1
|
Wohlgemuth R. Enzyme Catalysis for Sustainable Value Creation Using Renewable Biobased Resources. Molecules 2024; 29:5772. [PMID: 39683928 DOI: 10.3390/molecules29235772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme catalysis was traditionally used by various human cultures to create value long before its basic concepts were uncovered. This was achieved by transforming the raw materials available from natural resources into useful products. Tremendous scientific and technological progress has been made globally in understanding what constitutes an enzyme; what reactions enzymes can catalyze; and how to search, develop, apply, and improve enzymes to make desired products. The useful properties of enzymes as nature's preferred catalysts, such as their high selectivity, diversity, and adaptability, enable their optimal function, whether in single or multiple reactions. Excellent opportunities for the resource-efficient manufacturing of compounds are provided by the actions of enzymes working in reaction cascades and pathways within the same reaction space, like molecular robots along a production line. Enzyme catalysis plays an increasingly prominent role in industrial innovation and responsible production in various areas, such as green and sustainable chemistry and industrial or white biotechnology. Sources of inspiration include current manufacturing or supply chain challenges, the treasure of natural enzymes, and opportunities to engineer tailor-made enzymes. Making the best use of the power of enzyme catalysis is essential for changing how current products are manufactured; how renewable biobased resources can replace fossil-based resources; and improving the safety, health, and environmental aspects of manufacturing processes to support cleaner and more sustainable production.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Shi T, Sun X, Yuan Q, Wang J, Shen X. Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:46. [PMID: 38520003 PMCID: PMC10958861 DOI: 10.1186/s13068-024-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Hydroxylated aromatic compounds exhibit exceptional biological activities. In the biosynthesis of these compounds, three types of hydroxylases are commonly employed: cytochrome P450 (CYP450), pterin-dependent monooxygenase (PDM), and flavin-dependent monooxygenase (FDM). Among these, FDM is a preferred choice due to its small molecular weight, stable expression in both prokaryotic and eukaryotic fermentation systems, and a relatively high concentration of necessary cofactors. However, the catalytic efficiency of many FDMs falls short of meeting the demands of large-scale production. Additionally, challenges arise from the limited availability of cofactors and compatibility issues among enzyme components. Recently, significant progress has been achieved in improving its catalytic efficiency, but have not yet detailed and informative viewed so far. Therefore, this review emphasizes the advancements in FDMs for the biosynthesis of hydroxylated aromatic compounds and presents a summary of three strategies aimed at enhancing their catalytic efficiency: (a) Developing efficient enzyme mutants through protein engineering; (b) enhancing the supply and rapid circulation of critical cofactors; (c) facilitating cofactors delivery for enhancing FDMs catalytic efficiency. Furthermore, the current challenges and further perspectives on improving catalytic efficiency of FDMs are also discussed.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
3
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
4
|
Feng T, Wang Z, Li H, Li Q, Guo Y, Zhao J, Liu J. Whole-cell biotransformation for simultaneous synthesis of allitol and d-gluconic acid in recombinant Escherichia coli. J Biosci Bioeng 2023; 135:433-439. [DOI: 10.1016/j.jbiosc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
|
5
|
Bîtcan I, Petrovici A, Pellis A, Klébert S, Károly Z, Bereczki L, Péter F, Todea A. Enzymatic route for selective glycerol oxidation using covalently immobilized laccases. Enzyme Microb Technol 2022; 163:110168. [DOI: 10.1016/j.enzmictec.2022.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
|
6
|
Biundo A, Stamm A, Gorgoglione R, Syrén PO, Curia S, Hauer B, Capriati V, Vitale P, Perna F, Agrimi G, Pisano I. REGIO- AND STEREOSELECTIVE BIOCATALYTIC HYDRATION OF FATTY ACIDS FROM WASTE COOKING OILS EN ROUTE TO HYDROXY FATTY ACIDS AND BIO-BASED POLYESTERS. Enzyme Microb Technol 2022; 163:110164. [DOI: 10.1016/j.enzmictec.2022.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
|
7
|
Huo J, Bai Y, Fan TP, Zheng X, Cai Y. Hydroxytyrosol production from l-DOPA by engineered Escherichia coli co-expressing l-amino acid deaminase, α-keto acid decarboxylase, aldehyde reductase and glucose dehydrogenase with NADH regeneration. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Liang X, Deng H, Xiong T, Bai Y, Fan TP, Zheng X, Cai Y. Overexpression and biochemical characterization of a carboxyspermidine dehydrogenase from Agrobacterium fabrum str. C58 and its application to carboxyspermidine production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3858-3868. [PMID: 34932223 DOI: 10.1002/jsfa.11735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/18/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Carboxyspermidine (C-Spd) is a potentially valuable polyamine carboxylate compound and an excellent building block for spermidine synthesis, which is a critical polyamine with significant implications for human health and longevity. C-Spd can also be used to prepare multivalent cationic lipids and modify nucleoside probes. Because of these positive effects on human health, C-Spd is of considerable interest as a food additive and pharmaceutical target. RESULTS A putative gene afcasdh from Agrobacterium fabrum str. C58, encoding carboxyspermidine dehydrogenase with C-Spd biosynthesis activity, was synthesized and transformed into Escherichia coli BL21 (DE3) for overexpression. The recombinant AfCASDH was purified and fully characterized. The optimum temperature and pH for the recombinant enzyme were 30 °C and 7.5, respectively. The coupled catalytic strategy of AfCASDH and various NADPH regeneration systems were developed to enhance the efficient production of C-Spd compound. Finally, the maximum titer of C-Spd production successfully achieved 1.82 mmol L-1 with a yield of 91% by optimizing the catalytic conditions. CONCLUSION A novel AfCASDH from A. fabrum str. C58 was characterized that could catalyze the formation of C-Spd from putrescine and l-aspartate-β-semialdehyde (L-Asa). A whole-cell catalytic strategy coupled with NADPH regeneration was established successfully for C-Spd biosynthesis for the first time. The coupled system indicated that AfCASDH might provide a feasible method for the industrial production of C-Spd. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinxin Liang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Huaxiang Deng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tianzhen Xiong
