinen
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Steffen Brinkmann
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Kevin Viebrock
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Bassant Elbardisy
- Institute of Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Henning Menzel
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institute of Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Rainer Krull
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Wu T, Norouzi M, Park K. Dialysis rolled scaffold bioreactor allows extended production of monoclonal antibody with reduced media use. Biotechnol J 2024; 19:e2400249. [PMID: 39212207 DOI: 10.1002/biot.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Rapidly expanding biopharmaceutical market demands more cost-effective platforms to produce protein therapeutics. To this end, novel approaches, such as perfusion culture or concentrated fed-batch, have been explored for higher yields and lower manufacturing costs. Although these new approaches produced promising results, but their wide-spread use in the industry is still limited. In this study, a dialysis rolled scaffold bioreactor was presented for long-term production of monoclonal antibodies with reduced media consumption. Media dialysis can selectively remove cellular bio-wastes without losing cells or produced recombinant proteins. The dialysis process was streamlined to significantly improve its efficiency. Then, extended culture of recombinant CHO cells for 41 days was successfully demonstrated with consistent production rate and minimal media consumption. The unique configuration of the developed bioreactor allows efficient dialysis for media management, as well as rapid media exchange to harvest produced recombinant proteins before they degrade. Taken together, it was envisioned that the developed bioreactor will enable cost-effective and long-term large-scale culture of various cells for biopharmaceutical production.
Collapse
Affiliation(s)
- Tongyao Wu
- Division of Electrical Computer Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Mohsen Norouzi
- Division of Electrical Computer Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kidong Park
- Division of Electrical Computer Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Sharma R, Harrison STL, Tai SL. Advances in Bioreactor Systems for the Production of Biologicals in Mammalian Cells. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rajesh Sharma
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| | - Susan T. L. Harrison
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| | - Siew Leng Tai
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| |
Collapse
|
4
|
Espeso DR, Dvořák P, Aparicio T, de Lorenzo V. An automated DIY framework for experimental evolution of Pseudomonas putida. Microb Biotechnol 2021; 14:2679-2685. [PMID: 33047876 PMCID: PMC8601172 DOI: 10.1111/1751-7915.13678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 10/25/2022] Open
Abstract
Adaptive laboratory evolution (ALE) is a general and effective strategy for optimizing the design of engineered genetic circuits and upgrading metabolic phenotypes. However, the specific characteristics of each microorganism typically ask for exclusive conditions that need to be adjusted to the biological chassis at stake. In this work, we have adopted a do-it-yourself (DIY) approach to implement a flexible and automated framework for performing ALE experiments with the environmental bacterium and metabolic engineering platform Pseudomonas putida. The setup includes a dual-chamber semi-continuous log-phase bioreactor design combined with an anti-biofilm layout to manage specific traits of this bacterium in long-term cultivation experiments. As a way of validation, the prototype was instrumental for selecting fast-growing variants of a P. putida strain engineered to metabolize D-xylose as sole carbon and energy source after running an automated 42 days protocol of iterative regrowth. Several genomic changes were identified in the evolved population that pinpointed the role of RNA polymerase in controlling overall physiological conditions during metabolism of the new carbon source.
Collapse
Affiliation(s)
- David R. Espeso
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| | - Pavel Dvořák
- Department of Experimental BiologyFaculty of ScienceMasaryk UniversityBrno62500Czech Republic
| | - Tomás Aparicio
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| | - Víctor de Lorenzo
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| |
Collapse
|
5
|
D'ambrosio S, Ventrone M, Alfano A, Schiraldi C, Cimini D. Microbioreactor (micro-Matrix) potential in aerobic and anaerobic conditions with different industrially relevant microbial strains. Biotechnol Prog 2021; 37:e3184. [PMID: 34180150 PMCID: PMC8596446 DOI: 10.1002/btpr.3184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Microscale fermentation systems are important high throughput tools in clone selection, and bioprocess set up and optimization, since they provide several parallel experiments in controlled conditions of pH, temperature, agitation, and gas flow rate. In this work we evaluated the performance of biotechnologically relevant strains with different respiratory requirements in the micro‐Matrix microbioreactor. In particular Escherichia coli K4 requires well aerated fermentation conditions to improve its native production of chondroitin‐like capsular polysaccharide, a biomedically attractive polymer. Results from batch and fed‐batch experiments demonstrated high reproducibility with those obtained on 2 L reactors, although highlighting a pronounced volume loss for longer‐term experiments. Basfia succiniciproducens and Actinobacillus succinogenes need CO2 addition for the production of succinic acid, a building block with several industrial applications. Different CO2 supply modes were tested for the two strains in 24 h batch experiments and results well compared with those obtained on lab‐scale bioreactors. Overall, it was demonstrated that the micro‐Matrix is a useful scale‐down tool that is suitable for growing metabolically different strains in simple batch process, however, a series of issues should still be addressed in order to fully exploit its potential.
