1
|
Daga-Quisbert J, Mendieta D, Rajarao GK, van Maris AJA, Quillaguamán J. Production of ectoine by Vreelandella boliviensis using non-aseptic repeated-batch and continuous cultivations in an air-lift bioreactor. Int Microbiol 2024:10.1007/s10123-024-00626-3. [PMID: 39722111 DOI: 10.1007/s10123-024-00626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Ectoine, an osmolyte produced by various microorganisms, has numerous commercial applications. Vreelandella boliviensis (formerly called Halomonas boliviensis) generates high ectoine concentrations, i.e., 78.6 g/L. This study investigated three cultivation strategies for ectoine production in a non-aseptic air-lift bioreactor. The first strategy was performed in a repeated-batch mode with 5% (w/v) NaCl to induce cell growth, followed by the addition of solid NaCl to a final concentration of 12.5% (w/v) to prompt ectoine production. A maximum dry cell weight of 13.8 g/L at 46.5 h, a maximum ectoine concentration of 1.37 g/L at 37.5 h, and a maximum volumetric productivity of 0.93 g/L/d at 34.5 h were reached. The second strategy employed a three-step repeated-batch cultivation method. In the first step, cells were grown at the optimum salt concentration, harvested by centrifugation, and cultivated in a replenished medium for the second step. In the third step, the cells were harvested again and grown in a fresh medium containing 12.5% (w/v) NaCl. This strategy improved dry cell weight to 32 g/L, ectoine concentration to 4.37 g/L, and productivity to 1.76 g/L/day at 60 h of cultivation. The third strategy consisted of continuous cultivations that were investigated using different NaCl concentrations. The highest ectoine concentration of 2.83 g/L and productivity of 3.49 g/L/d were obtained with 8.5% (w/v) NaCl at a dilution rate of 0.05 (1/h). This study is the first to report ectoine production by V. boliviensis in continuous air-lift bioreactors under non-aseptic conditions.
Collapse
Affiliation(s)
- Jeanett Daga-Quisbert
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Daniela Mendieta
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Gunaratna Kuttuva Rajarao
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Albanova University Centre, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, Sweden
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Albanova University Centre, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, Sweden
| | - Jorge Quillaguamán
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| |
Collapse
|
2
|
Wang Y, Zhou J, Zhang Z, Huang L, Zhang B, Liu Z, Zheng Y. Efficient carbon flux allocation towards D-pantothenic acid production via growth-decoupled strategy in Escherichia coli. BIORESOURCE TECHNOLOGY 2024; 411:131325. [PMID: 39179135 DOI: 10.1016/j.biortech.2024.131325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
For industrial strain construction, rational allocation of carbon flux is of paramount importance especially for decoupling cell growth and chemical productions to get maximum titer, rate, yield (TRY), which become Gordian Knot. Here, a temperature-sensitive switch and genetic circuits was used for effectively decoupling cell growth from D-pantothenic acid (DPA) production, along with systematically metabolic engineering including blocking redundant pathways of pyruvate and enhancing DPA driving force. Afterwards, rapid biomass accumulation only happened during growth stage, and subsequent high-efficient DPA production was initiated with reducing fermentation temperature. Finally, 97.20 g/L DPA and 0.64 g/g glucose conversion rate were achieved in 5-liter fed-batch fermentation. These undisputedly represent a milestone for the biosynthesis of DPA. With using strategies for decoupling cell growth from chemical productions, it would serve as "Alexander's sword" to cut Gordian Knot to get industrial chassis cells with excellent TRY for de novo biosynthesis of valuable chemicals.
Collapse
Affiliation(s)
- Yihong Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zheng Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianggang Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Huang-Lin E, Tamarit D, Lebrero R, Cantera S. Guyparkeria halophila: Novel cell platform for the efficient valorization of carbon dioxide and thiosulfate into ectoine. BIORESOURCE TECHNOLOGY 2024; 408:131152. [PMID: 39053597 DOI: 10.1016/j.biortech.2024.131152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Utilizing carbon dioxide (CO2) for valuable chemical production is key to a circular economy. Current processes are costly due to limited microorganism use, low-value products, and the need for affordable energy. This study addresses these challenges by using industrial contaminants like thiosulfate (S2O32-) for CO2 conversion into ectoines. Ectoines, are important ingredients as pharmaceuticals and cosmetics. Here, six microbial genomes were identified as potential candidates to valorize CO2 and S2O32- into ectoine. After laboratory validation at 3 % NaCl, the fastest-growing strain, Guyparkeria halophila, was optimized at 6 %, 9 %, and 15 % NaCl, showing the highest specific ectoine contents (mgEct gbiomass-1) at 15 %. Batch bioreactors, combining optimal conditions, achieved maximum specific ectoine contents of 47 %. These results not only constitute the highest ectoine content so far reported by autotrophs and most of heterotrophs, but also the first proof of a novel valorization platform for CO2 and S2O32-, focused on pharmaceuticals production.
Collapse
Affiliation(s)
- E Huang-Lin
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - D Tamarit
- Theoretical Biology and Bioinformatics, Utrecht University, 3584CH Utrecht, The Netherlands
| | - R Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - S Cantera
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| |
Collapse
|
4
|
Orhan F, Ceyran E. Sugar beet molasses: a sweet solution for ectoine production by Nesterenkonia sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52198-52211. [PMID: 39143384 DOI: 10.1007/s11356-024-34674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Ectoine, a biologically significant compound, was successfully produced by a strain of bacteria capable of utilizing sucrose. In a ground-breaking approach, we harnessed the potential of sugar beet molasses, a by-product rich in sucrose, amino acid, and vitamins, as a growth medium for this purpose. Through meticulous investigation, we identified the ideal conditions for maximizing ectoine synthesis. This remarkable milestone was reached by introducing only 1 g of (NH₄)₂SO₄ and 5 mL of molasses per liter, maintaining a pH level of 8.0, upholding a 7.5% NaCl concentration, employing agitation at 120 rpm, and sustaining a temperature of 30 °C. This study marks a pioneering endeavour as it represents the first instance where molasses has been effectively employed to produce ectoine through the cultivation of Nesterenkonia sp. We showcased the production of 75.56 g of the valuable compound ectoine utilizing 1 L of waste molasses with this specific bacterial strain. These findings hold tremendous promise, not only in terms of resource utilization but also for the potential applications of ectoine in various biological contexts.
Collapse
Affiliation(s)
- Furkan Orhan
- Art and Science Faculty, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, 4100, Agri, Turkey.
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Ertuğrul Ceyran
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
5
|
Su B, Yang W, Zhou Y, Lin J. Efficiently manufacturing ectoine via metabolic engineering and protein engineering of L-2,4-diaminobutyrate transaminase. Int J Biol Macromol 2024; 275:133612. [PMID: 38960226 DOI: 10.1016/j.ijbiomac.2024.133612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Ectoine, so-called tetrahydropyrimidine, is an important osmotic adjustment solute and widely applied in cosmetics and protein protectant. Some attempts have been made to improve the ectoine productivity. However, the strains with both high ectoine production capacity and high glucose conversion were still absent so far. Aim to construct a strain for efficiently producing ectoine, ectoine synthetic gene cluster ectABC from Pseudomonas stutzeri was overexpressed in E. coli BL21 (DE3). The ection production was improved by 382 % (ectoine titer increased from 1.73 g/L to 8.33 g/L) after the rational design of rate-limiting enzyme L-2,4-diaminobutyrate transaminase EctBps (protein engineering) combined with the metabolic engineering that focused on the enrichment and conversion of precursors. The final strain YW20 was applied to overproduce ectoine in fed-batch fermentation and yield 68.9 g/L of ectoine with 0.88 g/L/h of space-time yield and the highest glucose conversion reported [34 % (g/g)]. From the fermentation broth, ectoine was purified with 99.7 % purity and 79.8 % yield. This study successfully provided an engineered strain as well as an efficient method for the industrial bio-synthesis and preparation of ectoine.
Collapse
Affiliation(s)
- Bingmei Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Wen Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yi Zhou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
6
|
Chen J, Qiao D, Yuan T, Feng Y, Zhang P, Wang X, Zhang L. Biotechnological production of ectoine: current status and prospects. Folia Microbiol (Praha) 2024; 69:247-258. [PMID: 37962826 DOI: 10.1007/s12223-023-01105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Ectoine is an important natural secondary metabolite in halophilic microorganisms. It protects cells against environmental stressors, such as salinity, freezing, drying, and high temperatures. Ectoine is widely used in medical, cosmetic, and other industries. Due to the commercial market demand of ectoine, halophilic microorganisms are the primary method for producing ectoine, which is produced using the industrial fermentation process "bacterial milking." The method has some limitations, such as the high salt concentration fermentation, which is highly corrosive to the equipment, and this also increases the difficulty of downstream purification and causes high production costs. The ectoine synthesis gene cluster has been successfully heterologously expressed in industrial microorganisms, and the yield of ectoine was significantly increased and the cost was reduced. This review aims to summarize and update microbial production of ectoine using different microorganisms, environments, and metabolic engineering and fermentation strategies and provides important reference for the development and application of ectoine.