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Sun C, Zhang R, Xie C. Efficient Synthesis of (R)-(+)-Perillyl Alcohol From (R)-(+)-Limonene Using Engineered Escherichia coli Whole Cell Biocatalyst. Front Bioeng Biotechnol 2022; 10:900800. [PMID: 35547170 PMCID: PMC9084310 DOI: 10.3389/fbioe.2022.900800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
(R)-(+)-perillyl alcohol is a much valued supplemental compound with a wide range of agricultural and pharmacological characteristics. The aim of this study was to improve (R)-(+)-perillyl alcohol production using a whole-cell catalytic formula. In this study, we employed plasmids with varying copy numbers to identify an appropriate strain, strain 03. We demonstrated that low levels of alKL provided maximal biocatalyst stability. Upon determination of the optimal conditions, the (R)-(+)-perillyl alcohol yield reached 130 mg/L. For cofactor regeneration, we constructed strain 10, expressing FDH from Candida boidinii, and achieved (R)-(+)-perillyl alcohol production of 230 mg/L. As a result, 1.23 g/L (R)-(+)-perillyl alcohol was transformed in a 5 L fermenter. Our proposed method facilitates an alternative approach to the economical biosynthesis of (R)-(+)-perillyl alcohol.
Collapse
Affiliation(s)
- Chao Sun
- A State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Rubing Zhang, ; Congxia Xie,
| | - Congxia Xie
- A State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
- *Correspondence: Rubing Zhang, ; Congxia Xie,
| |
Collapse
|
10
|
Ping L, Ruxian J, Mengping Z, Pei J, Zhuoya L, Guosheng L, Zhenyu W, Hailei W. Whole-cell biosynthesis of cytarabine by an unnecessary protein-reduced Escherichia coli that coexpresses purine and uracil phosphorylase. Biotechnol Bioeng 2022; 119:1768-1780. [PMID: 35383880 DOI: 10.1002/bit.28098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
Currently, whole-cell catalysts face challenges due to the complexity of reaction systems, although they have a cost advantage over pure enzymes. In this work, cytarabine was synthesized by purified purine phosphorylase 1 (PNP1) and uracil phosphorylase (UP), and the conversion of cytarabine from adenine arabinoside reached 72.3±4.3%. However, the synthesis was unsuccessful by whole-cell catalysis due to interference from unnecessary proteins (UNPs) in cells. Thus, we carried out a large-scale gene editing involving 377 genes in the genome of Escherichia coli to reduce the negative effect of UNPs on substrate conversion and cytarabine production. Finally, the PNP1 and UP activities of the obtained mutant were increased significantly compared with the parental strain, and more importantly, the conversion rate of cytarabine by whole-cell catalysis reached 67.4±2.5%. The lack of 148 proteins and down-regulation of 783 proteins caused by gene editing were equivalent to partial purification of the enzymes within cells, and thus, we provided inspiration to solve the problem caused by UNP interference, which is ubiquitous in the field of whole-cell catalysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Ping
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes,College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jing Ruxian
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes,College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zhou Mengping
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes,College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jia Pei
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes,College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Li Zhuoya
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes,College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Liu Guosheng
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes,College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Wang Zhenyu
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes,College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Wang Hailei
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes,College of Life Science, Henan Normal University, Xinxiang, 453007, China.,Advanced Environmental Biotechnology Center, Nanyang Technological University, Singapore, 637141, Singapore
| |
Collapse
|
11
|
Zhao J, Guo Y, Li Q, Chen J, Niu D, Liu J. Reconstruction of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Efficient Biosynthesis of Allitol from d-Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3775-3784. [PMID: 35298165 DOI: 10.1021/acs.jafc.2c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combined catalysis of glucose isomerase (GI), d-psicose 3-epimerase (DPEase), ribitol dehydrogenase (RDH), and formate dehydrogenase (FDH) provides a convenient route for the biosynthesis of allitol from d-glucose; however, the low catalytic efficiency restricts its industrial applications. Here, the supplementation of 0.32 g/L NAD+ significantly promoted the cell catalytic activity by 1.18-fold, suggesting that the insufficient intracellular NAD(H) content was a limiting factor in allitol production. Glucose dehydrogenase (GDH) with 18.13-fold higher activity than FDH was used for reconstructing a cofactor self-sufficient system, which was combined with the overexpression of the rate-limiting genes involved in NAD+ salvage metabolic flow to expand the available intracellular NAD(H) pool. Then, the multienzyme self-assembly system with SpyTag and SpyCatcher effectively channeled intermediates, leading to an 81.1% increase in allitol titer to 15.03 g/L from 25 g/L d-glucose. This study provided a facilitated strategy for large-scale and efficient biosynthesis of allitol from a low-cost substrate.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yan Guo
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qiufeng Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jing Chen
- South Subtropical Agricultural Scientific Research Institute of Guangxi, Longzhou, Guangxi 532415, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
12
|
Gao R, Li Z. Biosynthesis of 3-Hydroxy-3-Methylbutyrate from l-Leucine by Whole-Cell Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3712-3719. [PMID: 33734707 DOI: 10.1021/acs.jafc.1c00494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
3-Hydroxy-3-methylbutyrate (HMB) is an important compound that can be used for the synthesis of a variety of chemicals in the food and pharmaceutical fields. Here, a biocatalytic method using l-leucine as a substrate was designed and constructed by expressing l-amino acid deaminase (l-AAD) and 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) in Escherichia coli. To reduce the influence of the rate-limiting step on the cascade reaction, two 4-HPPD mutants were screened by rational design and both showed improved catalytic activity. Under optimal reaction conditions, the maximum conversion rate and production rate were 80% and 0.257 g/L·h, respectively. HMB production could be realized with high efficiency without an additional supply of adenosine triphosphate (ATP), which successfully overcomes the shortcomings of chemical production and fermentation methods. This design-based strategy of constructing a whole-cell catalyst system from l-leucine might serve as an alternative route to HMB synthesis.