Collapse
Affiliation(s)
- Sergio D'ambrosio
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy
| | - Michela Ventrone
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, Medical Hystology and Molecular Biology, University of Campania L. Vanvitelli, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania L. Vanvitelli, Caserta, Italy
| |
Collapse
|
6
|
Inbody SC, Sinquefield BE, Lewis JP, Horton RE. Biomimetic microsystems for cardiovascular studies. Am J Physiol Cell Physiol 2021; 320:C850-C872. [PMID: 33760660 DOI: 10.1152/ajpcell.00026.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional tissue culture platforms have been around for several decades and have enabled key findings in the cardiovascular field. However, these platforms failed to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic-based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate these cellularized devices. Furthermore, we will highlight the advantages of OOC models over traditional cell culture vessels, discuss implementation challenges, and provide perspectives on the state of the field.
Collapse
Affiliation(s)
- Shelby C Inbody
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Bridgett E Sinquefield
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Joshua P Lewis
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Renita E Horton
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| |
Collapse
|
7
|
Sciuto EL, Petralia S, van der Meer JR, Conoci S. Miniaturized electrochemical biosensor based on whole-cell for heavy metal ions detection in water. Biotechnol Bioeng 2021; 118:1456-1465. [PMID: 33289093 DOI: 10.1002/bit.27646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/31/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
The heavy metals pollution represents one of the important issues in the environmental field since it is involved in many pathologies from cancer, neurodegenerative, and metabolic diseases. We propose an innovative portable biosensor for the determination of traces of trivalent arsenic (As(III)) and bivalent mercury (Hg(II)) in water. The system implements a strategy combining two advanced sensing modules consisting in (a) a whole cell based on engineered Escherichia coli as selective sensing element towards the metals and (b) an electrochemical miniaturised silicon device with three microelectrodes and a portable reading system. The sensing mechanism relies on the selective recognition from the bacterium of given metals producing the 4-aminophenol redox active mediator detected through a cyclic voltammetry analysis. The miniaturized biosensor is able to operate a portable, robust, and high-sensitivity detection of As(III) with a sensitivity of 0.122 µA ppb-1 , LoD of 1.5 ppb, and a LoQ of 5 ppb. The LoD value is one order of magnitude below of the value indicated to WHO to be dangerous (10 μg/L). The system was proved to be fully versatile being effective in the detection of Hg(II) as well. A first study on Hg(II) showed sensitivity value of 2.11 µA/ppb a LOD value of 0.1 ppb and LoQ value of 0.34 ppb. Also in this case, the detected LOD was 10 times lower than that indicated by WHO (1 ppb). These results pave the way for advanced sensing strategies suitable for the environmental monitoring and the public safety.
Collapse
Affiliation(s)
- Emanuele L Sciuto
- Regional Reference Laboratory for enviromental and clinica surveillance and control of Legionellosis, Azienda Ospedaliero Universitaria Policlinici "G. Rodolico - San Marco", Catania, Italy
| | - Salvatore Petralia
- Dipartimento di Scienze del Farmaco, University of Catania, Catania, Italy.,STMicroelectronics, Catania, Italy
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sabrina Conoci
- STMicroelectronics, Catania, Italy.,Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Gränicher G, Tapia F, Behrendt I, Jordan I, Genzel Y, Reichl U. Production of Modified Vaccinia Ankara Virus by Intensified Cell Cultures: A Comparison of Platform Technologies for Viral Vector Production. Biotechnol J 2021; 16:e2000024. [PMID: 32762152 PMCID: PMC7435511 DOI: 10.1002/biot.202000024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Modified Vaccinia Ankara (MVA) virus is a promising vector for vaccination against various challenging pathogens or the treatment of some types of cancers, requiring a high amount of virions per dose for vaccination and gene therapy. Upstream process intensification combining perfusion technologies, the avian suspension cell line AGE1.CR.pIX and the virus strain MVA-CR19 is an option to obtain very high MVA yields. Here the authors compare different options for cell retention in perfusion mode using conventional stirred-tank bioreactors. Furthermore, the authors study hollow-fiber bioreactors and an orbital-shaken bioreactor in perfusion mode, both available for single-use. Productivity for the virus strain MVA-CR19 is compared to results from batch and continuous production reported in literature. The results demonstrate that cell retention devices are only required to maximize cell concentration but not for continuous harvesting. Using a stirred-tank bioreactor, a perfusion strategy with working volume expansion after virus infection results in the highest yields. Overall, infectious MVA virus titers of 2.1-16.5 × 109 virions/mL are achieved in these intensified processes. Taken together, the study shows a novel perspective on high-yield MVA virus production in conventional bioreactor systems linked to various cell retention devices and addresses options for process intensification including fully single-use perfusion platforms.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Ilona Behrendt
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
- Chair for Bioprocess EngineeringOtto‐von‐Guericke‐University MagdeburgUniversitätsplatz 2Magdeburg39106Germany
| |
Collapse
|
9
|
Jin L, Wang ZS, Cao Y, Sun RQ, Zhou H, Cao RY. Establishment and optimization of a high-throughput mimic perfusion model in ambr ® 15. Biotechnol Lett 2020; 43:423-433. [PMID: 33185810 DOI: 10.1007/s10529-020-03026-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To establish an automated high-throughput mimic perfusion scale-down model (SDM) in ambr® 15 system. RESULTS An optimized SDM for mimic perfusion was developed in ambr® 15 system. Cell retention in ambr® 15 was realized by sedimentation and supernatant removal with a retention rate > 95%. Although the SDM couldn't reach the viable cell density (VCD) at a bench scale bioreactor (BR), it maintained VCD at approximately 30 × 106 cells/mL with a cell bleeding rate estimated theoretically and predicted the cell specific perfusion rate (CSPR). A base-feeding strategy was developed to alleviate the pH drop during sedimentation which would adversely have an impact on cell growth, and showed an apparent cell viability improvement from 79.6% (control) to 90.1% on Day 18. The optimized SDM for mimic perfusion was employed for media screening in two cell lines. CONCLUSIONS A small-scale high-throughput perfusion model in ambr® 15 was developed, optimized to improve cell viability, and as a result, utilized for media screening in two cell lines.
