1
|
Chen S, Gong J, Cheng Y, Guo Y, Li F, Lan T, Yang Y, Yang J, Liu N, Liao J. The biochemical behavior and mechanism of uranium(Ⅵ) bioreduction induced by natural Bacillus thuringiensis. J Environ Sci (China) 2024; 136:372-381. [PMID: 37923447 DOI: 10.1016/j.jes.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 11/07/2023]
Abstract
For a broader understanding of uranium migration affected by microorganisms in natural anaerobic environment, the bioreduction of uranium(Ⅵ) (U(Ⅵ)) was revealed in Bacillus thuringiensis, a dominant bacterium strain with potential of uranium-tolerant isolated from uranium contaminated soil. The reduction behavior was systematically investigated by the quantitative analysis of U(Ⅳ) in bacteria, and mechanism was inferred from the pathway of electron transmission. Under anaerobic conditions, appropriate biomass and sodium lactate as electron donor, reduction behavior of U(Ⅵ) induced by B. thuringiensis was restricted by the activity of lactate dehydrogenase, which was directly affected by the initial pH, temperature and initial U(Ⅵ) concentration of bioreduction system. Bioreduction of U(Ⅵ) was driven by the generation of nicotinamide adenine dinucleotide (NADH) from enzymatic reaction of sodium lactate with various dehydrogenase. The transmission of the electrons from bacteria to U(Ⅵ) was mainly supported by the intracellular NADH dehydrogenase-ubiquinone system, this process could maintain the biological activity of cells.
Collapse
Affiliation(s)
- Shunzhang Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Junyuan Gong
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Yanxia Cheng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Yuqi Guo
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Chen L, Chen S, Xing T, Long Y, Wang Z, Kong X, Xu A, Wu Q, Sun Y. Phytoremediation with application of anaerobic fermentation residues regulate the assembly of ecological clusters within co-occurrence network in ionic rare earth tailings soil: A pot experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122790. [PMID: 37890691 DOI: 10.1016/j.envpol.2023.122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/03/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
The cultivation of energy plants (Pennisetum hybrid) with anaerobic fermentation residues has become an important phytoremediation approach in ionic rare earth elements (REEs) tailings because of its advantages in low cost and sustainability recently. In this study, a comparative pot experiment was carried out to determine the interaction pattern and key ecological clusters in microbial community respond to phytoremediation. Results showed that the application of biogas residues or slurry could effectively mitigate soil acidification, increase soil nutrients, alter REEs bioavailability and promote plant growth. Without fertilization, plant growth was restricted and soil acidification and nutrient-deficiency would be further aggravated. This difference in phytoremediation effect was associated with the assembly of seven key ecological clusters in co-occurrence network of rhizosphere soil. And such assembly pattern of cluster, determined by the environmental preference (e.g. pH, REEs), nutrient demand and interaction among clusters, could alter the microbial communities in response to the changes in soil context rapidly and exert corresponding ecological function during phytoremediation, such as participating in soil nutrient cycling, affecting plant biomass and altering REEs bioavailability. These findings provided new insights for anaerobic fermentation residues application, and can be beneficial to support for studying microbe-plant combined remediation in the future.
Collapse
Affiliation(s)
- Liumeng Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shasha Chen
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Tao Xing
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yun Long
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Zhi Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoying Kong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Science and Technology of China, Hefei, 230026, China.
| | - An Xu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qiangjian Wu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yongmin Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
3
|
Perea KR, DeVeaux LC, Lee BD, Losey NA. Complete genome sequence of Cellulomonas sp., strain ES6, a chromate-reducing bacterium isolated from chromium-contaminated subsurface sediment. Microbiol Resour Announc 2023; 12:e0049523. [PMID: 37681972 PMCID: PMC10586102 DOI: 10.1128/mra.00495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 09/09/2023] Open
Abstract
Cellulomonas sp. strain ES6 is a chromate-reducing bacterium isolated from chromium contaminated subsurface sediment. Illumina MiSeq and Oxford Nanopore sequencing were used to assemble the genome sequence which consisted of a single circular chromosome of 4.13 Mb, contained 3,960 protein encoding genes and with an overall G + C content 75.38%.