Collapse
Affiliation(s)
- Ruichen Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
Jiang W, Zeng W. Construction of a Self-Purification and Self-Assembly Coenzyme Regeneration System for the Synthesis of Chiral Drug Intermediates. ACS OMEGA 2021; 6:1911-1916. [PMID: 33521431 PMCID: PMC7841785 DOI: 10.1021/acsomega.0c04668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
As one of the important research contents of synthetic biology, the construction of a regulatory system exhibits great potential in the synthesis of high value-added chemicals such as drug intermediates. In this work, a self-assembly coenzyme regeneration system, leucine dehydrogenase (LeuDH)-formate dehydrogenase (FDH) protein co-assembly system, was constructed by using the polypeptide, SpyTag/SpyCatcher. Then, it was demonstrated that the nonchromatographic inverse transition cycling purification method could purify intracellular coupling proteins and extracellular coupling proteins well. The conversion rate of the pure LeuDH-FDH protein assembly (FR-LR) was shown to be 1.6-fold and 32.3-fold higher than that of the free LeuDH-FDH system (LeuDH + FDH) and free LeuDH, respectively. This work has paved a new way of constructing a protein self-assembly system and engineering self-purification coenzyme regeneration system for the synthesis of chiral amino acids or chiral α-hydroxy acids.
Collapse
Affiliation(s)
- Wei Jiang
- ; . Tel.: +86-05926162305. Fax: +86-05926162305
| | | |
Collapse
|
14
|
Abstract
Biocatalysts provide a number of advantages such as high selectivity, the ability to operate under mild reaction conditions and availability from renewable resources that are of interest in the development of bioreactors for applications in the pharmaceutical and other sectors. The use of oxidoreductases in biocatalytic reactors is primarily focused on the use of NAD(P)-dependent enzymes, with the recycling of the cofactor occurring via an additional enzymatic system. The use of electrochemically based systems has been limited. This review focuses on the development of electrochemically based biocatalytic reactors. The mechanisms of mediated and direct electron transfer together with methods of immobilising enzymes are briefly reviewed. The use of electrochemically based batch and flow reactors is reviewed in detail with a focus on recent developments in the use of high surface area electrodes, enzyme engineering and enzyme cascades. A future perspective on electrochemically based bioreactors is presented.
Collapse
|
15
|
Dong F, Chen H, Malapit CA, Prater MB, Li M, Yuan M, Lim K, Minteer SD. Biphasic Bioelectrocatalytic Synthesis of Chiral β-Hydroxy Nitriles. J Am Chem Soc 2020; 142:8374-8382. [DOI: 10.1021/jacs.0c01890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Christian A. Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matthew B. Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
16
|
Li Y, Liu S, You C. Permeabilized
Escherichia coli
Whole Cells Containing Co‐Expressed Two Thermophilic Enzymes Facilitate the Synthesis of
scyllo
‐Inositol from
myo
‐Inositol. Biotechnol J 2019; 15:e1900191. [DOI: 10.1002/biot.201900191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan Li
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 P. R. China
| | - Shan Liu
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 P. R. China
| | - Chun You
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
17
|
Li C, Jia P, Bai Y, Fan TP, Zheng X, Cai Y. Efficient Synthesis of Hydroxytyrosol from l-3,4-Dihydroxyphenylalanine Using Engineered Escherichia coli Whole Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6867-6873. [PMID: 31134807 DOI: 10.1021/acs.jafc.9b01856] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydroxytyrosol is a high-value-added compound with a variety of biological and pharmacological activities. In this study, a whole-cell catalytic method for the synthesis of hydroxytyrosol was developed: aromatic amino acid aminotransferase (TyrB), l-glutamate dehydrogenase (GDH), α-keto acid decarboxylase (PmKDC), and aldehyde reductase (YahK) were co-expressed in Escherichia coli to catalyze the synthesis of hydroxytyrosol from l-3,4-dihydroxyphenylalanine (l-DOPA). The plasmids with different copy numbers were used to balance the expression of the four enzymes, and the most appropriate strain (pRSF- yahK- tyrB and pCDF- gdh- Pmkdc) was identified. After determination of the optimum temperature (35 °C) and pH (7.5) for whole-cell catalysis, the yield of hydroxytyrosol reached 36.33 mM (5.59 g/L) and the space-time yield reached 0.70 g L-1 h-1.