Collapse
Affiliation(s)
- Lu Jin
- School of Life Science and Technology, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Zhen-Shou Wang
- Cell Culture Process Development Department, WuXi Biologics, #288 Fute Middle Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, People's Republic of China
| | - Yun Cao
- Cell Culture Process Development Department, WuXi Biologics, #288 Fute Middle Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, People's Republic of China
| | - Rui-Qiang Sun
- Cell Culture Process Development Department, WuXi Biologics, #288 Fute Middle Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, People's Republic of China
| | - Hang Zhou
- Cell Culture Process Development Department, WuXi Biologics, #288 Fute Middle Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, People's Republic of China.
| | - Rong-Yue Cao
- School of Life Science and Technology, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Noll P, Henkel M. History and Evolution of Modeling in Biotechnology: Modeling & Simulation, Application and Hardware Performance. Comput Struct Biotechnol J 2020; 18:3309-3323. [PMID: 33240472 PMCID: PMC7670204 DOI: 10.1016/j.csbj.2020.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022] Open
Abstract
Biological systems are typically composed of highly interconnected subunits and possess an inherent complexity that make monitoring, control and optimization of a bioprocess a challenging task. Today a toolset of modeling techniques can provide guidance in understanding complexity and in meeting those challenges. Over the last four decades, computational performance increased exponentially. This increase in hardware capacity allowed ever more detailed and computationally intensive models approaching a "one-to-one" representation of the biological reality. Fueled by governmental guidelines like the PAT initiative of the FDA, novel soft sensors and techniques were developed in the past to ensure product quality and provide data in real time. The estimation of current process state and prediction of future process course eventually enabled dynamic process control. In this review, past, present and envisioned future of models in biotechnology are compared and discussed with regard to application in process monitoring, control and optimization. In addition, hardware requirements and availability to fit the needs of increasingly more complex models are summarized. The major techniques and diverse approaches of modeling in industrial biotechnology are compared, and current as well as future trends and perspectives are outlined.
Collapse
Affiliation(s)
- Philipp Noll
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany
| |
Collapse
|
11
|
Achinas S, Heins JI, Krooneman J, Euverink GJW. Miniaturization and 3D Printing of Bioreactors: A Technological Mini Review. MICROMACHINES 2020; 11:mi11090853. [PMID: 32937842 PMCID: PMC7570152 DOI: 10.3390/mi11090853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Many articles have been published on scale-down concepts as well as additive manufacturing techniques. However, information is scarce when miniaturization and 3D printing are applied in the fabrication of bioreactor systems. Therefore, garnering information for the interfaces between miniaturization and 3D printing becomes important and essential. The first goal is to examine the miniaturization aspects concerning bioreactor screening systems. The second goal is to review successful modalities of 3D printing and its applications in bioreactor manufacturing. This paper intends to provide information on anaerobic digestion process intensification by fusion of miniaturization technique and 3D printing technology. In particular, it gives a perspective on the challenges of 3D printing and the options of miniature bioreactor systems for process high-throughput screening.
Collapse
|
12
|
Kang Y, Datta P, Shanmughapriya S, Ozbolat IT. 3D Bioprinting of Tumor Models for Cancer Research. ACS APPLIED BIO MATERIALS 2020; 3:5552-5573. [DOI: 10.1021/acsabm.0c00791] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Youngnam Kang
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, West Bengal 711103, India
| | - Santhanam Shanmughapriya
- Department of Medicine, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Heart and Vascular Institute, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
- Biomedical Engineering Department, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Neurosurgery, Penn State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
13
|
Amini A, Wiegmann V, Patel H, Veraitch F, Baganz F. Bioprocess considerations for T-cell therapy: Investigating the impact of agitation, dissolved oxygen, and pH on T-cell expansion and differentiation. Biotechnol Bioeng 2020; 117:3018-3028. [PMID: 32568407 DOI: 10.1002/bit.27468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
Adoptive T-cell therapy (ACT) has emerged as a promising new way to treat systemic cancers such as acute lymphoblastic leukemia. However, the robustness and reproducibility of the manufacturing process remains a challenge. Here, a single-use 24-well microbioreactor (micro-Matrix) was assessed for its use as a high-throughput screening tool to investigate the effect and the interaction of different shaking speeds, dissolved oxygen (DO), and pH levels on the growth and differentiation of primary T cells in a perfusion-mimic process. The full factorial design allowed for the generation of predictive models, which were used to find optimal culture conditions. Agitation was shown to play a fundamental role in the proliferation of T cells. A shaking speed of 200 rpm drastically improved the final viable cell concentration (VCC), while the viability was maintained above 90% throughout the cultivation. VCCs reached a maximum of 9.22 × 106 cells/ml. The distribution of CD8+ central memory T cells (TCM ), was found to be largely unaffected by the shaking speed. A clear interaction between pH and DO (p < .001) was established for the cell growth and the optimal culture conditions were identified for a combination of 200 rpm, 25% DO, and pH of 7.4. The combination of microbioreactor technology and Design of Experiment methodology provides a powerful tool to rapidly gain an understanding of the design space of the T-cell manufacturing process.