Collapse
Affiliation(s)
- Jun Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, 23702, China
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Ministry of Natural Resources, State Oceanic Administration & Second Institute of Oceanography, Hangzhou, 310012, China
| | - Deliang Qiao
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China
| | - Tao Yuan
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yeyuan Feng
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Pengjun Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Xuejun Wang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Li Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China.
| |
Collapse
|
7
|
Hu Q, Sun S, Zhang Z, Liu W, Yi X, He H, Scrutton NS, Chen GQ. Ectoine hyperproduction by engineered Halomonas bluephagenesis. Metab Eng 2024; 82:238-249. [PMID: 38401747 DOI: 10.1016/j.ymben.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Ectoine, a crucial osmoprotectant for salt adaptation in halophiles, has gained growing interest in cosmetics and medical industries. However, its production remains challenged by stringent fermentation process in model microorganisms and low production level in its native producers. Here, we systematically engineered the native ectoine producer Halomonas bluephagenesis for ectoine production by overexpressing ectABC operon, increasing precursors availability, enhancing product transport system and optimizing its growth medium. The final engineered H. bluephagenesis produced 85 g/L ectoine in 52 h under open unsterile incubation in a 7 L bioreactor in the absence of plasmid, antibiotic or inducer. Furthermore, it was successfully demonstrated the feasibility of decoupling salt concentration with ectoine synthesis and co-production with bioplastic P(3HB-co-4HB) by the engineered H. bluephagenesis. The unsterile fermentation process and significantly increased ectoine titer indicate that H. bluephagenesis as the chassis of Next-Generation Industrial Biotechnology (NGIB), is promising for the biomanufacturing of not only intracellular bioplastic PHA but also small molecular compound such as ectoine.
Collapse
Affiliation(s)
- Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Simian Sun
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Liu
- PhaBuilder Biotechnology Co. Ltd., Shunyi District, Beijing 101309, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Xu S, Zhang B, Chen W, Ye K, Shen J, Liu P, Wu J, Wang H, Chu X. Highly efficient production of ectoine via an optimized combination of precursor metabolic modules in Escherichia coli BL21. BIORESOURCE TECHNOLOGY 2023; 390:129803. [PMID: 37758030 DOI: 10.1016/j.biortech.2023.129803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Ectoine is an osmotic pressure protectant observed in various microorganisms and is widely used in cosmetics and pharmaceuticals. The market value of ectoine has increased considerably with social progress, resulting in high demand for ectoine production technology. Herein, a microbial cell factory in Escherichia coli that produces ectoine at high titers is described as developing efficient and environmentally friendly bio-based ectoine production technology. The ectoine biosynthetic pathway of Halomonas hydrothermalis was introduced into E. coli BL21 (DE3). Subsequent overexpression of precursor metabolic modules, including aspartate branching, pyruvate-oxoacetate, and glutamate biosynthesis pathways, resulted in the final strain, E. coli BCT08, which produced ectoine at a titer of 36.58 g/L during 30 h of fermentation. Sugar feeding speed optimization improved the ectoine titer to 131.8 g/L after 96 h of cultivation. This represents a remarkable achievement in ectoine production from glucose under low-salt conditions and has vast potential for industrial applications.
Collapse
Affiliation(s)
- Shunqing Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wanhe Chen
- Zhejiang Lvchuang Biotechnology Co., Ltd, Huzhou 313200, Zhejiang, China
| | - Kai Ye
- Zhejiang Lvchuang Biotechnology Co., Ltd, Huzhou 313200, Zhejiang, China
| | - Jian Shen
- Zhejiang Lvchuang Biotechnology Co., Ltd, Huzhou 313200, Zhejiang, China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
9
|
Production and Recovery of Ectoine: A Review of Current State and Future Prospects. Processes (Basel) 2023. [DOI: 10.3390/pr11020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is a revolutionizing substance with vast applications in the cosmetic and food industries. Ectoine is often sourced from halobacteria. The increasing market demand for ectoine has urged the development of cost-effective and sustainable large-scale production of ectoine from microbial sources. This review describes the existing and potential microbial sources of ectoine and its derivatives, as well as microbial production and fermentation approaches for ectoine recovery. In addition, conventional methods and emerging technologies for enhanced production and recovery of ectoine from microbial fermentation with a focus on the aqueous biphasic system (ABS) are discussed. The ABS is a practically feasible approach for the integration of fermentation, cell disruption, bioconversion, and clarification of various biomolecules in a single-step operation. Nonetheless, the implementation of the ABS on an industrial-scale basis for the enhanced production and recovery of ectoine is yet to be exploited. Therefore, the feasibility of the ABS to integrate the production and direct recovery of ectoine from microbial sources is also highlighted in this review.
Collapse
|
10
|
Jiang A, Song Y, You J, Zhang X, Xu M, Rao Z. High-yield ectoine production in engineered Corynebacterium glutamicum by fine metabolic regulation via plug-in repressor library. BIORESOURCE TECHNOLOGY 2022; 362:127802. [PMID: 36007762 DOI: 10.1016/j.biortech.2022.127802] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Ectoine is a high-value protective and stabilizing agent with different applications in biopharmaceuticals, biotechnology, and fine chemicals. Here, efficient production of ectoine in Corynebacterium glutamicum was achieved by combination of metabolic engineering and plug-in repressor library strategy. First, the ectBAC cluster from Pseudomonas stutzeri was introduced into strain K02, and the titer of the obtained strain was 2.12 g/L. Metabolic engineering was then performed for further optimization, including removal of competing pathways (pck and ldh knockout), deletion of glycolysis repressor (sugR knockout), and enhancement of precursor supply (overexpression of Ecasd and CglysCS301Y). Next, two repressor libraries were designed for targeted flux control to improve ectoine production. Finally, strain CB5L6 produced 45.52 g/L ectoine and had the highest yield in C. glutamicum. For the first time, plug-in repressor library was employed to engineer C. glutamicum for metabolites production, which will provide a guideline for the construction of microbial cell factories.
Collapse
Affiliation(s)
- An Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yunhai Song
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Chen SY, Peng TC, Huang SZ, Chien CC. Isolation of an ectoine-producing Sinobaca sp. and identification of genes that are involved in ectoine biosynthesis. FEMS Microbiol Lett 2022; 369:6596284. [PMID: 35641156 DOI: 10.1093/femsle/fnac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/07/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
A moderate halophilic bacterium that could accumulate ectoine and hydroxyectoine was isolated from soil near a salt mine and was identified as a Sinobaca sp. (designed strain H24) according to 16S rRNA gene sequence analysis. The bacterium grew well in the presence of 1 to 2 M NaCl, while growth in a medium that contained 2 M NaCl led to higher accumulation of ectoines. The yields of ectoine and hydroxyectoine by Sinobaca sp. H24 reached 11.27 mg/L and 1.34 mg/L, respectively, when cultured in the following medium: NaCl (2 M), peptone (5 g/L), yeast extract (1 g/L), NH4Cl (0.02 M), KH2PO4 (1 M), K2HPO4 (0.1 M) and glycerol (1% w/v). Genes that are involved in ectoine biosynthesis of Sinobaca sp. H24 were also identified, and their sequences were determined by a metagenomics approach. The results demonstrated that Sinobaca sp. H24 possesses ectoine metabolism genes for both ectoine biosynthesis (ectA, ectB, ectC and ectD) and ectoine degradation (doeA). Genes that are related to ectoine biosynthesis, such as lysC and asd, were also characterized. The identification and characterization results for ectoine/hydroxyectoine biosynthesis genes are in agreement with the physiology of Sinobaca sp. H24 as a potential candidate for ectoine production for industrial applications. This report established for the first time the accumulation of ectoine/hydroxyectoine in Sinobaca sp. and characterized the genes that are involved in ectoine/hydroxyectoine biosynthesis in Sinobaca sp. H24.