Collapse
Affiliation(s)
- Chaozhi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Pu Jia
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Yajun Bai
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Tai-Ping Fan
- Department of Pharmacology , University of Cambridge , Cambridge CB2 1PD , United Kingdom
| | - Xiaohui Zheng
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Yujie Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
18
|
Liu S, Zhang X, Liu F, Xu M, Yang T, Long M, Zhou J, Osire T, Yang S, Rao Z. Designing of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Production of 1,2-Amino Alcohols from Epoxides. ACS Synth Biol 2019; 8:734-743. [PMID: 30840437 DOI: 10.1021/acssynbio.8b00364] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optically pure 1,2-amino alcohols are highly valuable products as intermediates for chiral pharmaceutical products. Here we designed an environmentally friendly non-natural biocatalytic cascade for efficient synthesis of 1,2-amino alcohols from cheaper epoxides. A redesignated ω-transaminase PAKω-TA was tested and showed good bioactivity at a lower pH than other reported transaminases. The cascade was efficiently constructed as a single one-pot E. coli recombinant, by coupling SpEH (epoxide hydrolase), MnADH (alcohol dehydrogenase), and PAKω-TA. Furthermore, RBS regulation strategy was used to overcome the rate limiting step by increasing expression of MnADH. For cofactor regeneration and amino donor source, an interesting point was involved as that a cofactor self-sufficient system was designed by expression of GluDH. It established a "bridge" between the cofactor and the cosubstrate, such that the cofactor self-sufficient system could release cofactor (NADP+) and cosubstrate (l-Glutamine) regenerated simultaneously. The recombinant E. coli BL21 (SGMP) with cofactor self-sufficient whole-cell cascade biocatalysis showed high ee value (>99%) and high yield, with 99.6% conversion of epoxide ( S)-1a to 1,2-amino alcohol ( S)-1d in 10 h. It further converted ( S)-2a-5a to ( S)-2d-5d with varying conversion rates ranging between 65-96.4%. This study first provides one-step synthesis of optically pure 1,2-amino alcohols from ( S)-epoxides employing a synthetic redox-self-sufficient cascade.
Collapse
Affiliation(s)
- Song Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junping Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Li JX, Huang YY, Chen XR, Du QS, Meng JZ, Xie NZ, Huang RB. Enhanced production of optical ( S)-acetoin by a recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration. RSC Adv 2018; 8:30512-30519. [PMID: 35546830 PMCID: PMC9085422 DOI: 10.1039/c8ra06260a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
Acetoin is an important platform chemical with a variety of applications in foods, cosmetics, chemical synthesis, and especially in the asymmetric synthesis of optically active pharmaceuticals. It is also a useful breath biomarker for early lung cancer diagnosis. In order to enhance production of optical (S)-acetoin and facilitate this building block for a series of chiral pharmaceuticals derivatives, we have developed a systematic approach using in situ-NADH regeneration systems and promising diacetyl reductase. Under optimal conditions, we have obtained 52.9 g L-1 of (S)-acetoin with an enantiomeric purity of 99.5% and a productivity of 6.2 g (L h)-1. The results reported in this study demonstrated that the production of (S)-acetoin could be effectively improved through the engineering of cofactor regeneration with promising diacetyl reductase. The systematic approach developed in this study could also be applied to synthesize other optically active α-hydroxy ketones, which may provide valuable benefits for the study of drug development.
Collapse
Affiliation(s)
- Jian-Xiu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Life Science and Biotechnology College, Guangxi University 100 Daxue Road Nanning 530004 China
- State Key Laboratory of No-Food Biomass and Enzyme Technology, National Engineering Research Center for No-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China
| | - Yan-Yan Huang
- State Key Laboratory of No-Food Biomass and Enzyme Technology, National Engineering Research Center for No-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China
| | - Xian-Rui Chen
- State Key Laboratory of No-Food Biomass and Enzyme Technology, National Engineering Research Center for No-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China
| | - Qi-Shi Du
- State Key Laboratory of No-Food Biomass and Enzyme Technology, National Engineering Research Center for No-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China
| | - Jian-Zong Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Life Science and Biotechnology College, Guangxi University 100 Daxue Road Nanning 530004 China
| | - Neng-Zhong Xie
- State Key Laboratory of No-Food Biomass and Enzyme Technology, National Engineering Research Center for No-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China
| | - Ri-Bo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Life Science and Biotechnology College, Guangxi University 100 Daxue Road Nanning 530004 China
- State Key Laboratory of No-Food Biomass and Enzyme Technology, National Engineering Research Center for No-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China
| |
Collapse
|
20
|
Gauss D, Sánchez-Moreno I, Oroz-Guinea I, García-Junceda E, Wohlgemuth R. Phosphorylation Catalyzed by Dihydroxyacetone Kinase. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dominik Gauss
- Member of Merck Group; Sigma-Aldrich; Industriestrasse 25, CH -9470 Buchs Switzerland
| | - Israel Sánchez-Moreno
- Departamento de Química Bioorgánica; Instituto de Química Orgánica General; CSIC (IQOG-CSIC); Instituto de Química Orgánica General; 28006 Madrid Spain
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica; Instituto de Química Orgánica General; CSIC (IQOG-CSIC); Instituto de Química Orgánica General; 28006 Madrid Spain
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica; Instituto de Química Orgánica General; CSIC (IQOG-CSIC); Instituto de Química Orgánica General; 28006 Madrid Spain
| | - Roland Wohlgemuth
- Member of Merck Group; Sigma-Aldrich; Industriestrasse 25, CH -9470 Buchs Switzerland
| |
Collapse
|
21
|
Efficient biosynthesis of l-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system. Appl Microbiol Biotechnol 2018; 102:2129-2141. [DOI: 10.1007/s00253-018-8741-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/13/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
|
22
|