Collapse
Affiliation(s)
- Katheryn R. Perea
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Linda C. DeVeaux
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Brady D. Lee
- Earth, Biological and Quantitative Systems Science Division, Savannah River National Laboratory, Aiken, South Carolina, USA
| | - Nathaniel A. Losey
- Earth, Biological and Quantitative Systems Science Division, Savannah River National Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
4
|
Chen S, Ding Y. A bibliography study of Shewanella oneidensis biofilm. FEMS Microbiol Ecol 2023; 99:fiad124. [PMID: 37796898 PMCID: PMC10630087 DOI: 10.1093/femsec/fiad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
This study employs a bibliography study method to evaluate 472 papers focused on Shewanella oneidensis biofilms. Biofilms, which are formed when microorganisms adhere to surfaces or interfaces, play a crucial role in various natural, engineered, and medical settings. Within biofilms, microorganisms are enclosed in extracellular polymeric substances (EPS), creating a stable working environment. This characteristic enhances the practicality of biofilm-based systems in natural bioreactors, as they are less susceptible to temperature and pH fluctuations compared to enzyme-based bioprocesses. Shewanella oneidensis, a nonpathogenic bacterium with the ability to transfer electrons, serves as an example of a species isolated from its environment that exhibits extensive biofilm applications. These applications, such as heavy metal removal, offer potential benefits for environmental engineering and human health. This paper presents a comprehensive examination and review of the biology and engineering aspects of Shewanella biofilms, providing valuable insights into their functionality.
Collapse
Affiliation(s)
- Shan Chen
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, China
| | - Yuanzhao Ding
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom
| |
Collapse
|
5
|
Xin J, Hong C, Wei J, Qie J, Wang H, Lei B, Li X, Cai Z, Kang Q, Zeng Z, Liu Y. A comprehensive review of radioactive pollution treatment of uranium mill tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102104-102128. [PMID: 37684506 DOI: 10.1007/s11356-023-29401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
Natural uranium is a crucial resource for clean nuclear energy, which has brought significant economic and social benefits to humanity. However, the development and utilization of uranium resources have also resulted in the accumulation of vast amounts of uranium mill tailings (UMTs), which pose a potential threat to human health and the ecological environment. This paper reviews the research progress on UMTs treatment technologies, including cover disposal, solidification disposal, backfilling disposal, and bioremediation methods. It is found that cover disposal is a versatile method for the long-term management of UMTs, the engineering performance and durability of the cover system can be improved by choosing suitable stabilizers for the cover layer. Solidification disposal can convert UMTs into solid waste for permanent disposal, but it produces a large amount of waste and requires high operating costs; it is necessary to explore the effectiveness and efficiency of solidification disposal for UMTs, while minimizing the bad environmental impact. Backfilling disposal realizes the resource utilization of solid waste, but the high radon exhalation rate caused by the UMTs backfilling also needs to be considered. Bioremediation methods have low investment costs and are less likely to cause secondary pollution, but the remediation efficiency is low, it can be combined with other treatment technologies to remedy the defects of a single remediation method. The article concludes with key issues and corresponding suggestions for the current UMTs treatment methods, which can provide theoretical guidance and reference for further development and application of radioactive pollution treatment of UMTs.
Collapse
Affiliation(s)
- Jiayi Xin
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Changshou Hong
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China.