Collapse
Affiliation(s)
- Arman Amini
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, UK.,Oribiotech Ltd., London, UK
| | - Vincent Wiegmann
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Hamza Patel
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Farlan Veraitch
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, UK.,Oribiotech Ltd., London, UK
| | - Frank Baganz
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, UK
| |
Collapse
|
14
|
Kalra R, Conlan XA, Goel M. Fungi as a Potential Source of Pigments: Harnessing Filamentous Fungi. Front Chem 2020; 8:369. [PMID: 32457874 PMCID: PMC7227384 DOI: 10.3389/fchem.2020.00369] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
The growing concern over the harmful effects of synthetic colorants on both the consumer and the environment has raised a strong interest in natural coloring alternatives. As a result the worldwide demand for colorants of natural origin is rapidly increasing in the food, cosmetic and textile sectors. Natural colorants have the capacity to be used for a variety of industrial applications, for instance, as dyes for textile and non-textile substrates such as leather, paper, within paints and coatings, in cosmetics, and in food additives. Currently, pigments and colorants produced through plants and microbes are the primary source exploited by modern industries. Among the other non-conventional sources, filamentous fungi particularly ascomycetous and basidiomycetous fungi (mushrooms), and lichens (symbiotic association of a fungus with a green alga or cyanobacterium) are known to produce an extraordinary range of colors including several chemical classes of pigments such as melanins, azaphilones, flavins, phenazines, and quinines. This review seeks to emphasize the opportunity afforded by pigments naturally found in fungi as a viable green alternative to current sources. This review presents a comprehensive discussion on the capacity of fungal resources such as endophytes, halophytes, and fungi obtained from a range or sources such as soil, sediments, mangroves, and marine environments. A key driver of the interest in fungi as a source of pigments stems from environmental factors and discussion here will extend on the advancement of greener extraction techniques used for the extraction of intracellular and extracellular pigments. The search for compounds of interest requires a multidisciplinary approach and techniques such as metabolomics, metabolic engineering and biotechnological approaches that have potential to deal with various challenges faced by pigment industry.
Collapse
Affiliation(s)
- Rishu Kalra
- Division of Sustainable Agriculture, TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, India
| | - Xavier A Conlan
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mayurika Goel
- Division of Sustainable Agriculture, TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, India
| |
Collapse
|
15
|
Frey LJ, Vorländer D, Rasch D, Ostsieker H, Müller B, Schulze M, Schenkendorf R, Mayr T, Grosch JH, Krull R. Novel electrodynamic oscillation technique enables enhanced mass transfer and mixing for cultivation in micro-bioreactor. Biotechnol Prog 2019; 35:e2827. [PMID: 31021498 DOI: 10.1002/btpr.2827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Micro-bioreactors (MBRs) have become an indispensable part for modern bioprocess development enabling automated experiments in parallel while reducing material cost. Novel developments aim to further intensify the advantages as dimensions are being reduced. However, one factor hindering the scale-down of cultivation systems is to provide adequate mixing and mass transfer. Here, vertical oscillation is demonstrated as an effective method for mixing of MBRs with a reaction volume of 20 μL providing adequate mass transfer. Electrodynamic exciters are used to transduce kinetic energy onto the cultivation broth avoiding additional moving parts inside the applied model MBR. The induced vertical vibration leads to oscillation of the liquid surface corresponding to the frequency and displacement. On this basis, the resonance frequency of the fluid was identified as the most decisive factor for mixing performance. Applying this vertical oscillation method outstanding mixing times below 1 s and exceptionally high oxygen transport with volumetric mass transfer coefficients (kL a) above 1,000/hr can be successfully achieved and controlled. To evaluate the applicability of this vertical oscillation mixing for low volume MBR systems, cultivations of Escherichia coli BL21 as proof-of-concept were performed. The dissolved oxygen was successfully online monitored to assure any avoidance of oxygen limitations during the cultivation. The here presented data illustrate the high potential of the vertical oscillation technique as a flexible measure to adapt mixing times and oxygen transfer according to experimental demands. Thus, the mixing technique is a promising tool for various biological and chemical micro-scale applications still enabling adequate mass transfer.