Farnberger JE, Lorenz E, Richter N, Wendisch VF, Kroutil W. In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones. Microb Cell Fact 2017; 16:132. [PMID: 28754115 PMCID: PMC5534079 DOI: 10.1186/s12934-017-0750-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
Background Transaminases have become a key tool in biocatalysis to introduce the amine functionality into a range of molecules like prochiral α-ketoacids and ketones. However, due to the necessity of shifting the equilibrium towards the product side (depending on the amine donor) an efficient amination system may require three enzymes. So far, this well-established transformation has mainly been performed in vitro by assembling all biocatalysts individually, which comes along with elaborate and costly preparation steps. We present the design and characterization of a flexible approach enabling a quick set-up of single-cell biocatalysts producing the desired enzymes. By choosing an appropriate co-expression strategy, a modular system was obtained, allowing for flexible plug-and-play combination of enzymes chosen from the toolbox of available transaminases and/or recycling enzymes tailored for the desired application. Results By using a two-plasmid strategy for the recycling enzyme and the transaminase together with chromosomal integration of an amino acid dehydrogenase, two enzyme modules could individually be selected and combined with specifically tailored E. coli strains. Various plug-and-play combinations of the enzymes led to the construction of a series of single-cell catalysts suitable for the amination of various types of substrates. On the one hand the fermentative amination of α-ketoacids coupled both with metabolic and non-metabolic cofactor regeneration was studied, giving access to the corresponding α-amino acids in up to 96% conversion. On the other hand, biocatalysts were employed in a non-metabolic, “in vitro-type” asymmetric reductive amination of the prochiral ketone 4-phenyl-2-butanone, yielding the amine in good conversion (77%) and excellent stereoselectivity (ee = 98%). Conclusions The described modularized concept enables the construction of tailored single-cell catalysts which provide all required enzymes for asymmetric reductive amination in a flexible fashion, representing a more efficient approach for the production of chiral amines and amino acids. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0750-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith E Farnberger
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Elisabeth Lorenz
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany
| | - Nina Richter
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany.
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria. .,Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| |
Collapse
|
23
|
Hou Y, Hossain GS, Li J, Shin HD, Du G, Chen J, Liu L. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids. Biotechnol Bioeng 2017; 114:1928-1936. [PMID: 28498544 DOI: 10.1002/bit.26336] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 12/28/2022]
Abstract
Cofactor flavin adenine dinucleotide (FAD) plays a vital role in many FAD-dependent enzymatic reactions; therefore, how to efficiently accelerate FAD synthesis and regeneration is an important topic in biocatalysis and metabolic engineering. In this study, a system involving the synthesis pathway and regeneration of FAD was engineered in Escherichia coli to improve α-keto acid production-from the corresponding l-amino acids-catalyzed by FAD-dependent l-amino acid deaminase (l-AAD). First, key genes, ribH, ribC, and ribF, were overexpressed and fine-tuned for FAD synthesis. In the resulting E. coli strain PHCF7, strong overexpression of pma, ribC, and ribF and moderate overexpression of ribH yielded a 90% increase in phenylpyruvic acid (PPA) titer: 19.4 ± 1.1 g · L-1 . Next, formate dehydrogenase (FDH) and NADH oxidase (NOX) were overexpressed to strengthen the regeneration rate of cofactors FADH2 /FAD using FDH for FADH2 /FAD regeneration and NOX for NAD+ /NADH regeneration. The resulting E. coli strain PHCF7-FDH-NOX yielded the highest PPA production: 31.4 ± 1.1 g · L-1 . Finally, this whole-cell system was adapted to production of other α-keto acids including α-ketoglutaric acid, α-ketoisocaproate, and keto-γ-methylthiobutyric acid to demonstrate the broad utility of strengthening of FAD synthesis and FADH2 /FAD regeneration for production of α-keto acids. Notably, the strategy reported herein may be generally applicable to other flavin-dependent biocatalysis reactions and metabolic pathway optimizations. Biotechnol. Bioeng. 2017;114: 1928-1936. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China, 214122.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Gazi S Hossain
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China, 214122.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China, 214122.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China, 214122.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China, 214122.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Ying H, Tao S, Wang J, Ma W, Chen K, Wang X, Ouyang P. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli. Microb Cell Fact 2017; 16:52. [PMID: 28347340 PMCID: PMC5369227 DOI: 10.1186/s12934-017-0666-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The six-carbon circular non-proteinogenic compound L-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of L-pipecolic acid from glucose. RESULTS The metabolic pathway from L-lysine to L-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, L-lysine metabolic flux from glucose was amplified by the plasmid-based overexpression of dapA, lysC, and lysA under the control of the strong trc promoter to increase the biosynthetic pool of the precursor L-lysine. Additionally, since the catalytic efficiency of the key enzyme LCD is limited by the cofactor NAD+, the intracellular pyridine nucleotide concentration was rebalanced by expressing the pntAB gene encoding the transhydrogenase, which elevated the proportion of LCD with bound NAD+ and enhanced L-pipecolic acid production significantly. Further, optimization of Fe2+ and surfactant in the fermentation process resulted in 5.33 g/L L-pipecolic acid, with a yield of 0.13 g/g of glucose via fed-batch cultivation. CONCLUSIONS We expanded the metabolic pathway for the synthesis of the chiral pharmaceutical intermediate L-pipecolic acid in E. coli. Using the engineered E. coli, a fast and efficient fermentative production of L-pipecolic acid was achieved. This strategy could be applied to the biosynthesis of other commercially and industrially important chiral compounds containing piperidine rings.