| | - Jia Wei
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Jingwen Qie
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Hong Wang
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Bo Lei
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiangyang Li
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ziqi Cai
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Qian Kang
- School of Emergency Management and Safety Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhiwei Zeng
- Department of Radiological Medicine and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, 030000, China
| | - Yong Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518061, China
| |
Collapse
|
6
|
Ruiz-Fresneda MA, Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Jroundi F, Merroun ML. Impact of microbial processes on the safety of deep geological repositories for radioactive waste. Front Microbiol 2023; 14:1134078. [PMID: 37007474 PMCID: PMC10062484 DOI: 10.3389/fmicb.2023.1134078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, the increasing production of radioactive waste due to the extensive use of nuclear power is becoming a global environmental concern for society. For this reason, many countries have been considering the use of deep geological repositories (DGRs) for the safe disposal of this waste in the near future. Several DGR designs have been chemically, physically, and geologically well characterized. However, less is known about the influence of microbial processes for the safety of these disposal systems. The existence of microorganisms in many materials selected for their use as barriers for DGRs, including clay, cementitious materials, or crystalline rocks (e.g., granites), has previously been reported. The role that microbial processes could play in the metal corrosion of canisters containing radioactive waste, the transformation of clay minerals, gas production, and the mobility of the radionuclides characteristic of such residues is well known. Among the radionuclides present in radioactive waste, selenium (Se), uranium (U), and curium (Cm) are of great interest. Se and Cm are common components of the spent nuclear fuel residues, mainly as 79Se isotope (half-life 3.27 × 105 years), 247Cm (half-life: 1.6 × 107 years) and 248Cm (half-life: 3.5 × 106 years) isotopes, respectively. This review presents an up-to-date overview about how microbes occurring in the surroundings of a DGR may influence their safety, with a particular focus on the radionuclide-microbial interactions. Consequently, this paper will provide an exhaustive understanding about the influence of microorganisms in the safety of planned radioactive waste repositories, which in turn might improve their implementation and efficiency.
Collapse
|
7
|
Wang G, Liu Y, Wang J, Xiang J, Zeng T, Li S, Song J, Zhang Z, Liu J. The remediation of uranium-contaminated groundwater via bioreduction coupled to biomineralization with different pH and electron donors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23096-23109. [PMID: 36316554 DOI: 10.1007/s11356-022-23902-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Stimulating indigenous microbes to reduce aqueous U(VI) to insoluble U(IV) by adding an electron donor has been applied as an applicable strategy to remediate uranium-contaminated groundwater in situ. However, biogenic U(IV) minerals are susceptible to oxidative remobilization after exposure to oxygen. To enhance the stability of the end product, glycerol phosphate (GP) was selected to treat artificial uranium-containing groundwater at different pH values (i.e., 7.0 and 5.0) with glycerol (GY) as the control group. The results revealed that removal ratios of uranium with GP were all higher than those with GY, and reduced crystalline U(IV)-phosphate and U(VI)-phosphate minerals (recalcitrant to oxidative remobilization) were generated in the GP groups. Although bioreduction efficiency was influenced at pH 5.0, the stability of the end product with GP was elevated significantly compared with that with GY. Mechanism analysis demonstrated that GP could activate bioreduction and biomineralization of the microbial community, and two stages were included in the GP groups. In the early stage, bioreduction and biomineralization were both involved in the immobilization process. Subsequently, part of the U(VI) precipitate was gradually reduced to U(IV) precipitate by microorganisms. This work implied that the formation of U-phosphate minerals via bioreduction coupled with biomineralization potentially offers a more effective strategy for remediating uranium-contaminated groundwater with long-term stability.
Collapse
Affiliation(s)
- Guohua Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Ying Liu
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Jiali Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Jinjing Xiang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Taotao Zeng
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Shiyou Li
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Jian Song
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Zhiyue Zhang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Jinxiang Liu
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China.
| |
Collapse
|
8
|
Yu Q, Yuan Y, Feng L, Sun W, Lin K, Zhang J, Zhang Y, Wang H, Wang N, Peng Q. Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127758. [PMID: 34801303 DOI: 10.1016/j.jhazmat.2021.127758] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Uranium is a heavy metal with both chemotoxicity and radiotoxicity. Due to the increasing consumption of uranium, the remediation of uranium contamination and recovery of uranium from non-conventional approach is highly needed. Microorganism exhibits high potential for immobilization of uranium. This study for the first time isolated a marine Pseudomonas stutzeri strain MRU-UE1 with high uranium immobilization capacity of 308.72 mg/g, which is attributed to the synergetic mechanisms of biosorption, biomineralization, and bioreduction. The uranium is found to be immobilized in forms of tetragonal chernikovite (H2(UO2)2(PO4)2·8H2O) by biomineralization and CaU(PO4)2 by bioreduction under aerobic environment, which is rarely observed and would broaden the application of this strain in aerobic condition. The protein, phosphate group, and carboxyl group are found to be essential for the biosorption of uranium. In response to the stress of uranium, the strain produces inorganic phosphate group, which transformed soluble uranyl ion to insoluble uranium-containing precipitates, and poly-β-hydroxybutyrate (PHB), which is observed for the first time during the interaction between microorganism and uranium. In summary, P. stutzeri strain MRU-UE1 would be a promising alternative for environmental uranium contamination remediation and uranium extraction from seawater.