Collapse
Affiliation(s)
- Lasse J Frey
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - David Vorländer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Hendrik Ostsieker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Bernhard Müller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technologies, Graz, Austria
| | - Moritz Schulze
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - René Schenkendorf
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technologies, Graz, Austria
| | - Jan-Hendrik Grosch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
16
|
Wang S, Gu K, Yan C, Guo Z, Zhao P, Zhu WH. POSS: A Morphology-Tuning Strategy To Improve the Sensitivity and Responsiveness of Dissolved Oxygen Sensor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shuwen Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaizhi Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chenxu Yan
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Möller J, Kuchemüller KB, Steinmetz T, Koopmann KS, Pörtner R. Model-assisted Design of Experiments as a concept for knowledge-based bioprocess development. Bioprocess Biosyst Eng 2019; 42:867-882. [DOI: 10.1007/s00449-019-02089-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
|
18
|
Bergenholm D, Liu G, Hansson D, Nielsen J. Construction of mini‐chemostats for high‐throughput strain characterization. Biotechnol Bioeng 2019; 116:1029-1038. [DOI: 10.1002/bit.26931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/31/2023]
Affiliation(s)
- David Bergenholm
- Novo Nordisk Foundation Center for Biosustainability, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| | - Guodong Liu
- Novo Nordisk Foundation Center for Biosustainability, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| | - David Hansson
- Novo Nordisk Foundation Center for Biosustainability, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholm Denmark
| |
Collapse
|
19
|
Effective Soil Extraction Method for Cultivating Previously Uncultured Soil Bacteria. Appl Environ Microbiol 2018; 84:AEM.01145-18. [PMID: 30291118 DOI: 10.1128/aem.01145-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/07/2018] [Indexed: 11/20/2022] Open
Abstract
Here, a new medium, named intensive soil extract medium (ISEM), based on new soil extract (NSE) using 80% methanol, was used to efficiently isolate previously uncultured bacteria and new taxonomic candidates, which accounted for 49% and 55% of the total isolates examined (n = 258), respectively. The new isolates were affiliated with seven phyla (Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Bacteroidetes). The result of chemical analysis showed that NSE included more diverse components of low-molecular-weight organic substances than two conventional soil extracts made using distilled water. Cultivation of previously uncultured bacteria is expected to extend knowledge through the discovery of new phenotypic, physiological, and functional properties and even roles of unknown genes.IMPORTANCE Both metagenomics and single-cell sequencing can detect unknown genes from uncultured microbial strains in environments, and either method may find the significant potential metabolites and roles of these strains. However, such gene/genome-based techniques do not allow detailed investigations that are possible with cultures. To solve this problem, various approaches for cultivation of uncultured bacteria have been developed, but there are still difficulties in maintaining pure cultures by subculture.
Collapse
|
20
|
Sandner V, Pybus LP, McCreath G, Glassey J. Scale-Down Model Development in ambr systems: An Industrial Perspective. Biotechnol J 2018; 14:e1700766. [PMID: 30350921 DOI: 10.1002/biot.201700766] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/16/2018] [Indexed: 11/08/2022]
Abstract
High-Throughput (HT) technologies such as miniature bioreactors (MBRs) are increasingly employed within the biopharmaceutical manufacturing industry. Traditionally, these technologies have been utilized for discrete screening approaches during pre-clinical development (e.g., cell line selection and process optimization). However, increasing interest is focused towards their use during late clinical phase process characterization studies as a scale-down model (SDM) of the cGMP manufacturing process. In this review, the authors describe a systematic approach toward SDM development in one of the most widely adopted MBRs, the ambr 15 and 250 mL (Sartorius Stedim Biotech) systems. Recent efforts have shown promise in qualifying ambr systems as SDMs to support more efficient, robust and safe biomanufacturing processes. The authors suggest that combinatorial improvements in process understanding (matching of mass transfer and cellular stress between scales through computational fluid dynamics and in vitro analysis), experimental design (advanced risk assessment and statistical design of experiments), and data analysis (combining uni- and multi-variate techniques) will ultimately yield ambr SDMs applicable for future regulatory submissions.
Collapse
Affiliation(s)
- Viktor Sandner
- Process Design, Process Development, FUJIFILM Diosynth Biotechnologies, Belasis Avenue, Billingham, TS23 1LH, United Kingdom.,School Engineering, Merz Court University of Newcastle, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Leon P Pybus
- Mammalian Cell Culture, Process Development, FUJIFILM Diosynth Biotechnologies, Belasis Avenue, Billingham, TS23 1LH, United Kingdom
| | - Graham McCreath
- Process Design, Process Development, FUJIFILM Diosynth Biotechnologies, Belasis Avenue, Billingham, TS23 1LH, United Kingdom
| | - Jarka Glassey
- School Engineering, Merz Court University of Newcastle, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
21
|
Hsu CJ, Jain HV, Williams A, Wang J, Lute SC, Beaucage SL, Brorson KA. Trans-acting oligodeoxythymidine phosphorothioate triester reagents for transient transfection optimized and facilitated by a high-throughput microbioreactor system. Biotechnol Appl Biochem 2017; 65:467-475. [PMID: 29023997 DOI: 10.1002/bab.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/30/2017] [Indexed: 11/09/2022]
Abstract
A rapid and cost-effective transient transfection method for mammalian cells is essential for screening biopharmaceuticals in early stages of development. A library of 25 amphipathic trans-acting oligodeoxythymidine phosphorothioate triester (dTtaPS) transfection reagents, carrying positively charged and lipophilic groups, has been constructed for this purpose. High-throughput screening of the library, using an imaging cytometer and an automated microbioreactor system, has led to the identification of dTtaPS10+ as a potent transfection reagent. This reagent efficiently delivers a plasmid encoding enhanced green fluorescent protein in adherent HeLa cells while exhibiting low cytotoxicity. The microbioreactor system has been particularly useful for assessing the ability of dTtaPS10+ to deliver a plasmid encoding immunoglobulin IgG1 in a fed-batch serum-free suspension CHO cell culture; dTtaPS10+ -mediated transfection resulted in the production of IgG1 in yields comparable to or better than those obtained with commercial lipid-based transfection reagents under similar conditions. The ability of dTtaPS10+ to deliver plasmids is essentially unaffected by the presence of a silicone-based antifoaming reagent, which is commonly used in bioreactor cell cultures. The transfection efficiency of lyophilized dTtaPS10+ -plasmid complexes has been significantly restored upon aqueous reconstitution when compared to that achieved while using commercial transfection reagent complexes under similar conditions. The results of all experiments underscore the potential of dTtaPS10+ for transient transfection of plasmids into adherent cells and fed-batch serum-free suspension CHO cells and rapid screening of reagents in a microbioreactor system.