Collapse
Affiliation(s)
- Hanxiao Ying
- State Key Laboratory of Materials Oriented Chemical Engineering, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Sha Tao
- State Key Laboratory of Materials Oriented Chemical Engineering, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Materials Oriented Chemical Engineering, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Weichao Ma
- State Key Laboratory of Materials Oriented Chemical Engineering, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kequan Chen
- State Key Laboratory of Materials Oriented Chemical Engineering, Nanjing, 211816, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Xin Wang
- State Key Laboratory of Materials Oriented Chemical Engineering, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Pingkai Ouyang
- State Key Laboratory of Materials Oriented Chemical Engineering, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
25
|
Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates. Sci Rep 2016; 6:30462. [PMID: 27456301 PMCID: PMC4960608 DOI: 10.1038/srep30462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Systems that can regulate and coordinate the expression of multiple enzymes for metabolic regulation and synthesis of important drug intermediates are poorly explored. In this work, a strategy for constructing a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates was developed and evaluated by connecting protein-protein expressions, regulating the strength of ribosome binding sites (RBS) and detecting the system capacity for producing chiral amino acid. Results demonstrated that the dual-enzyme system had good enantioselectivity, low cost, high stability, high conversion rate and approximately 100% substrate conversion. This study has paved a new way of exploring metabolic mechanism of functional genes and engineering whole cell-catalysts for synthesis of chiral α-hydroxy acids or chiral amino acids.
Collapse
|
26
|
Vogel MAK, Burger H, Schläger N, Meier R, Schönenberger B, Bisschops T, Wohlgemuth R. Highly efficient and scalable chemoenzymatic syntheses of (R)- and (S)-lactaldehydes. REACT CHEM ENG 2016. [DOI: 10.1039/c5re00009b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biocatalytic asymmetric reductions have been key steps in the synthesis of 1,1-dimethoxy-2-propanone, catalyzed by suitable ketoreductases to (S)- and (R)-1,1-dimethoxy-2-propanol, obtained in ≥99.9% ee and excellent yield. Removal of the protecting group gave the (S)- and (R)-lactaldehydes in excellent yield and purity.
Collapse
Affiliation(s)
| | - H. Burger
- Sigma-Aldrich
- CH-9470 Buchs
- Switzerland
| | | | - R. Meier
- Sigma-Aldrich
- CH-9470 Buchs
- Switzerland
| | | | | | | |
Collapse
|
27
|
Pongtharangkul T, Chuekitkumchorn P, Suwanampa N, Payongsri P, Honda K, Panbangred W. Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration. AMB Express 2015; 5:68. [PMID: 26538191 PMCID: PMC4633474 DOI: 10.1186/s13568-015-0157-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 11/10/2022] Open
Abstract
Glucose dehydrogenases (GluDH) from Bacillus species offer several advantages over other NAD(P)H regeneration systems including high stability, inexpensive substrate, thermodynamically favorable reaction and flexibility to regenerate both NADH and NADPH. In this research, characteristics of GluDH from Bacillus amyloliquefaciens SB5 (GluDH-BA) was reported for the first time. Despite a highly similar amino acid sequence when comparing with GluDH from Bacillus subtilis (GluDH-BS), GluDH-BA exhibited significantly higher specific activity (4.7-fold) and stability when pH was higher than 6. While an optimum activity of GluDH-BA was observed at a temperature of 50 °C, the enzyme was stable only up to 42 °C. GluDH-BA exhibited an extreme tolerance towards n-hexane and its respective alcohols. The productivity of GluDH obtained in this study (8.42 mg-GluDH/g-wet cells; 1035 U/g-wet cells) was among the highest productivity reported for recombinant E. coli. With its low KM-value towards glucose (5.5 mM) and NADP+ (0.05 mM), GluDH-BA was highly suitable for in vivo applications. In this work, a recombinant solvent-tolerant B. subtilis BA overexpressing GluDH-BA was developed and evaluated by coupling with B. subtilis overexpressing an enzyme P450 BM3 F87V for a whole-cell hydroxylation of n-hexane. Significantly higher products obtained clearly proved that B. subtilis BA was an effective cofactor regenerator, a valuable asset for bioproduction of value-added chemicals.
Collapse
|
28
|
Enhancing the thermal tolerance of a cis-epoxysuccinate hydrolase via combining directed evolution with various semi-rational redesign methods. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Gourinchas G, Busto E, Killinger M, Richter N, Wiltschi B, Kroutil W. A synthetic biology approach for the transformation of l-α-amino acids to the corresponding enantiopure (R)- or (S)-α-hydroxy acids. Chem Commun (Camb) 2015; 51:2828-31. [PMID: 25574527 DOI: 10.1039/c4cc08286a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Combinatorial assembly and variation of promoters on a single expression plasmid allowed the balance of the catalytic steps of a three enzyme (l-AAD, HIC, FDH) cascade in E. coli. The designer cell catalyst quantitatively transformed l-amino acids to the corresponding optically pure (R)- and (S)-α-hydroxy acids at up to 200 mM substrate concentration.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria.