Collapse
Affiliation(s)
- Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China.
| | - Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Wenyan Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Ke Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Jiacheng Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Yibin Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, PR China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China.
| | - Qin Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, PR China.
| |
Collapse
|
9
|
You W, Peng W, Tian Z, Zheng M. Uranium bioremediation with U(VI)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149107. [PMID: 34325147 DOI: 10.1016/j.scitotenv.2021.149107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Collapse
Affiliation(s)
- Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wanting Peng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
10
|
Diagenetic formation of uranium-silica polymers in lake sediments over 3,300 years. Proc Natl Acad Sci U S A 2021; 118:2021844118. [PMID: 33479173 DOI: 10.1073/pnas.2021844118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The long-term fate of uranium-contaminated sediments, especially downstream former mining areas, is a widespread environmental challenge. Essential for their management is the proper understanding of uranium (U) immobilization mechanisms in reducing environments. In particular, the long-term behavior of noncrystalline U(IV) species and their possible evolution to more stable phases in subsurface conditions is poorly documented, which limits our ability to predict U long-term geochemical reactivity. Here, we report direct evidence for the evolution of U speciation over 3,300 y in naturally highly U-enriched sediments (350-760 µg ⋅ g-1 U) from Lake Nègre (Mercantour Massif, Mediterranean Alps, France) by combining U isotopic data (δ238U and (234U/238U)) with U L 3 -edge X-ray absorption fine structure spectroscopy. Constant isotopic ratios over the entire sediment core indicate stable U sources and accumulation modes, allowing for determination of the impact of aging on U speciation. We demonstrate that, after sediment deposition, mononuclear U(IV) species associated with organic matter transformed into authigenic polymeric U(IV)-silica species that might have partially converted to a nanocrystalline coffinite (UIVSiO4·nH2O)-like phase. This diagenetic transformation occurred in less than 700 y and is consistent with the high silica availability of sediments in which diatoms are abundant. It also yields consistency with laboratory studies that proposed the formation of colloidal polynuclear U(IV)-silica species, as precursors for coffinite formation. However, the incomplete transformation observed here only slightly reduces the potential lability of U, which could have important implications to evaluate the long-term management of U-contaminated sediments and, by extension, of U-bearing wastes in silica-rich subsurface environments.
Collapse
|
11
|
Lopez‐Fernandez M, Jroundi F, Ruiz‐Fresneda MA, Merroun ML. Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications. Microb Biotechnol 2021; 14:810-828. [PMID: 33615734 PMCID: PMC8085914 DOI: 10.1111/1751-7915.13718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022] Open
Abstract
Radionuclides (RNs) generated by nuclear and civil industries are released in natural ecosystems and may have a hazardous impact on human health and the environment. RN-polluted environments harbour different microbial species that become highly tolerant of these elements through mechanisms including biosorption, biotransformation, biomineralization and intracellular accumulation. Such microbial-RN interaction processes hold biotechnological potential for the design of bioremediation strategies to deal with several contamination problems. This paper, with its multidisciplinary approach, provides a state-of-the-art review of most research endeavours aimed to elucidate how microbes deal with radionuclides and how they tolerate ionizing radiations. In addition, the most recent findings related to new biotechnological applications of microbes in the bioremediation of radionuclides and in the long-term disposal of nuclear wastes are described and discussed.