Collapse
Affiliation(s)
- Shan-Yu Chen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Tzu-Chia Peng
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Shan-Ze Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Zhang H, Liang Z, Zhao M, Ma Y, Luo Z, Li S, Xu H. Metabolic Engineering of Escherichia coli for Ectoine Production With a Fermentation Strategy of Supplementing the Amino Donor. Front Bioeng Biotechnol 2022; 10:824859. [PMID: 35145959 PMCID: PMC8822159 DOI: 10.3389/fbioe.2022.824859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Ectoine, an osmotic pressure-compensated solute, is used in the food, agriculture, medicine, and cosmetics industries due to its ability to protect macromolecules. In this study, an ectoine-producing variant of Escherichia coli, ET08, was genetically constructed by introducing the ectABC gene cluster and eliminating metabolic pathways involving lysine and pyruvate. Medium optimization enhanced ectoine production from 1.87 to 10.2 g/L. Analysis of the transcriptional levels revealed that supplementation with ammonium sulfate enhanced the metabolic flux towards the biosynthesis of ectoine. Furthermore, by optimizing the copy number of ectA, ectB, and ectC, the recombinant E. coli ET11 (ectA:ectB:ectC = 1:2:1) produced 12.9 g/L ectoine in the shake flask and 53.2 g/L ectoine in a fed-batch fermenter, representing the highest ectoine titer produced by E. coli, which has great industrial prospects.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zhong Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ming Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yanqin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- *Correspondence: Sha Li, ; Hong Xu,
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
- *Correspondence: Sha Li, ; Hong Xu,
| |
Collapse
|
13
|
Kang JY, Lee B, Kim JA, Kim MS, Kim CH. Identification and characterization of an ectoine biosynthesis gene cluster from Aestuariispira ectoiniformans sp. nov., isolated from seawater. Microbiol Res 2021; 254:126898. [PMID: 34710834 DOI: 10.1016/j.micres.2021.126898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
An ectoine-producing bacterium, designated SWCN16T, was isolated from seawater and could be grown in a medium containing up to 12 % NaCl. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SWCN16T belonged to the genus Aestuariispira, class Alphaproteobacteria, and shared the highest 16S rRNA gene sequence similarity of 96.8% with Aestuariispira insulae CECT 8488T. The phenotypic, chemotaxonomic, and genotypic characteristics findings of this study suggested that strain SWCN16T represented a novel species of the genus Aestuariispira. We propose the name Aestuariispira ectoiniformans sp. nov. for this species. Whole-genome sequencing analysis of the isolate revealed a putative ectABC gene cluster for ectoine biosynthesis. These genes were found to be functional using ectoine synthesis testing and S16-ectBAC cells, which were pET21a-ectBAC-transformed E. coli BL21 cells. We found that S16-ectBAC synthesized about 1.67 g/L extracellular ectoine and about 0.59 g/L intracellular ectoine via bioconversion at optimum conditions.
Collapse
Affiliation(s)
- Ji Young Kang
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Binna Lee
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Jeong Ah Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Min-Soo Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Chul Ho Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| |
Collapse
|
14
|
Li B, Zhang B, Wang P, Cai X, Tang YQ, Jin JY, Liang JX, Liu ZQ, Zheng YG. Targeting metabolic driving and minimization of by-products synthesis for high-yield production of D-pantothenate in Escherichia coli. Biotechnol J 2021; 17:e2100431. [PMID: 34705325 DOI: 10.1002/biot.202100431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND d-Pantothenate (DPA) is an important functional chemical that has been widely applied in healthcare, cosmetics, animal food, and feed industries. METHODS AND RESULTS In this study, a high-yield DPA-producing strain was constructed by metabolic engineering strategies with targeting metabolic driving and by-products minimization. The metabolic driving force of push and pull was firstly obtained to improve the production of DPA via enrichment of precursor pool and synthetic pathway, accumulating 4.29 g L-1 DPA in shake flask fermentation. To eliminate the metabolic pressure on DPA production, an amino throttling system was proposed and successfully attenuated the synthesis of four competitive amino acids by a single-step regulation of gdhA. Further minimization of acetate was carried out by pta deletion, and utilization of β-alanine was improved via enhancing its uptake system with producing 5.78 g L-1 DPA. Finally, the engineered strain produced 66.39 g L-1 DPA with β-alanine addition in fermentor under fed-batch fermentation. CONCLUSION This study paved a foundation for the industrial production of DPA.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Pei Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Qun Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jie-Yi Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jin-Xi Liang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
15
|
Schwentner A, Neugebauer H, Weinmann S, Santos H, Eikmanns BJ. Exploring the Potential of Corynebacterium glutamicum to Produce the Compatible Solute Mannosylglycerate. Front Bioeng Biotechnol 2021; 9:748155. [PMID: 34621731 PMCID: PMC8490865 DOI: 10.3389/fbioe.2021.748155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
The compatible solute mannosylglycerate (MG) has exceptional properties in terms of protein stabilization and protection under salt, heat, and freeze-drying stresses as well as against protein aggregation. Due to these characteristics, MG possesses large potential for clinical and biotechnological applications. To achieve efficient MG production, Corynebacterium glutamicum was equipped with a bifunctional MG synthase (encoded by mgsD and catalyzing the condensation of 3-phosphoglycerate and GDP-mannose to MG) from Dehalococcoides mccartyi. The resulting strain C. glutamicum (pEKEx3 mgsD) intracellularly accumulated about 111 mM MG (60 ± 9 mg gCDW -1) with 2% glucose as a carbon source. To enable efficient mannose metabolization, the native manA gene, encoding mannose 6-phosphate isomerase, was overexpressed. Combined overexpression of manA and mgsD from two plasmids in C. glutamicum resulted in intracellular MG accumulation of up to ca. 329 mM [corresponding to 177 mg g cell dry weight (CDW) -1] with glucose, 314 mM (168 mg gCDW -1) with glucose plus mannose, and 328 mM (176 mg gCDW -1) with mannose as carbon source(s), respectively. The product was successfully extracted from cells by using a cold water shock, resulting in up to 5.5 mM MG (1.48 g L-1) in supernatants. The two-plasmid system was improved by integrating the mgsD gene into the manA-bearing plasmid and the resulting strain showed comparable production but faster growth. Repeated cycles of growth/production and extraction of MG in a bacterial milking-like experiment showed that cells could be recycled, which led to a cumulative MG production of 19.9 mM (5.34 g L-1). The results show that the newly constructed C. glutamicum strain produces MG from glucose and mannose and that a cold water shock enables extraction of MG from the cytosol into the medium.
Collapse
Affiliation(s)
- Andreas Schwentner
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Heiko Neugebauer
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Serin Weinmann
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | |
Collapse
|
16
|
Argandoña M, Piubeli F, Reina‐Bueno M, Nieto JJ, Vargas C. New insights into hydroxyectoine synthesis and its transcriptional regulation in the broad-salt growing halophilic bacterium Chromohalobacter salexigens. Microb Biotechnol 2021; 14:1472-1493. [PMID: 33955667 PMCID: PMC8313267 DOI: 10.1111/1751-7915.13799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022] Open
Abstract
Elucidating the mechanisms controlling the synthesis of hydroxyectoine is important to design novel genetic engineering strategies for optimizing the production of this biotechnologically relevant compatible solute. The genome of the halophilic bacterium Chromohalobacter salexigens carries two ectoine hydroxylase genes, namely ectD and ectE, whose encoded proteins share the characteristic consensus motif of ectoine hydroxylases but showed only a 51.9% identity between them. In this work, we have shown that ectE encodes a secondary functional ectoine hydroxylase and that the hydroxyectoine synthesis mediated by this enzyme contributes to C.␣salexigens thermoprotection. The evolutionary pattern of EctD and EctE and related proteins suggests that they may have arisen from duplication of an ancestral gene preceding the directional divergence that gave origin to the orders Oceanospirillales and Alteromonadales. Osmoregulated expression of ectD at exponential phase, as well as the thermoregulated expression of ectD at the stationary phase, seemed to be dependent on the general stress factor RpoS. In contrast, expression of ectE was always RpoS-dependent regardless of the growth phase and osmotic or heat stress conditions tested. The data presented here suggest that the AraC-GlxA-like EctZ transcriptional regulator, whose encoding gene lies upstream of ectD, plays a dual function under exponential growth as both a transcriptional activator of osmoregulated ectD expression and a repressor of ectE transcription, privileging the synthesis of the main ectoine hydroxylase EctD. Inactivation of ectZ resulted in a higher amount of the total ectoines pool at the expenses of a higher accumulation of ectoine, with maintenance of the hydroxyectoine levels. In addition to the transcriptional control, our results suggest a strong post-transcriptional regulation of hydroxyectoine synthesis. Data on the accumulation of ectoine and hydroxyectoine in rpoS and ectZ strains pave the way for using these genetic backgrounds for metabolic engineering for hydroxyectoine production.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Francine Piubeli
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Mercedes Reina‐Bueno
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Joaquín J. Nieto
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Carmen Vargas
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| |
Collapse
|
17
|
Ouyang Y, Chen S, Zhao L, Song Y, Lei A, He J, Wang J. Global Metabolomics Reveals That Vibrio natriegens Enhances the Growth and Paramylon Synthesis of Euglena gracilis. Front Bioeng Biotechnol 2021; 9:652021. [PMID: 33869160 PMCID: PMC8044410 DOI: 10.3389/fbioe.2021.652021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
The microalga Euglena gracilis is utilized in the food, medicinal, and supplement industries. However, its mass production is currently limited by its low production efficiency and high risk of microbial contamination. In this study, physiological and biochemical parameters of E. gracilis co-cultivated with the bacteria Vibrio natriegens were investigated. A previous study reports the benefits of E. gracilis and V. natriegens co-cultivation; however, no bacterium growth and molecular mechanisms were further investigated. Our results show that this co-cultivation positively increased total chlorophyll, microalgal growth, dry weight, and storage sugar paramylon content of E. gracilis compared to the pure culture without V. natriegens. This analysis represents the first comprehensive metabolomic study of microalgae-bacterial co-cultivation, with 339 metabolites identified. This co-cultivation system was shown to have synergistic metabolic interactions between microalgal and bacterial cells, with a significant increase in methyl carbamate, ectoine, choline, methyl N-methylanthranilate, gentiatibetine, 4R-aminopentanoic acid, and glu-val compared to the cultivation of E. gracilis alone. Taken together, these results fill significant gaps in the current understanding of microalgae-bacteria co-cultivation systems and provide novel insights into potential improvements for mass production and industrial applications of E. gracilis.