| | | | | | | | | | | |
Collapse
|
30
|
Production of phenylpyruvic acid from l-phenylalanine using an l-amino acid deaminase from Proteus mirabilis: comparison of enzymatic and whole-cell biotransformation approaches. Appl Microbiol Biotechnol 2015; 99:8391-402. [DOI: 10.1007/s00253-015-6757-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 12/12/2022]
|
31
|
Wu X, Gou X, Chen Y. Enzymatic preparation of t-butyl-6-cyano-(3R, 5R)-dihydroxyhexanoate by a whole-cell biocatalyst co-expressing carbonyl reductase and glucose dehydrogenase. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Chen R, Liu X, Lin J, Wei D. A genomic search approach to identify carbonyl reductases in Gluconobacter oxydans for enantioselective reduction of ketones. Biosci Biotechnol Biochem 2014; 78:1350-6. [DOI: 10.1080/09168451.2014.925775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
The versatile carbonyl reductases from Gluconobacter oxydans in the enantioselective reduction of ketones to the corresponding alcohols were exploited by genome search approach. All purified enzymes showed activities toward the tested ketoesters with different activities. In the reduction of 4-phenyl-2-butanone with in situ NAD(P)H regeneration system, (S)-alcohol was obtained with an e.e. of up to 100% catalyzed by Gox0644. Under the same experimental condition, all enzymes catalyzed ethyl 4-chloroacetoacetate to give chiral products with an excellent e.e. of up to 99%, except Gox0644. Gox2036 had a strict requirement for NADH as the cofactor and showed excellent enantiospecificity in the synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate. For the reduction of ethyl 2-oxo-4-phenylbutyrate, excellent e.e. (>99%) and high conversion (93.1%) were obtained by Gox0525, whereas the other enzymes showed relatively lower e.e. and conversions. Among them, Gox2036 and Gox0525 showed potentials in the synthesis of chiral alcohols as useful biocatalysts.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
- Center for Biomedicine and Health, Division of Basical Medicine, Hangzhou Normal University; Hangzhou, China
| | - Xu Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
33
|
Zhang J, Tao S, Zhang B, Wu X, Chen Y. Microparticle-Based Strategy for Controlled Release of Substrate for the Biocatalytic Preparation of l-Homophenylalanine. ACS Catal 2014. [DOI: 10.1021/cs4011919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jielin Zhang
- State Key
Laboratory of Natural
Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, Jiangsu Province 210009, China
| | - Shanshan Tao
- State Key
Laboratory of Natural
Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, Jiangsu Province 210009, China
| | - Baojie Zhang
- State Key
Laboratory of Natural
Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, Jiangsu Province 210009, China
| | - Xuri Wu
- State Key
Laboratory of Natural
Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, Jiangsu Province 210009, China
| | - Yijun Chen
- State Key
Laboratory of Natural
Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
34
|
Nie G, Zheng Z, Yue W, Liu Y, Liu H, Wang P, Zhao G, Cai W, Xue Z. One-pot bio-synthesis of propyl gallate by a novel whole-cell biocatalyst. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production. Microb Cell Fact 2013; 12:103. [PMID: 24209782 PMCID: PMC3831814 DOI: 10.1186/1475-2859-12-103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/05/2013] [Indexed: 01/29/2023] Open
Abstract
Background Whole-cell redox biocatalysis has been intensively explored for the production of valuable compounds because excellent selectivity is routinely achieved. Although the cellular cofactor level, redox state and the corresponding enzymatic activity are expected to have major effects on the performance of the biocatalysts, our ability remains limited to predict the outcome upon variation of those factors as well as the relationship among them. Results In order to investigate the effects of cofactor availability on whole-cell redox biocatalysis, we devised recombinant Escherichia coli strains for the production of dihydroxyacetone (DHA) catalyzed by the NAD+-dependent glycerol dehydrogenase (GldA). In this model system, a water-forming NAD+ oxidase (NOX) and a NAD+ transporter (NTT4) were also co-expressed for cofactor regeneration and extracellular NAD+ uptake, respectively. We found that cellular cofactor level, NAD+/NADH ratio and NOX activity were not only strain-dependent, but also growth condition-dependent, leading to significant differences in specific DHA titer among different whole-cell biocatalysts. The host E. coli DH5α had the highest DHA specific titer of 0.81 g/gDCW with the highest NAD+/NADH ratio of 6.7 and NOX activity of 3900 U. The biocatalyst had a higher activity when induced with IPTG at 37°C for 8 h compared with those at 30°C for 8 h and 18 h. When cells were transformed with the ntt4 gene, feeding NAD+ during the cell culture stage increased cellular NAD(H) level by 1.44 fold and DHA specific titer by 1.58 fold to 2.13 g/gDCW. Supplementing NAD+ during the biotransformation stage was also beneficial to cellular NAD(H) level and DHA production, and the highest DHA productivity reached 0.76 g/gDCW/h. Cellular NAD(H) level, NAD+/NADH ratio, and NOX and GldA activity dropped over time during the biotransformation process. Conclusions High NAD+/NADH ratio driving by NOX was very important for DHA production. Once cofactor was efficiently cycled, high cellular NAD(H) level was also beneficial for whole-cell redox biocatalysis. Our results indicated that NAD+ transporter could be applied to manipulate redox cofactor level for biocatalysis. Moreover, we suggested that genetically designed redox transformation should be carefully profiled for further optimizing whole-cell biocatalysis.