Collapse
Affiliation(s)
- Margarita Lopez‐Fernandez
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Institute of Resource EcologyHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstraße 400Dresden01328Germany
| | - Fadwa Jroundi
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| | - Miguel A. Ruiz‐Fresneda
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Departamento de Cristalografía y Biología EstructuralCentro Superior de Investigaciones Científicas (CSIC)Instituto de Química‐Física Rocasolano (IQFR)Calle Serrano 119Madrid28006Spain
| | - Mohamed L. Merroun
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| |
Collapse
|
12
|
Pinel-Cabello M, Jroundi F, López-Fernández M, Geffers R, Jarek M, Jauregui R, Link A, Vílchez-Vargas R, Merroun ML. Multisystem combined uranium resistance mechanisms and bioremediation potential of Stenotrophomonas bentonitica BII-R7: Transcriptomics and microscopic study. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123858. [PMID: 33264934 DOI: 10.1016/j.jhazmat.2020.123858] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/18/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
The potential use of microorganisms in the bioremediation of U pollution has been extensively described. However, a lack of knowledge on molecular resistance mechanisms has become a challenge for the use of these technologies. We reported on the transcriptomic and microscopic response of Stenotrophomonas bentonitica BII-R7 exposed to 100 and 250 μM of U. Results showed that exposure to 100 μM displayed up-regulation of 185 and 148 genes during the lag and exponential phases, respectively, whereas 143 and 194 were down-regulated, out of 3786 genes (>1.5-fold change). Exposure to 250 μM of U showed up-regulation of 68 genes and down-regulation of 290 during the lag phase. Genes involved in cell wall and membrane protein synthesis, efflux systems and phosphatases were up-regulated under all conditions tested. Microscopic observations evidenced the formation of U-phosphate minerals at membrane and extracellular levels. Thus, a biphasic process is likely to occur: the increased cell wall would promote the biosorption of U to the cell surface and its precipitation as U-phosphate minerals enhanced by phosphatases. Transport systems would prevent U accumulation in the cytoplasm. These findings contribute to an understanding of how microbes cope with U toxicity, thus allowing for the development of efficient bioremediation strategies.
Collapse
Affiliation(s)
- M Pinel-Cabello
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| | - F Jroundi
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - M López-Fernández
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - R Geffers
- Genome Analytics, Helmholtz Centre for Infection Research (HZI), 38124, Braunschweig, Germany
| | - M Jarek
- Genome Analytics, Helmholtz Centre for Infection Research (HZI), 38124, Braunschweig, Germany
| | - R Jauregui
- AgResearch Grasslands Research Centre, Tennent drive, Palmerston North, New Zealand
| | - A Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Magdeburg, Leipziger Str. 44.39120, Magdeburg, Germany
| | - R Vílchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Magdeburg, Leipziger Str. 44.39120, Magdeburg, Germany
| | - M L Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
13
|
Doinikova OA, Tarasov NN, Kartashov PM, Petrov VA. Black Phosphate Uranium Ores from Vitim Plateau (Buryat Republic). RADIOCHEMISTRY 2020. [DOI: 10.1134/s1066362220040128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Huang FY, Zhang HL, Wang YP, Yi FC, Feng S, Huang HX, Cheng MX, Cheng J, Yuan WJ, Zhang J. Uranium speciation and distribution in Shewanella putrefaciens and anaerobic granular sludge in the uranium immobilization process. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07279-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Tan WF, Li Y, Guo F, Wang YC, Ding L, Mumford K, Lv JW, Deng QW, Fang Q, Zhang XW. Effect of Leifsonia sp. on retardation of uranium in natural soil and its potential mechanisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 217:106202. [PMID: 32063554 DOI: 10.1016/j.jenvrad.2020.106202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Uranium mining and milling activities for many years resulted in release of uranium into the adjoining soil in varying degrees. Bioremediation approaches (i.e., immobilization via the action of bacteria) resulting in uranium bearing solid is supposed as an economic and clean in-situ approach for the treatment of uranium contaminated sites. This study purposes to determine the immobilization efficiency of uranium in soil by Leifsonia sp. The results demonstrated that cells have a good proliferation ability under the stress of uranium and play a role in retaining uranium in soil. Residual uranium in active Leifsonia-medium group (66%) was higher than that in the controls, which was 31% in the deionised water control, 46% in the Leifsonia group, and 47% in the medium group, respectively. This indicated that Leifsonia sp. facilitates the immobilization efficiency of uranium in soil by converting part of the reducible and oxidizable fraction of uranium into the residual fraction. X-ray photoelectron fitting results showed that tetravalent states uranium existed in the soil samples, which indicated that the hexavalent uranium was converted into tetravalent by cells. This is the first report of effect of Leifsonia sp. on uranium immobilization in soil. The findings implied that Leifsonia sp. could, to some extent, prevent the migration and diffusion of uranium in soil by changing the chemical states into less toxicity and less risky forms.