Collapse
Affiliation(s)
- Ying Ouyang
- Shenzhen Key Laboratory of Marine Bioresources and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Shuyu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Yiting Song
- Department of Microbiology, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresources and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi He
- Shenzhen Key Laboratory of Marine Bioresources and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Provinces, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresources and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Provinces, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Dong Y, Zhang H, Wang X, Ma J, Lei P, Xu H, Li S. Enhancing ectoine production by recombinant Escherichia coli through step-wise fermentation optimization strategy based on kinetic analysis. Bioprocess Biosyst Eng 2021; 44:1557-1566. [PMID: 33751211 DOI: 10.1007/s00449-021-02541-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/16/2021] [Indexed: 12/29/2022]
Abstract
In this study, the recombinant ectoine-producing Escherichia coli ET01 was constructed by introducing the ectABC operon from Halomonas venusta ZH. To further improve ectoine production, the regulation of the fermentation process was systematically investigated. First, the effects of the initial glucose concentrations and glucose feeding mode on ectoine production were analyzed. Using a combination of pH-feedback feeding and glucose-controlled feeding, the ectoine titer reached 25.5 g/L, representing an 8.8-fold increase over standard batch culture. Then, the effects of dissolved oxygen (DO) levels (50, 40, 30, or 20%) on ectoine production were studied, and a DO control strategy was developed based on the fermentation kinetics. When the final optimized two-stage fermentation strategy was used, the ectoine titer reached 47.8 g/L, which was the highest level of ectoine produced by E. coli fermentation. The fermentation regulation strategy developed in this study might be useful for scaling up the commercial production of ectoine.
Collapse
Affiliation(s)
- Yingsheng Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - XinYi Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - JunJie Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
19
|
Becker J, Wittmann C. Microbial production of extremolytes — high-value active ingredients for nutrition, health care, and well-being. Curr Opin Biotechnol 2020; 65:118-128. [DOI: 10.1016/j.copbio.2020.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
|
20
|
Fatollahi P, Ghasemi M, Yazdian F, Sadeghi A. Ectoine production in bioreactor by Halomonas elongata DSM2581: Using MWCNT and Fe-nanoparticle. Biotechnol Prog 2020; 37:e3073. [PMID: 32862555 DOI: 10.1002/btpr.3073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022]
Abstract
Halomonas elongate produces ectoine to protect itselt from environmental stresses. In this research, important factors in the production of ectoine were optimized using statistical methods to achieve the best production efficiency in bioreactor. Screening important variables (ectoine, hydroxyectoine, l-aspartic acid, and glutamate) on H. elongate growth showed that ectoine and l-aspartic acid directly affect ectoine production. Two nanostructures, multiwalled carbon nanotube (MWCNT) and iron oxide nanoparticle (Fe2 O3 NPs), were used to increase the availability of substrate for the microorganism. The results showed that Fe2 O3 nanoparticles and MWCNT could have a negative or positive effect on bacterial growth and ectoine production depending on the concentration of nanoparticles. At optimized conditions, the amounts of bacterial growth and ectoine production in fermenter were 10.4 g/L and 14.25 g/L, respectively. Therefore, it could be concluded that nanoparticles improve bacterial growth and ectoine production at optimized concentrations.
Collapse
Affiliation(s)
- Parvaneh Fatollahi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mina Ghasemi
- Faculty of Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Akram Sadeghi
- Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, Karaj, Iran
| |
Collapse
|
21
|
Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nat Commun 2020; 11:3313. [PMID: 32620759 PMCID: PMC7334215 DOI: 10.1038/s41467-020-17223-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/16/2020] [Indexed: 11/21/2022] Open
Abstract
Ectoine, a compatible solute synthesized by many halophiles for hypersalinity resistance, has been successfully produced by metabolically engineered Halomonas bluephagenesis, which is a bioplastic poly(3-hydroxybutyrate) producer allowing open unsterile and continuous conditions. Here we report a de novo synthesis pathway for ectoine constructed into the chromosome of H. bluephagenesis utilizing two inducible systems, which serve to fine-tune the transcription levels of three clusters related to ectoine synthesis, including ectABC, lysC and asd based on a GFP-mediated transcriptional tuning approach. Combined with bypasses deletion, the resulting recombinant H. bluephagenesis TD-ADEL-58 is able to produce 28 g L−1 ectoine during a 28 h fed-batch growth process. Co-production of ectoine and PHB is achieved to 8 g L−1 ectoine and 32 g L−1 dry cell mass containing 75% PHB after a 44 h growth. H. bluephagenesis demonstrates to be a suitable co-production chassis for polyhydroxyalkanoates and non-polymer chemicals such as ectoine. Halomonas bluephagenesis is a halophilic platform bacterium for next generation industrial biotechnology. Here, the authors employ a stimulus response-based flux-tuning method for coproduction of bioplastic PHB and ectoine under open unsterile and continuous growth conditions.
Collapse
|
22
|
Hillier HT, Altermark B, Leiros I. The crystal structure of the tetrameric DABA-aminotransferase EctB, a rate-limiting enzyme in the ectoine biosynthesis pathway. FEBS J 2020; 287:4641-4658. [PMID: 32112674 DOI: 10.1111/febs.15265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/30/2020] [Accepted: 02/26/2020] [Indexed: 01/13/2023]
Abstract
l-2,4-diaminobutyric acid (DABA) aminotransferases can catalyze the formation of amines at the distal ω-position of substrates, and is the intial and rate-limiting enzyme in the biosynthesis pathway of the cytoprotecting molecule (S)-2-methyl-1,4,5,6-tetrahydro-4-pyrimidine carboxylic acid (ectoine). Although there is an industrial interest in the biosynthesis of ectoine, the DABA aminotransferases remain poorly characterized. Herein, we present the crystal structure of EctB (2.45 Å), a DABA aminotransferase from Chromohalobacter salexigens DSM 3043, a well-studied organism with respect to osmoadaptation by ectoine biosynthesis. We investigate the enzyme's oligomeric state to show that EctB from C. salexigens is a tetramer of two functional dimers, and suggest conserved recognition sites for dimerization that also includes the characteristic gating loop that helps shape the active site of the neighboring monomer. Although ω-transaminases are known to have two binding pockets to accommodate for their dual substrate specificity, we herein provide the first description of two binding pockets in the active site that may account for the catalytic character of DABA aminotransferases. Furthermore, our biochemical data reveal that the EctB enzyme from C. salexigens is a thermostable, halotolerant enzyme with a broad pH tolerance which may be linked to its tetrameric state. Put together, this study creates a solid foundation for a deeper structural understanding of DABA aminotransferases and opening up for future downstream studies of EctB's catalytic character and its redesign as a better catalyst for ectoine biosynthesis. In summary, we believe that the EctB enzyme from C. salexigens can serve as a benchmark enzyme for characterization of DABA aminotransferases. DATABASE: Structural data are available in PDB database under the accession number 6RL5.
Collapse
Affiliation(s)
- Heidi Therese Hillier
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Ingar Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
23
|
Liu C, Baffoe DK, Zhan Y, Zhang M, Li Y, Zhang G. Halophile, an essential platform for bioproduction. J Microbiol Methods 2019; 166:105704. [PMID: 31494180 DOI: 10.1016/j.mimet.2019.105704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 11/24/2022]
Abstract
Industrial biotechnology aims to compete as a stronger alternative ensuring environmental friendly microbial-based production that seeks to curb the predicament of pollution. However, the high cost of bioprocessing is a severe drawback, and therefore, new approaches must be developed to overcome this challenge. Halophiles have shown potentials of overcoming this challenge and are of much preference for unsterile and continuous contamination-free bioprocess due to their unique ability to grow under harsh environmental conditions. Recent advances in genetic manipulations have been established to better the performance of halophiles for industrial applications. Many researchers produced various products such as polyhydroxyalkanoates (PHA), ectoines, biosurfactants, and antioxidants using halophiles, and further efforts have been established to develop halophiles as the foundation for low-cost bioprocess. This paper provides a useful reference for researchers on the merits, drawbacks, achievements, and application of halophiles for bioproduction.