Collapse
|
36
|
Ghosh A, Saha R, Mukherjee K, Ghosh SK, Sar P, Malik S, Saha B. Choice of suitable micellar catalyst for 2,2′-bipyridine-promoted chromic acid oxidation of glycerol to glyceraldehyde in aqueous media at room temperature. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1415-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Zhang J, Zhu T, Wu X, Chen Y. Enhancement of biocatalytic efficiency by increasing substrate loading: enzymatic preparation of L-homophenylalanine. Appl Microbiol Biotechnol 2013; 97:8487-94. [PMID: 23893309 DOI: 10.1007/s00253-013-5117-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/27/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Enantiomerically pure L-homophenylalanine (L-HPA) is a key building block for the synthesis of angiotensin-converting enzyme inhibitors and other chiral pharmaceuticals. Among the processes developed for the L-HPA production, biocatalytic synthesis employing phenylalanine dehydrogenase has been proven as the most promising route. However, similar to other dehydrogenase-catalyzed reactions, the viability of this process is markedly affected by insufficient substrate loading and high costs of the indispensable cofactors. In the present work, a highly efficient and economic biocatalytic process for L-HPA was established by coupling genetically modified phenylalanine dehydrogenase and formate dehydrogenase. Combination of fed-batch substrate addition and a continuous product removal greatly increased substrate loading and cofactor utilization. After systemic optimization, 40 g (0.22 mol) of keto acid substrate was transformed to L-HPA within 24 h and a total of 0.2 mM NAD(+) was reused effectively in eight cycles of fed-batch operation, consequently giving an average substrate concentration of 510 mM and a productivity of 84.1 g l(-1) day(-1) for L-HPA. The present study provides an efficient and feasible enzymatic process for the production of L-HPA and a general solution for the increase of substrate loading.
Collapse
Affiliation(s)
- Jielin Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province, 210009, China
| | | | | | | |
Collapse
|
38
|
Liang B, Li L, Tang X, Lang Q, Wang H, Li F, Shi J, Shen W, Palchetti I, Mascini M, Liu A. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens Bioelectron 2013; 45:19-24. [DOI: 10.1016/j.bios.2013.01.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
|
39
|
Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, Ohtake H, Kato J, Ogawa J, Shimizu S, Urlacher VB, Schmid RD, Pongtharangkul T. Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Appl Microbiol Biotechnol 2012; 95:357-67. [PMID: 22555910 DOI: 10.1007/s00253-012-4039-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
Oxygenases-based Escherichia coli whole-cell biocatalyst can be applied for catalysis of various commercially interesting reactions that are difficult to achieve with traditional chemical catalysts. However, substrates and products of interest are often toxic to E. coli, causing a disruption of cell membrane. Therefore, organic solvent-tolerant bacteria became an important tool for heterologous expression of such oxygenases. In this study, the organic solvent-tolerant Bacillus subtilis 3C5N was developed as a whole-cell biocatalyst for epoxidation of a toxic terminal alkene, 1-hexene. Comparing to other hosts tested, high level of tolerance towards 1-hexene and a moderately hydrophobic cell surface of B. subtilis 3C5N were suggested to contribute to its higher 1,2-epoxyhexane production. A systematic optimization of reaction conditions such as biocatalyst and substrate concentration resulted in a 3.3-fold increase in the specific rate. Co-expression of glucose dehydrogenase could partly restored NADPH-regenerating ability of the biocatalyst (up to 38 % of the wild type), resulting in approximately 53 % increase in specific rate representing approximately 22-fold increase in product concentration comparing to that obtained prior to an optimization.
Collapse
Affiliation(s)
- Akasit Siriphongphaew
- Graduate Program in Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu X, Jiang J, Chen Y. Correlation between Intracellular Cofactor Concentrations and Biocatalytic Efficiency: Coexpression of Diketoreductase and Glucose Dehydrogenase for the Preparation of Chiral Diol for Statin Drugs. ACS Catal 2011. [DOI: 10.1021/cs200408y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuri Wu
- Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, 210009, P.R. China
| | - Jinpeng Jiang
- Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, 210009, P.R. China
| | - Yijun Chen
- Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, 210009, P.R. China
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| |
Collapse
|
41
|
Wu X, Kobori H, Orita I, Zhang C, Imanaka T, Xing XH, Fukui T. Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD⁺ and NADP⁺. Biotechnol Bioeng 2011; 109:53-62. [PMID: 21830202 DOI: 10.1002/bit.23294] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 11/07/2022]
Abstract
A novel thermostable NAD(P)H oxidase from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkNOX) catalyzes oxidation of NADH and NADPH with oxygen from atmospheric air as an electron acceptor. Although the optimal temperature of TkNOX is >90°C, it also shows activity at 30°C. This enzyme was used for the regeneration of both NADP(+) and NAD(+) in alcohol dehydrogenase (ADH)-catalyzed enantioselective oxidation of racemic 1-phenylethanol. NADP(+) regeneration at 30°C was performed by TkNOX coupled with (R)-specific ADH from Lactobacillus kefir, resulting in successful acquisition of optically pure (S)-1-phenylethanol. The use of TkNOX with moderately thermostable (S)-specific ADH from Rhodococcus erythropolis enabled us to operate the enantioselective bioconversion accompanying NAD(+) regeneration at high temperatures. Optically pure (R)-1-phenylethanol was successfully obtained by this system after a shorter reaction time at 45-60°C than that at 30°C, demonstrating an advantage of the combination of thermostable enzymes. The ability of TkNOX to oxidize both NADH and NADPH with remarkable thermostability renders this enzyme a versatile tool for regeneration of the oxidized nicotinamide cofactors without the need for extra substrates other than dissolved oxygen from air.
Collapse
Affiliation(s)
- Xi Wu
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Hall M, Bommarius AS. Enantioenriched Compounds via Enzyme-Catalyzed Redox Reactions. Chem Rev 2011; 111:4088-110. [DOI: 10.1021/cr200013n] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mélanie Hall
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Wohlgemuth R. Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 2010; 21:713-24. [DOI: 10.1016/j.copbio.2010.09.016] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 12/19/2022]
|
44
|
Wohlgemuth R. Asymmetric biocatalysis with microbial enzymes and cells. Curr Opin Microbiol 2010; 13:283-92. [DOI: 10.1016/j.mib.2010.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 01/05/2023]
|