Collapse
Affiliation(s)
- Wen-Fa Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| | - Yuan Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Feng Guo
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ya-Chao Wang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Lei Ding
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Kathryn Mumford
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Australia
| | - Jun-Wen Lv
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Qin-Wen Deng
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Qi Fang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiao-Wen Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
16
|
The immobilization mechanism of U(VI) induced by Bacillus thuringiensis 016 and the effects of coexisting ions. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Li A, Zhou C, Liu Z, Xu X, Zhou Y, Zhou D, Tang Y, Ma F, Rittmann BE. Direct solid-state evidence of H 2 -induced partial U(VI) reduction concomitant with adsorption by extracellular polymeric substances (EPS). Biotechnol Bioeng 2018; 115:1685-1693. [PMID: 29574765 DOI: 10.1002/bit.26592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 11/05/2022]
Abstract
Adsorption of hexavalent uranium (U(VI)) by extracellular polymeric substances (EPS) has been studied, but the possibility of simultaneous U(VI) reduction mediated by EPS has not had experimental confirmation, as the reduction products have not yet been directly proven. Here, we reported the first direct evidence of lower-valent products of U(VI) immobilization by loosely associated EPS (laEPS) isolated from a fermenter strain of Klebsiella sp. J1 when the laEPS was exposed to H2 . During the 120-min tests for similarly 86% adsorption under O2 , N2 , and H2 , 8% more U was immobilized through a non-adsorptive pathway by the EPS for H2 than for N2 and O2 . A set of solid-state characterization tools (FT-IR, XPS, EELS, and TEM-EDX) confirmed partial reduction of U(VI) to lower-valence U, with the main reduced form being uraninite (UIV O2 ) nanoparticles, and the results reinforced the role of the reduction in accelerating U immobilization and shaping the characteristics of immobilized U in terms of valency, size, and crystallization. The laEPS, mostly comprised of carbohydrate and protein, contained non-cytochrome enzymes and electron carriers that could be responsible for electron transfer to U(VI). Taken together, our results directly confirm that EPS was able to mediate partial U(VI) reduction in the presence of H2 through non-cytochrome catalysis and that reduction enhanced overall U immobilization. Our study fills in some gaps of the microbe-mediated U cycle and will be useful to understand and control U removal in engineered reactors and in-situ bioremediation.
Collapse
Affiliation(s)
- Ang Li
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona.,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona
| | - Zhuolin Liu
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona
| | - Xiaoyin Xu
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona.,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yun Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona.,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, Changchun, China
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona
| |
Collapse
|
18
|
Bhattacharyya A, Campbell KM, Kelly SD, Roebbert Y, Weyer S, Bernier-Latmani R, Borch T. Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits. Nat Commun 2017; 8:15538. [PMID: 28569759 PMCID: PMC5461479 DOI: 10.1038/ncomms15538] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment. Crystalline uraninite is believed to be the dominant form in uranium deposits. Here, the authors find that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in ore deposits, implying that biogenic processes are more important than previously thought.