Collapse
Affiliation(s)
- Changli Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Dennis Kingsley Baffoe
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Yuanlong Zhan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Mengying Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Yahui Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
24
|
Gießelmann G, Dietrich D, Jungmann L, Kohlstedt M, Jeon EJ, Yim SS, Sommer F, Zimmer D, Mühlhaus T, Schroda M, Jeong KJ, Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum
for High‐Level Ectoine Production: Design, Combinatorial Assembly, and Implementation of a Transcriptionally Balanced Heterologous Ectoine Pathway. Biotechnol J 2019; 14:e1800417. [DOI: 10.1002/biot.201800417] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/03/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Gideon Gießelmann
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Demian Dietrich
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Lukas Jungmann
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Michael Kohlstedt
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Eun J. Jeon
- Department of Chemical and Biomolecular EngineeringKAIST 335 Gwahagno Yuseong‐gu Daejeon 305‐701 Republic of Korea
| | - Sung S. Yim
- Department of Chemical and Biomolecular EngineeringKAIST 335 Gwahagno Yuseong‐gu Daejeon 305‐701 Republic of Korea
| | - Frederik Sommer
- Department of Molecular Biotechnology and Systems BiologyTU Kaiserslautern Kaiserslautern 67663 Germany
| | - David Zimmer
- Department of Molecular Biotechnology and Systems BiologyTU Kaiserslautern Kaiserslautern 67663 Germany
| | - Timo Mühlhaus
- Department of Molecular Biotechnology and Systems BiologyTU Kaiserslautern Kaiserslautern 67663 Germany
| | - Michael Schroda
- Department of Molecular Biotechnology and Systems BiologyTU Kaiserslautern Kaiserslautern 67663 Germany
| | - Ki J. Jeong
- Department of Chemical and Biomolecular EngineeringKAIST 335 Gwahagno Yuseong‐gu Daejeon 305‐701 Republic of Korea
| | - Judith Becker
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| | - Christoph Wittmann
- Institute of Systems BiotechnologySaarland University 66123 Saarbrücken Germany
| |
Collapse
|
25
|
Yu L, Wu F, Chen G. Next‐Generation Industrial Biotechnology‐Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnol J 2019; 14:e1800437. [DOI: 10.1002/biot.201800437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/01/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lin‐Ping Yu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Fu‐Qing Wu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Guo‐Qiang Chen
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Manchester Institute of Biotechnology, Centre for Synthetic BiologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
26
|
Xu JM, Li JQ, Zhang B, Liu ZQ, Zheng YG. Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering. Microb Cell Fact 2019; 18:43. [PMID: 30819198 PMCID: PMC6393993 DOI: 10.1186/s12934-019-1095-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/25/2019] [Indexed: 01/13/2023] Open
Abstract
Background l-2-aminobutyric acid (l-ABA) is an unnatural amino acid that is a key intermediate for the synthesis of several important pharmaceuticals. To make the biosynthesis of l-ABA environmental friendly and more suitable for the industrial-scale production. We expand the nature metabolic network of Escherichia coli using metabolic engineering approach for the production of l-ABA. Results In this study, Escherichia coli THR strain with a modified pathway for threonine-hyperproduction was engineered via deletion of the rhtA gene from the chromosome. To redirect carbon flux from 2-ketobutyrate (2-KB) to l-ABA, the ilvIH gene was deleted to block the l-isoleucine pathway. Furthermore, the ilvA gene from Escherichia coli W3110 and the leuDH gene from Thermoactinomyces intermedius were amplified and co-overexpressed. The promoter was altered to regulate the expression strength of ilvA* and leuDH. The final engineered strain E. coli THR ΔrhtAΔilvIH/Gap-ilvA*-Pbs-leuDH was able to produce 9.33 g/L of l-ABA with a yield of 0.19 g/L/h by fed-batch fermentation in a 5 L bioreactor. Conclusions This novel metabolically tailored strain offers a promising approach to fulfill industrial requirements for production of l-ABA. Electronic supplementary material The online version of this article (10.1186/s12934-019-1095-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jian-Qiang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
27
|
Cantera S, Sánchez-Andrea I, Sadornil LJ, García-Encina PA, Stams AJM, Muñoz R. Novel haloalkaliphilic methanotrophic bacteria: An attempt for enhancing methane bio-refinery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:1091-1099. [PMID: 30602233 DOI: 10.1016/j.jenvman.2018.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/14/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Methane bioconversion into products with a high market value, such as ectoine or hydroxyectoine, can be optimized via isolation of more efficient novel methanotrophic bacteria. The research here presented focused on the enrichment of methanotrophic consortia able to co-produce different ectoines during CH4 metabolism. Four different enrichments (Cow3, Slu3, Cow6 and Slu6) were carried out in basal media supplemented with 3 and 6% NaCl, and using methane as the sole carbon and energy source. The highest ectoine accumulation (∼20 mg ectoine g biomass-1) was recorded in the two consortia enriched at 6% NaCl (Cow6 and Slu6). Moreover, hydroxyectoine was detected for the first time using methane as a feedstock in Cow6 and Slu6 (∼5 mg g biomass-1). The majority of the haloalkaliphilic bacteria identified by 16S rRNA community profiling in both consortia have not been previously described as methanotrophs. From these enrichments, two novel strains (representing novel species) capable of using methane as the sole carbon and energy source were isolated: Alishewanella sp. strain RM1 and Halomonas sp. strain PGE1. Halomonas sp. strain PGE1 showed higher ectoine yields (70-92 mg ectoine g biomass-1) than those previously described for other methanotrophs under continuous cultivation mode (∼37-70 mg ectoine g biomass-1). The results here obtained highlight the potential of isolating novel methanotrophs in order to boost the competitiveness of industrial CH4-based ectoine production.
Collapse
Affiliation(s)
- Sara Cantera
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Lidia J Sadornil
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Pedro A García-Encina
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain.
| |
Collapse
|
28
|
Cantera S, Sánchez-Andrea I, Lebrero R, García-Encina PA, Stams AJM, Muñoz R. Multi-production of high added market value metabolites from diluted methane emissions via methanotrophic extremophiles. BIORESOURCE TECHNOLOGY 2018; 267:401-407. [PMID: 30031279 DOI: 10.1016/j.biortech.2018.07.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 05/12/2023]
Abstract
This study constitutes the first-proof-of-concept of a methane biorefinery based on the multi-production of high profit margin substances (ectoine, hydroxyectoine, polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS)) using methane as the sole carbon and energy source. Two bubble column bioreactors were operated under different magnesium concentrations (0.2, 0.02 and 0.002 g L-1) to validate and optimize this innovative strategy for valorization of CH4 emissions. High Mg2+ concentrations promoted the accumulation of ectoine (79.7-94.2 mg g biomass-1), together with high hydroxyectoine yields (up to 13 mg g biomass-1) and EPS concentrations (up to 2.6 g L culture broth-1). Unfortunately, PHA synthesis was almost negligible (14.3 mg L-1) and only found at the lowest Mg2+ concentration tested. Halomonas, Marinobacter, Methylophaga and Methylomicrobium, previously described as ectoine producers, were dominant in both bioreactors, Methylomicrobium being the only described methanotroph. This study encourages further research on CH4 biorefineries capable of creating value out of GHG mitigation.
Collapse
Affiliation(s)
- S Cantera
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - I Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - R Lebrero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - P A García-Encina
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - R Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain.
| |
Collapse
|
29
|
Salvador M, Argandoña M, Naranjo E, Piubeli F, Nieto JJ, Csonka LN, Vargas C. Quantitative RNA-seq Analysis Unveils Osmotic and Thermal Adaptation Mechanisms Relevant for Ectoine Production in Chromohalobacter salexigens. Front Microbiol 2018; 9:1845. [PMID: 30158907 PMCID: PMC6104435 DOI: 10.3389/fmicb.2018.01845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/24/2018] [Indexed: 01/18/2023] Open
Abstract
Quantitative RNA sequencing (RNA-seq) and the complementary phenotypic assays were implemented to investigate the transcriptional responses of Chromohalobacter salexigens to osmotic and heat stress. These conditions trigger the synthesis of ectoine and hydroxyectoine, two compatible solutes of biotechnological interest. Our findings revealed that both stresses make a significant impact on C. salexigens global physiology. Apart from compatible solute metabolism, the most relevant adaptation mechanisms were related to “oxidative- and protein-folding- stress responses,” “modulation of respiratory chain and related components,” and “ion homeostasis.” A general salt-dependent induction of genes related to the metabolism of ectoines, as well as repression of ectoine degradation genes by temperature, was observed. Different oxidative stress response mechanisms, secondary or primary, were induced at low and high salinity, respectively, and repressed by temperature. A higher sensitivity to H2O2 was observed at high salinity, regardless of temperature. Low salinity induced genes involved in “protein-folding-stress response,” suggesting disturbance of protein homeostasis. Transcriptional shift of genes encoding three types of respiratory NADH dehydrogenases, ATP synthase, quinone pool, Na+/H+ antiporters, and sodium-solute symporters, was observed depending on salinity and temperature, suggesting modulation of the components of the respiratory chain and additional systems involved in the generation of H+ and/or Na+ gradients. Remarkably, the Na+ intracellular content remained constant regardless of salinity and temperature. Disturbance of Na+- and H+-gradients with specific ionophores suggested that both gradients influence ectoine production, but with differences depending on the solute, salinity, and temperature conditions. Flagellum genes were strongly induced by salinity, and further induced by temperature. However, salt-induced cell motility was reduced at high temperature, possibly caused by an alteration of Na+ permeability by temperature, as dependence of motility on Na+-gradient was observed. The transcriptional induction of genes related to the synthesis and transport of siderophores correlated with a higher siderophore production and intracellular iron content only at low salinity. An excess of iron increased hydroxyectoine accumulation by 20% at high salinity. Conversely, it reduced the intracellular content of ectoines by 50% at high salinity plus high temperature. These findings support the relevance of iron homeostasis for osmoadaptation, thermoadaptation and accumulation of ectoines, in C. salexigens.