Collapse
Affiliation(s)
- Chih-Jung Hsu
- Division of Biotechnology Review and Research II, OBP, CDER, Food and Drug Administration, Silver Spring, MD, USA
| | - Harsh V Jain
- Division of Biotechnology Review and Research IV, OBP, CDER, Food and Drug Administration, Silver Spring, MD, USA
| | - Abasha Williams
- Division of Biotechnology Review and Research II, OBP, CDER, Food and Drug Administration, Silver Spring, MD, USA
| | - Julie Wang
- Division of Biotechnology Review and Research II, OBP, CDER, Food and Drug Administration, Silver Spring, MD, USA
| | - Scott C Lute
- Division of Biotechnology Review and Research II, OBP, CDER, Food and Drug Administration, Silver Spring, MD, USA
| | - Serge L Beaucage
- Division of Biotechnology Review and Research IV, OBP, CDER, Food and Drug Administration, Silver Spring, MD, USA
| | - Kurt A Brorson
- Division of Biotechnology Review and Research II, OBP, CDER, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
22
|
Xie D. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review. Front Bioeng Biotechnol 2017; 5:65. [PMID: 29090211 PMCID: PMC5650997 DOI: 10.3389/fbioe.2017.00065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
As one of the major biofuels to replace fossil fuel, biodiesel has now attracted more and more attention due to its advantages in higher energy density and overall less greenhouse gas generation. Biodiesel (fatty acid alkyl esters) is produced by chemically or enzymatically catalyzed transesterification of lipids from microbial cells, microalgae, oil crops, or animal fats. Currently, plant oils or waste cooking oils/fats remain the major source for biodiesel production via enzymatic route, but the production capacity is limited either by the uncertain supplement of plant oils or by the low or inconsistent quality of waste oils/fats. In the past decades, significant progresses have been made on synthesis of microalgae oils directly from CO2via a photosynthesis process, but the production cost from any current technologies is still too high to be commercialized due to microalgae’s slow growth rate on CO2, inefficiency in photo-bioreactors, lack of efficient contamination control methods, and high cost in downstream recovery. At the same time, many oleaginous microorganisms have been studied to produce lipids via the fatty acid synthesis pathway under aerobic fermentation conditions, among them one of the most studied is the non-conventional yeast, Yarrowia lipolytica, which is able to produce fatty acids at very high titer, rate, and yield from various economical substrates. This review summarizes the recent research progresses in both cellular and bioprocess engineering in Y. lipolytica to produce lipids at a low cost that may lead to commercial-scale biodiesel production. Specific technologies include the strain engineering for using various substrates, metabolic engineering in high-yield lipid synthesis, cell morphology study for efficient substrate uptake and product formation, free fatty acid formation and secretion for improved downstream recovery, and fermentation engineering for higher productivities and less operating cost. To further improve the economics of the microbial oil-based biodiesel, production of lipid-related or -derived high-value products are also discussed.
Collapse
Affiliation(s)
- Dongming Xie
- Massachusetts Biomanufacturing Center, Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
23
|
Gupta SK, Shukla P. Sophisticated Cloning, Fermentation, and Purification Technologies for an Enhanced Therapeutic Protein Production: A Review. Front Pharmacol 2017; 8:419. [PMID: 28725194 PMCID: PMC5495827 DOI: 10.3389/fphar.2017.00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022] Open
Abstract
The protein productions strategies are crucial towards the development of application based research and elucidating the novel purification strategies for industrial production. Currently, there are few innovative avenues are studies for cloning, upstream, and purification through efficient bioprocess development. Such strategies are beneficial for industries as well as proven to be vital for effectual therapeutic protein development. Though, these techniques are well documented, but, there is scope of addition to current knowledge with novel and new approaches and it will pave new avenues in production of recombinant microbial and non-microbial proteins including secondary metabolites. In this review, we have focussed on the recent development in clone selection, various modern fermentation and purification technologies and future directions in these emerging areas. Moreover, we have also highlighted notable perspectives and challenges involved in the bioengineering of such proteins, including quality by design, gene editing and pioneering ideas. The biopharmaceutical industries continue to shift towards more flexible, automated platforms and economical product development, which in turn can help in developing the cost effective processes and affordable drug development for a large community.
Collapse
Affiliation(s)
- Sanjeev K Gupta
- Advanced Biotech Lab, Ipca Laboratories Ltd.,Mumbai, India.,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
24
|
Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda) 2017; 32:266-277. [PMID: 28615311 PMCID: PMC5545611 DOI: 10.1152/physiol.00036.2016] [Citation(s) in RCA: 949] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research.