Collapse
Affiliation(s)
- Manuel Salvador
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Montserrat Argandoña
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Emilia Naranjo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Francine Piubeli
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Joaquín J Nieto
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Lazslo N Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Carmen Vargas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
30
|
Metabolic engineering of E. coli for the production of O-succinyl-l-homoserine with high yield. 3 Biotech 2018; 8:310. [PMID: 30002999 DOI: 10.1007/s13205-018-1332-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
O-succinyl-l-homoserine (OSH) is a promising platform chemical for the production of C4 chemicals with huge market potential which can be produced by fermentation from glucose. To construct a strain capable of producing OSH with high yield, the metJ (encodes transcriptional repressor) and metI (encodes a subunit of dl-methionine transporter) were deleted in Escherichia coli W3110 to obtain a strain E. coli ∆JI. Then, overexpression of metL (encodes bifunctional aspartate kinase/homoserine dehydrogenase II) and inactivation of metB (encodes cystathionine γ-synthase) were implemented in one step, and the OSH titer of the resulting strain E. coli ∆JIB* TrcmetL was dramatically increased to 7.30 g/L. The feedback regulation was further relieved by progressively overexpressing metAfbr (encodes homoserine O-succinyltransferase), yjeH (encodes l-methionine exporter), and thrAfbr (encodes bifunctional aspartate kinase/homoserine dehydrogenase I) to increase the metabolic flux from aspartate to OSH. The 100% rationally designed strain E. coli ∆JIB* TrcmetL/pTrc-metAfbr -Trc-thrAfbr -yjeH produced 9.31 g/L OSH from 20 g/L glucose (0.466 g/g glucose) in batch fermentation, which represents the highest OSH yield from glucose reported to date. The culture profiles of the newly constructed strains were recorded to investigate their productive properties. The effects of l-methionine addition on the fermentation process of the optimal strain were also studied. Our results demonstrate that tuning the expression level of metL, inactivation of metB, and attenuation of feedback resistance of the crucial enzymes in the biosynthetic pathway are the key factors that impact the OSH production in E. coli.
Collapse
|
31
|
Reprogramming Halomonas for industrial production of chemicals. J Ind Microbiol Biotechnol 2018; 45:545-554. [PMID: 29948194 DOI: 10.1007/s10295-018-2055-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
Abstract
Halomonas spp. are able to grow under a high salt concentration at alkali pH, they are able to resist contamination by other microbes. Development of Halomonas spp. as platform production strains for the next-generation industrial biotechnology (NGIB) is intensively studied. Among Halomonas spp., Halomonas bluephagenesis is the best studied one with available engineering tools and methods to reprogram it for production of various polyhydroxyalkanoates, proteins, and chemicals. Due to its contamination resistance, H. bluephagenesis can be grown under open and continuous processes not just in the labs but also in at least 1000 L fermentor scale. It is expected that NGIB based on Halomonas spp. be able to engineer for production of increasing number of products in a competitive manner.
Collapse
|
32
|
Mahler N, Tschirren S, Pflügl S, Herwig C. Optimized bioreactor setup for scale-up studies of extreme halophilic cultures. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Production and characterization of ectoine using a moderately halophilic strain Halomonas salina BCRC17875. J Biosci Bioeng 2018; 125:578-584. [PMID: 29331525 DOI: 10.1016/j.jbiosc.2017.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 11/28/2017] [Accepted: 12/13/2017] [Indexed: 11/22/2022]
Abstract
This study attempted to utilize Halomonas salina BCRC17875 to produce ectoine by optimizing the agitation speed and medium composition. In addition, the chemical structure of ectoine produced by H. salina BCRC17875 was determined. The results indicate that ectoine production reached 3.65 g/L at 38 h of cultivation when the agitation rate and NaCl concentration were fixed at 200 rpm and 2.0 M, respectively. It reached 9.20 g/L at 44 h of cultivation when the major medium components were yeast extract (56 g/L), glutamate (74.40 g/L), and ammonium sulfate (14 g/L). After the nitrogen concentration had been evaluated, evaluation of the nitrogen concentration revealed that the ectoine production reached 11.80 g/L at 44 h of cultivation when 56 g/L of yeast extract and 28 g/L of ammonium sulfate were used. Ectoine production reached 13.96 g/L at 44 h of cultivation when the carbon/nitrogen ratio was fixed at 3/1 using 84 g/L of yeast extract and 28 g/L of ammonium sulfate. Furthermore, the identification of ectoine were identified and characterized by fast atom bombardment mass spectrometry (FAB-MS) and 1H NMR. The results demonstrated a fermentation strategy was successful in increasing ectoine production, and that the fermentation medium of ectoine had commercialization potential.
Collapse
|
34
|
Piubeli F, Salvador M, Argandoña M, Nieto JJ, Bernal V, Pastor JM, Cánovas M, Vargas C. Insights into metabolic osmoadaptation of the ectoines-producer bacterium Chromohalobacter salexigens through a high-quality genome scale metabolic model. Microb Cell Fact 2018; 17:2. [PMID: 29316921 PMCID: PMC5759318 DOI: 10.1186/s12934-017-0852-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023] Open
Abstract
Background The halophilic bacterium Chromohalobacter salexigens is a natural producer of ectoines, compatible solutes with current and potential biotechnological applications. As production of ectoines is an osmoregulated process that draws away TCA intermediates, bacterial metabolism needs to be adapted to cope with salinity changes. To explore and use C. salexigens as cell factory for ectoine(s) production, a comprehensive knowledge at the systems level of its metabolism is essential. For this purpose, the construction of a robust and high-quality genome-based metabolic model of C. salexigens was approached. Results We generated and validated a high quality genome-based C. salexigens metabolic model (iFP764). This comprised an exhaustive reconstruction process based on experimental information, analysis of genome sequence, manual re-annotation of metabolic genes, and in-depth refinement. The model included three compartments (periplasmic, cytoplasmic and external medium), and two salinity-specific biomass compositions, partially based on experimental results from C. salexigens. Using previous metabolic data as constraints, the metabolic model allowed us to simulate and analyse the metabolic osmoadaptation of C. salexigens under conditions for low and high production of ectoines. The iFP764 model was able to reproduce the major metabolic features of C. salexigens. Flux Balance Analysis (FBA) and Monte Carlo Random sampling analysis showed salinity-specific essential metabolic genes and different distribution of fluxes and variation in the patterns of correlation of reaction sets belonging to central C and N metabolism, in response to salinity. Some of them were related to bioenergetics or production of reducing equivalents, and probably related to demand for ectoines. Ectoines metabolic reactions were distributed according to its correlation in four modules. Interestingly, the four modules were independent both at low and high salinity conditions, as they did not correlate to each other, and they were not correlated with other subsystems. Conclusions Our validated model is one of the most complete curated networks of halophilic bacteria. It is a powerful tool to simulate and explore C. salexigens metabolism at low and high salinity conditions, driving to low and high production of ectoines. In addition, it can be useful to optimize the metabolism of other halophilic bacteria for metabolite production. Electronic supplementary material The online version of this article (10.1186/s12934-017-0852-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francine Piubeli
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Manuel Salvador
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Montserrat Argandoña
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Joaquín J Nieto
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Vicente Bernal
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.,Centro de Tecnología de Repsol, REPSOL S.A. Calle Agustín de Betancourt, s/n. 28935, Móstoles, Madrid, Spain
| | - Jose M Pastor
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Manuel Cánovas
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Carmen Vargas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain.
| |
Collapse
|
35
|
Tinkering with Osmotically Controlled Transcription Allows Enhanced Production and Excretion of Ectoine and Hydroxyectoine from a Microbial Cell Factory. Appl Environ Microbiol 2018; 84:AEM.01772-17. [PMID: 29101191 DOI: 10.1128/aem.01772-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
Ectoine and hydroxyectoine are widely synthesized by members of the Bacteria and a few members of the Archaea as potent osmostress protectants. We have studied the salient features of the osmostress-responsive promoter directing the transcription of the ectoine/hydroxyectoine biosynthetic gene cluster from the plant-root-associated bacterium Pseudomonas stutzeri by transferring it into Escherichia coli, an enterobacterium that does not produce ectoines naturally. Using ect-lacZ reporter fusions, we found that the heterologous ect promoter reacted with exquisite sensitivity in its transcriptional profile to graded increases in sustained high salinity, responded to a true osmotic signal, and required the buildup of an osmotically effective gradient across the cytoplasmic membrane for its induction. The involvement of the -10, -35, and spacer regions of the sigma-70-type ect promoter in setting promoter strength and response to osmotic stress was assessed through site-directed mutagenesis. Moderate changes in the ect promoter sequence that increase its resemblance to housekeeping sigma-70-type promoters of E. coli afforded substantially enhanced expression, both in the absence and in the presence of osmotic stress. Building on this set of ect promoter mutants, we engineered an E. coli chassis strain for the heterologous production of ectoines. This synthetic cell factory lacks the genes for the osmostress-responsive synthesis of trehalose and the compatible solute importers ProP and ProU, and it continuously excretes ectoines into the growth medium. By combining appropriate host strains and different plasmid variants, excretion of ectoine, hydroxyectoine, or a mixture of both compounds was achieved under mild osmotic stress conditions.IMPORTANCE Ectoines are compatible solutes, organic osmolytes that are used by microorganisms to fend off the negative consequences of high environmental osmolarity on cellular physiology. An understanding of the salient features of osmostress-responsive promoters directing the expression of the ectoine/hydroxyectoine biosynthetic gene clusters is lacking. We exploited the ect promoter from an ectoine/hydroxyectoine-producing soil bacterium for such a study by transferring it into a surrogate bacterial host. Despite the fact that E. coli does not synthesize ectoines naturally, the ect promoter retained its exquisitely sensitive osmotic control, indicating that osmoregulation of ect transcription is an inherent feature of the promoter and its flanking sequences. These sequences were narrowed to a 116-bp DNA fragment. Ectoines have interesting commercial applications. Building on data from a site-directed mutagenesis study of the ect promoter, we designed a synthetic cell factory that secretes ectoine, hydroxyectoine, or a mixture of both compounds into the growth medium.
Collapse
|
36
|
Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol 2017; 258:59-68. [DOI: 10.1016/j.jbiotec.2017.04.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 11/23/2022]
|
37
|
Chen R, Zhu L, Lv L, Yao S, Li B, Qian J. Optimization of the extraction and purification of the compatible solute ectoine from Halomonas elongate in the laboratory experiment of a commercial production project. World J Microbiol Biotechnol 2017; 33:116. [DOI: 10.1007/s11274-017-2281-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/30/2017] [Indexed: 11/24/2022]
|
38
|
Salar-García MJ, Bernal V, Pastor JM, Salvador M, Argandoña M, Nieto JJ, Vargas C, Cánovas M. Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens. Microb Cell Fact 2017; 16:23. [PMID: 28179004 PMCID: PMC5299690 DOI: 10.1186/s12934-017-0643-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/01/2017] [Indexed: 01/27/2023] Open
Abstract
Background The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production. Optimal production of ectoines is conditioned by the interplay of carbon and nitrogen metabolisms. In this work, we set out to determine how nitrogen supply affects the production of ectoines. Results Chromohalobacter salexigens was challenged to grow in media with unbalanced carbon/nitrogen ratio. In C. salexigens, overflow metabolism and ectoines production are a function of medium composition. At low ammonium conditions, the growth rate decreased importantly, up to 80%. Shifts in overflow metabolism were observed when changing the C/N ratio in the culture medium. 13C-NMR analysis of ectoines labelling revealed a high metabolic rigidity, with almost constant flux ratios in all conditions assayed. Unbalanced C/N ratio led to pyruvate accumulation, especially upon N-limitation. Analysis of an ect− mutant demonstrated the link between metabolic overflow and ectoine biosynthesis. Under non ectoine synthesizing conditions, glucose uptake and metabolic overflow decreased importantly. Finally, in fed-batch cultures, biomass yield was affected by the feeding scheme chosen. High growth (up to 42.4 g L−1) and volumetric ectoine yields (up to 4.21 g L−1) were obtained by minimizing metabolite overflow and nutrient accumulation in high density cultures in a low nitrogen fed-batch culture. Moreover, the yield coefficient calculated for the transformation of glucose into biomass was 30% higher in fed-batch than in the batch culture, demonstrating that the metabolic efficiency of C. salexigens can be improved by careful design of culture feeding schemes. Conclusions Metabolic shifts observed at low ammonium concentrations were explained by a shift in the energy required for nitrogen assimilation. Carbon-limited fed-batch cultures with reduced ammonium supply were the best conditions for cultivation of C. salexigens, supporting high density growth and maintaining high ectoines production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0643-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María J Salar-García
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain.,Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", Campus Muralla del MarCalle Doctor Fleming S/N, 30202, Cartagena, Spain
| | - Vicente Bernal
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain. .,Área de Biología, Dirección de Tecnología Química y Nuevas Energías, Centro de Tecnología de Repsol S.A., Ctra. de Extremadura A-5, Km. 18, 28375, Móstoles, Spain.
| | - José M Pastor
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Manuel Salvador
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Montserrat Argandoña
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Joaquín J Nieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Carmen Vargas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Manuel Cánovas
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain.
| |
Collapse
|
39
|
Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng 2016; 36:10-18. [DOI: 10.1016/j.ymben.2016.02.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/09/2016] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
|
40
|
Chen W, Zhang S, Jiang P, Yao J, He Y, Chen L, Gui X, Dong Z, Tang SY. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metab Eng 2015; 30:149-155. [PMID: 26051748 DOI: 10.1016/j.ymben.2015.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/27/2023]
Abstract
Advanced high-throughput screening methods for small molecules may have important applications in the metabolic engineering of the biosynthetic pathways of these molecules. Ectoine is an excellent osmoprotectant that has been widely used in cosmetics. In this study, the Escherichia coli regulatory protein AraC was engineered to recognize ectoine as its non-natural effector and to activate transcription upon ectoine binding. As an endogenous reporter of ectoine, the mutated AraC protein was successfully incorporated into high-throughput screening of ectoine hyper-producing strains. The ectoine biosynthetic cluster from Halomonas elongata was cloned into E. coli. By engineering the rate-limiting enzyme L-2,4-diaminobutyric acid (DABA) aminotransferase (EctB), ectoine production and the specific activity of the EctB mutant were increased. Thus, these results demonstrated the effectiveness of engineering regulatory proteins into sensitive and rapid screening tools for small molecules and highlighted the importance and efficacy of directed evolution strategies applied to the engineering of genetic components for yield improvement in the biosynthesis of small molecules.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peixia Jiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lincai Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiwu Gui
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
41
|
He YZ, Gong J, Yu HY, Tao Y, Zhang S, Dong ZY. High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microb Cell Fact 2015; 14:55. [PMID: 25886618 PMCID: PMC4405841 DOI: 10.1186/s12934-015-0238-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 01/14/2023] Open
Abstract
Background Recently, the compatible solute 1, 4, 5, 6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) has attracted considerable interest due to its great potential as a protecting agent. To overcome the drawbacks of high salinity in the traditional bioprocess of ectoine using halophilic bacteria, various attempts have been made to engineer ectoine biosynthesis in nonhalophilic bacteria. Unfortunately, the yields of ectoine in these producers are still low and hardly meet the demands of large scale production. In this paper, the whole-cell biocatalytic process using aspartate and glycerol as substrates was tried for high production of ectoine in nonhalophilic bacteria. Results The ectoine genes ectABC from the halophilic bacterium Halomonas elongata were successfully introduced into Escherichia coli K-12 strain BW25113 under the arabinose-inducible promoter. To our delight, a large amount of ectoine was synthesized and excreted into the medium during the course of whole-cell biocatalysis, when using aspartate and glycerol as the direct substrates. At the low cell density of 5 OD/mL in flask, under the optimal conditions (100 mM sodium phosphate buffer (pH 7.0), 100 mM sodium aspartate, 100 mM KCl and 100 mM glycerol), the concentration of extracellular ectoine was increased to 2.67 mg/mL. At the high cell density of 20 OD/mL in fermentor, a maximum titre of 25.1 g/L ectoine was achieved in 24 h. Meanwhile, the biomass productivity of ectoine is as high as 4048 mg per gram dry cell weight (g DCW)−1, which is the highest value ever reported. Furthermore, it was demonstrated that the same batch of cells could be used for at least three rounds. Finally, a total yield of 63.4 g ectoine was obtained using one litre cells. Conclusion Using aspartate and glycerol as the direct substrates, high production of ectoine was achieved by the whole-cell biocatalysis in recombinant E. coli. Multiple rounds of whole-cell biocatalysis were established to further improve the production of ectoine. Our study herein provided a feasible biosynthesis process of ectoine with potential applications in large-scale industrial production.