Collapse
Affiliation(s)
- Kayla Duval
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Hannah Grover
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Li-Hsin Han
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania
| | - Yongchao Mou
- Department of Bioengineering, University of Illinois-Chicago, Rockford, Illinois
| | - Adrian F Pegoraro
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts; and
| | - Jeffery Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire;
| |
Collapse
|
25
|
Chen A, Leith M, Tu R, Tahim G, Sudra A, Bhargava S. Effects of diluents on cell culture viability measured by automated cell counter. PLoS One 2017; 12:e0173375. [PMID: 28264018 PMCID: PMC5338812 DOI: 10.1371/journal.pone.0173375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/20/2017] [Indexed: 11/18/2022] Open
Abstract
Commercially available automated cell counters based on trypan blue dye-exclusion are widely used in industrial cell culture process development and manufacturing to increase throughput and eliminate inherent variability in subjective interpretation associated with manual hemocytometers. When using these cell counters, sample dilution is often necessary to stay within the assay measurement range; however, the effect of time and diluents on cell culture is not well understood. This report presents the adverse effect of phosphate buffered saline as a diluent on cell viability when used in combination with an automated cell counter. The reduced cell viability was attributed to shear stress introduced by the automated cell counter. Furthermore, length of time samples were incubated in phosphate buffered saline also contributed to the observed drop in cell viability. Finally, as erroneous viability measurements can severely impact process decisions and product quality, this report identifies several alternative diluents that can maintain cell culture viability over time in order to ensure accurate representation of cell culture conditions.
Collapse
Affiliation(s)
- Aaron Chen
- BioProcess Development, Seattle Genetics, Inc., Bothell, Washington, United States of America
- * E-mail:
| | - Matthew Leith
- BioProcess Development, Seattle Genetics, Inc., Bothell, Washington, United States of America
| | - Roger Tu
- BioProcess Development, Seattle Genetics, Inc., Bothell, Washington, United States of America
| | - Gurpreet Tahim
- BioProcess Development, Seattle Genetics, Inc., Bothell, Washington, United States of America
| | - Anish Sudra
- Clinical Manufacturing, Seattle Genetics, Inc., Bothell, Washington, United States of America
| | - Swapnil Bhargava
- BioProcess Development, Seattle Genetics, Inc., Bothell, Washington, United States of America
| |
Collapse
|
26
|
López-Meza J, Araíz-Hernández D, Carrillo-Cocom LM, López-Pacheco F, Rocha-Pizaña MDR, Alvarez MM. Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells. Cytotechnology 2016; 68:1287-300. [PMID: 26091615 PMCID: PMC4960177 DOI: 10.1007/s10616-015-9889-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/13/2015] [Indexed: 12/12/2022] Open
Abstract
Despite their practical and commercial relevance, there are few reports on the kinetics of growth and production of Chinese hamster ovary (CHO) cells-the most frequently used host for the industrial production of therapeutic proteins. We characterize the kinetics of cell growth, substrate consumption, and product formation in naive and monoclonal antibody (mAb) producing recombinant CHO cells. Culture experiments were performed in 125 mL shake flasks on commercial culture medium (CD Opti CHO™ Invitrogen, Carlsbad, CA, USA) diluted to different glucose concentrations (1.2-4.8 g/L). The time evolution of cell, glucose, lactic acid concentration and monoclonal antibody concentrations was monitored on a daily basis for mAb-producing cultures and their naive counterparts. The time series were differentiated to calculate the corresponding kinetic rates (rx = d[X]/dt; rs = d[S]/dt; rp = d[mAb]/dt). Results showed that these cell lines could be modeled by Monod-like kinetics if a threshold substrate concentration value of [S]t = 0.58 g/L (for recombinant cells) and [S]t = 0.96 g/L (for naïve cells), below which growth is not observed, was considered. A set of values for μmax, and Ks was determined for naive and recombinant cell cultures cultured at 33 and 37 °C. The yield coefficient (Yx/s) was observed to be a function of substrate concentration, with values in the range of 0.27-1.08 × 10(7) cell/mL and 0.72-2.79 × 10(6) cells/mL for naive and recombinant cultures, respectively. The kinetics of mAb production can be described by a Luedeking-Piret model (d[mAb]/dt = αd[X]/dt + β[X]) with values of α = 7.65 × 10(-7) µg/cell and β = 7.68 × 10(-8) µg/cell/h for cultures conducted in batch-agitated flasks and batch and instrumented bioreactors operated in batch and fed-batch mode.
Collapse
Affiliation(s)
- Julián López-Meza
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - Diana Araíz-Hernández
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - Leydi Maribel Carrillo-Cocom
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte kilómetro 33.5, C.P. 97203, Mérida, Yucatán, Mexico
| | - Felipe López-Pacheco
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - María Del Refugio Rocha-Pizaña
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico.
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA.
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
27
|
Baumann P, Hubbuch J. Downstream process development strategies for effective bioprocesses: Trends, progress, and combinatorial approaches. Eng Life Sci 2016; 17:1142-1158. [PMID: 32624742 DOI: 10.1002/elsc.201600033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 12/26/2022] Open
Abstract
The biopharmaceutical industry is at a turning point moving toward a more customized and patient-oriented medicine (precision medicine). Straightforward routines such as the antibody platform process are extended to production processes for a new portfolio of molecules. As a consequence, individual and tailored productions require generic approaches for a fast and dedicated purification process development. In this article, different effective strategies in biopharmaceutical purification process development are reviewed that can analogously be used for the new generation of antibodies. Conventional approaches based on heuristics and high-throughput process development are discussed and compared to modern technologies such as multivariate calibration and mechanistic modeling tools. Such approaches constitute a good foundation for fast and effective process development for new products and processes, but their full potential becomes obvious in a correlated combination. Thus, different combinatorial approaches are presented, which might become future directions in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Pascal Baumann
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Jürgen Hubbuch
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
28
|
Electrostatic engineering of the interface between heavy and light chains promotes antibody Fab fragment production. Cytotechnology 2016; 69:469-475. [PMID: 26856589 DOI: 10.1007/s10616-016-9955-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibodies and antibody fragments are used for diverse diagnostic and therapeutic applications. We have investigated the secretory production of Fab fragments from insect cells cotransfected with plasmid vectors carrying heavy- and light-chain genes. In the present study, to promote the formation of the disulfide bond between the heavy and light chains, some positively charged amino acid residues were introduced near the cysteine residue for the disulfide bond at the C-terminus of CL, while some negatively charged amino acid residues were added near the cysteine residue for the disulfide bond at the C-terminus of CH1. This electrostatic steering led to an increase in Fab secretions from insect cells.
Collapse
|
29
|
Xie D, Jackson EN, Zhu Q. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biotechnol 2015; 99:1599-610. [PMID: 25567511 PMCID: PMC4322222 DOI: 10.1007/s00253-014-6318-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
Abstract
The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont’s technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.
Collapse
Affiliation(s)
- Dongming Xie
- Biotechnology, Central Research and Development, E.I. du Pont de Nemours and Company, Wilmington, DE, USA
| | | | | |
Collapse
|
30
|
Siganporia CC, Ghosh S, Daszkowski T, Papageorgiou LG, Farid SS. Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities. Biotechnol Prog 2014; 30:594-606. [PMID: 24376262 PMCID: PMC4415584 DOI: 10.1002/btpr.1860] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/18/2013] [Indexed: 11/10/2022]
Abstract
Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered.
Collapse
Affiliation(s)
- Cyrus C Siganporia
- Dept. of Biochemical Engineering, University College London, London, WC1E 7JE, U.K
| | | | | | | | | |
Collapse
|
31
|
Rouiller Y, Périlleux A, Collet N, Jordan M, Stettler M, Broly H. A high-throughput media design approach for high performance mammalian fed-batch cultures. MAbs 2013; 5:501-11. [PMID: 23563583 DOI: 10.4161/mabs.23942] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame.
Collapse
Affiliation(s)
- Yolande Rouiller
- Merck Serono SA ; Corsier-sur-Vevey ; Biotech Process Sciences ; Fenil-sur-Corsier, Switzerland
| | - Arnaud Périlleux
- Merck Serono SA ; Corsier-sur-Vevey ; Biotech Process Sciences ; Fenil-sur-Corsier, Switzerland
| | - Natacha Collet
- Merck Serono SA ; Corsier-sur-Vevey ; Biotech Process Sciences ; Fenil-sur-Corsier, Switzerland
| | - Martin Jordan
- Merck Serono SA ; Corsier-sur-Vevey ; Biotech Process Sciences ; Fenil-sur-Corsier, Switzerland
| | - Matthieu Stettler
- Merck Serono SA ; Corsier-sur-Vevey ; Biotech Process Sciences ; Fenil-sur-Corsier, Switzerland
| | - Hervé Broly
- Merck Serono SA ; Corsier-sur-Vevey ; Biotech Process Sciences ; Fenil-sur-Corsier, Switzerland
| |
Collapse
|
32
|
Mikschofsky H, Broer I. Feasibility of Pisum sativum as an expression system for pharmaceuticals. Transgenic Res 2012; 21:715-24. [PMID: 22057506 DOI: 10.1007/s11248-011-9573-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 10/20/2011] [Indexed: 12/15/2022]
Abstract
Based on its high protein content and excellent storage capacity, pea (Pisum sativum), as well as other plants, is considered to be a suitable production platform for protein-based pharmaceuticals. Its capacity to produce high proportions of active recombinant proteins (up to 2% total soluble protein corresponding to approximately 8 mg/g fresh weight) has been proven using pea-derived strong seed-specific promoters. The active antigens produced were also stable for more than 4 years. Pea can be used as a feed additive, up to a proportion of 30% to total feed, despite the presence of lectins. Thus, a low dosage of recombinant pea-based pharmaceuticals is non-hazardous. In addition, it is independent of N-fertilisation, has excellent biosafety characteristics and is accessible to gene transfer. Growth systems with a capacity for high yield are available for the greenhouse (5 t/ha) and, to a limited extent, also in the field (2.3 t/ha). The practicable establishment of pea seed banks allows a continuous production process. Although the use of a pea system is limited by complex transformation procedures, these advantages render pea a promising plant for the production of pharmaceuticals.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany.
| | | |
Collapse
|