Collapse
Affiliation(s)
- Yong-Zhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hai-Ying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Tao
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shan Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhi-Yang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Salvador M, Argandoña M, Pastor JM, Bernal V, Cánovas M, Csonka LN, Nieto JJ, Vargas C. Contribution of RpoS to metabolic efficiency and ectoines synthesis during the osmo- and heat-stress response in the halophilic bacterium Chromohalobacter salexigens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:301-311. [PMID: 25417903 DOI: 10.1111/1758-2229.12249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
Chromohalobacter salexigens is a halophilic γ-proteobacterium that responds to osmotic and heat stresses by accumulating ectoine and hydroxyectoine respectively. Evolution has optimized its metabolism to support high production of ectoines. We analysed the effect of an rpoS mutation in C. salexigens metabolism and ectoines synthesis. In long-term adapted cells, the rpoS strain was osmosensitive but not thermosensitive and showed unaltered ectoines content, suggesting that RpoS regulates ectoine(s)-independent osmoadaptive mechanisms. RpoS is involved in the regulation of C. salexigens metabolic adaptation to stress, as early steps of glucose oxidation through the Entner-Doudoroff pathway were deregulated in the rpoS mutant, leading to improved metabolic efficiency at low salinity. Moreover, a reduced pyruvate (but not acetate) overflow was displayed by the rpoS strain at low salt, probably linked to a slowdown in gluconate production and/or subsequent metabolism. Interestingly, RpoS does not seem to be the main regulator triggering the immediate transcriptional response of ectoine synthesis to osmotic or thermal upshifts. However, it contributed to the expression of the ect genes in cells previously adapted to low or high salinity.
Collapse
Affiliation(s)
- Manuel Salvador
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yin J, Chen JC, Wu Q, Chen GQ. Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 2014; 33:1433-42. [PMID: 25447783 DOI: 10.1016/j.biotechadv.2014.10.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 10/24/2022]
Abstract
Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production.
Collapse
Affiliation(s)
- Jin Yin
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Becker J, Schäfer R, Kohlstedt M, Harder BJ, Borchert NS, Stöveken N, Bremer E, Wittmann C. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Fact 2013; 12:110. [PMID: 24228689 PMCID: PMC4225761 DOI: 10.1186/1475-2859-12-110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/05/2013] [Indexed: 11/14/2022] Open
Abstract
Background The stabilizing and function-preserving effects of ectoines have attracted considerable biotechnological interest up to industrial scale processes for their production. These rely on the release of ectoines from high-salinity-cultivated microbial producer cells upon an osmotic down-shock in rather complex processor configurations. There is growing interest in uncoupling the production of ectoines from the typical conditions required for their synthesis, and instead design strains that naturally release ectoines into the medium without the need for osmotic changes, since the use of high-salinity media in the fermentation process imposes notable constraints on the costs, design, and durability of fermenter systems. Results Here, we used a Corynebacterium glutamicum strain as a cellular chassis to establish a microbial cell factory for the biotechnological production of ectoines. The implementation of a mutant aspartokinase enzyme ensured efficient supply of L-aspartate-beta-semialdehyde, the precursor for ectoine biosynthesis. We further engineered the genome of the basic C. glutamicum strain by integrating a codon-optimized synthetic ectABCD gene cluster under expressional control of the strong and constitutive C. glutamicum tuf promoter. The resulting recombinant strain produced ectoine and excreted it into the medium; however, lysine was still found as a by-product. Subsequent inactivation of the L-lysine exporter prevented the undesired excretion of lysine while ectoine was still exported. Using the streamlined cell factory, a fed-batch process was established that allowed the production of ectoine with an overall productivity of 6.7 g L-1 day-1 under growth conditions that did not rely on the use of high-salinity media. Conclusions The present study describes the construction of a stable microbial cell factory for recombinant production of ectoine. We successfully applied metabolic engineering strategies to optimize its synthetic production in the industrial workhorse C. glutamicum and thereby paved the way for further improvements in ectoine yield and biotechnological process optimization.
Collapse
Affiliation(s)
- Judith Becker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bergmann S, David F, Clark W, Wittmann C, Krull R. Membrane fluidity of halophilic ectoine-secreting bacteria related to osmotic and thermal treatment. Bioprocess Biosyst Eng 2013; 36:1829-41. [PMID: 23653110 DOI: 10.1007/s00449-013-0957-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/12/2013] [Indexed: 11/30/2022]
Abstract
In response to sudden decrease in osmotic pressure, halophilic microorganisms secrete their accumulated osmolytes. This specific stress response, combined with physiochemical responses to the altered environment, influence the membrane properties and integrity of cells, with consequent effects on growth and yields in bioprocesses, such as bacterial milking. The aim of this study was to investigate changes in membrane fluidity and integrity induced by environmental stress in ectoine-secreting organisms. The halophilic ectoine-producing strains Alkalibacillus haloalkaliphilus and Chromohalobacter salexigens were treated hypo- and hyper-osmotically at several temperatures. The steady-state anisotropy of fluorescently labeled cells was measured, and membrane integrity assessed by flow cytometry and ectoine distribution. Strong osmotic downshocks slightly increased the fluidity of the bacterial membranes. As the temperature increased, the increasing membrane fluidity encouraged more ectoine release under the same osmotic shock conditions. On the other hand, combined shock treatments increased the number of disintegrated cells. From the ectoine release and membrane integrity measurements under coupled thermal and osmotic shock conditions, we could optimize the secretion conditions for both bacteria.
Collapse
Affiliation(s)
- Sven Bergmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany,
| | | | | | | | | |
Collapse
|
46
|
Bergmann S, David F, Franco-Lara E, Wittmann C, Krull R. Ectoine production byAlkalibacillus haloalkaliphilus-Bioprocess development using response surface methodology and model-driven strategies. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sven Bergmann
- Institute of Biochemical Engineering; Technische Universität Braunschweig; Braunschweig Germany
| | - Florian David
- Institute of Biochemical Engineering; Technische Universität Braunschweig; Braunschweig Germany
| | - Ezequiel Franco-Lara
- Institute of Biochemical Engineering; Technische Universität Braunschweig; Braunschweig Germany
| | - Christoph Wittmann
- Institute of Biochemical Engineering; Technische Universität Braunschweig; Braunschweig Germany
| | - Rainer Krull
- Institute of Biochemical Engineering; Technische Universität Braunschweig; Braunschweig Germany
| |
Collapse
|
47
|
Rodríguez-Moya J, Argandoña M, Iglesias-Guerra F, Nieto JJ, Vargas C. Temperature- and salinity-decoupled overproduction of hydroxyectoine by Chromohalobacter salexigens. Appl Environ Microbiol 2013; 79:1018-23. [PMID: 23160137 PMCID: PMC3568561 DOI: 10.1128/aem.02774-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/09/2012] [Indexed: 12/24/2022] Open
Abstract
Hydroxyectoine overproduction by the natural producer Chromohalobacter salexigens is presented in this study. Genetically engineered strains were constructed that at low salinity coexpressed, in a vector derived from a native plasmid, the ectoine (ectABC) and hydroxyectoine (ectD) genes under the control of the ectA promoter, in a temperature-independent manner. Hydroxyectoine production was further improved by increasing the copies of ectD and using a C. salexigens genetic background unable to synthesize ectoines.
Collapse
Affiliation(s)
| | | | - Fernando Iglesias-Guerra
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | | |
Collapse
|
48
|
Spadiut O, Rittmann S, Dietzsch C, Herwig C. Dynamic process conditions in bioprocess development. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Oliver Spadiut
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| | - Simon Rittmann
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| | - Christian Dietzsch
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| | - Christoph Herwig
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| |
Collapse
|
49
|
Deive FJ, López E, Rodríguez A, Longo MA, Sanromán MÁ. Targeting the Production of Biomolecules by Extremophiles at Bioreactor Scale. Chem Eng Technol 2012. [DOI: 10.1002/ceat.201100528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Ates Ö, Oner ET, Arga KY. Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043. BMC SYSTEMS BIOLOGY 2011; 5:12. [PMID: 21251315 PMCID: PMC3034673 DOI: 10.1186/1752-0509-5-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 01/21/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chromohalobacter salexigens (formerly Halomonas elongata DSM 3043) is a halophilic extremophile with a very broad salinity range and is used as a model organism to elucidate prokaryotic osmoadaptation due to its strong euryhaline phenotype. RESULTS C. salexigens DSM 3043's metabolism was reconstructed based on genomic, biochemical and physiological information via a non-automated but iterative process. This manually-curated reconstruction accounts for 584 genes, 1386 reactions, and 1411 metabolites. By using flux balance analysis, the model was extensively validated against literature data on the C. salexigens phenotypic features, the transport and use of different substrates for growth as well as against experimental observations on the uptake and accumulation of industrially important organic osmolytes, ectoine, betaine, and its precursor choline, which play important roles in the adaptive response to osmotic stress. CONCLUSIONS This work presents the first comprehensive genome-scale metabolic model of a halophilic bacterium. Being a useful guide for identification and filling of knowledge gaps, the reconstructed metabolic network iOA584 will accelerate the research on halophilic bacteria towards application of systems biology approaches and design of metabolic engineering strategies.
Collapse
Affiliation(s)
- Özlem Ates
- Department of Bioengineering, Marmara University, 34722, Istanbul, Turkey
| | - Ebru Toksoy Oner
- Department of Bioengineering, Marmara University, 34722, Istanbul, Turkey
| | - Kazim Y Arga
- Department of Bioengineering, Marmara University, 34722, Istanbul, Turkey
| |
Collapse
|