Collapse
Affiliation(s)
- Amrita Bhattacharyya
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, USA
| | | | | | - Yvonne Roebbert
- Institut für Mineralogie, Leibniz Universitat Hannover, Hannover D-30167, Germany
| | - Stefan Weyer
- Institut für Mineralogie, Leibniz Universitat Hannover, Hannover D-30167, Germany
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, USA.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| |
Collapse
|
19
|
Li W, Troyer LD, Lee SS, Wu J, Kim C, Lafferty BJ, Catalano JG, Fortner JD. Engineering Nanoscale Iron Oxides for Uranyl Sorption and Separation: Optimization of Particle Core Size and Bilayer Surface Coatings. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13163-13172. [PMID: 28338312 DOI: 10.1021/acsami.7b01042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, we describe engineered superparamagnetic iron oxide nanoparticles (IONPs) as platform materials for enhanced uranyl (UO22+) sorption and separation processes under environmentally relevant conditions. Specifically, monodispersed 8-25 nm iron oxide (magnetite, Fe3O4) nanoparticles with tailored organic acid bilayered coatings have been systematically evaluated and optimized to bind, and thus remove, uranium from water. The combined nonhydrolytic synthesis and bilayer phase transfer material preparation methods yield highly uniform and surface tailorable IONPs, which allow for direct evaluation of the size-dependent and coating-dependent sorption capacities of IONPs. Optimized materials demonstrate ultrahigh sorption capacities (>50% by wt/wt) at pH 5.6 for 8 nm oleic acid (OA) bilayer and sodium monododecyl phosphate (SDP) surface-stabilized IONPs. Synchrotron-based X-ray absorption spectroscopy shows that iron oxide core particle size and stabilizing surface functional group(s) substantially affect U(VI)-removal mechanisms, specifically the ratio of uptake via adsorption versus reduction to U(IV). Taken together, tunable size and surface functionality, high colloidal stability, and favorable affinity toward uranium provide distinct synergistic advantage(s) for the application of bilayered IONPs as part of the next-generation material-based uranium recovery, remediation, and sensing technologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Brandon J Lafferty
- U.S. Army Corps of Engineers, Engineer Research and Development Center , Vicksburg, Mississippi 39180, United States
| | | | | |
Collapse
|
20
|
Unusual Versatility of the Filamentous, Diazotrophic Cyanobacterium Anabaena torulosa Revealed for Its Survival during Prolonged Uranium Exposure. Appl Environ Microbiol 2017; 83:AEM.03356-16. [PMID: 28258135 DOI: 10.1128/aem.03356-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/19/2017] [Indexed: 11/20/2022] Open
Abstract
Reports on interactions between cyanobacteria and uranyl carbonate are rare. Here, we present an interesting succession of the metabolic responses employed by a marine, filamentous, diazotrophic cyanobacterium, Anabaena torulosa for its survival following prolonged exposure to uranyl carbonate extending up to 384 h at pH 7.8 under phosphate-limited conditions. The cells sequestered uranium (U) within polyphosphates on initial exposure to 100 μM uranyl carbonate for 24 to 28 h. Further incubation until 120 h resulted in (i) significant degradation of cellular polyphosphates causing extensive chlorosis and cell lysis, (ii) akinete differentiation followed by (iii) extracellular uranyl precipitation. X-ray diffraction (XRD) analysis, fluorescence spectroscopy, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy established the identity of the bioprecipitated uranium as a U(VI) autunite-type mineral, which settled at the bottom of the vessel. Surprisingly, A. torulosa cells resurfaced as small green flakes typical of actively growing colonies on top of the test solutions within 192 to 240 h of U exposure. A consolidated investigation using kinetics, microscopy, and physiological and biochemical analyses suggested a role of inducible alkaline phosphatase activity of cell aggregates/akinetes in facilitating the germination of akinetes leading to substantial regeneration of A. torulosa by 384 h of uranyl incubation. The biomineralized uranium appeared to be stable following cell regeneration. Altogether, our results reveal novel insights into the survival mechanism adopted by A. torulosa to resist sustained uranium toxicity under phosphate-limited oxic conditions.IMPORTANCE Long-term effects of uranyl exposure in cyanobacteria under oxic phosphate-limited conditions have been inadequately explored. We conducted a comprehensive examination of the metabolic responses displayed by a marine cyanobacterium, Anabaena torulosa, to cope with prolonged exposure to uranyl carbonate at pH 7.8 under phosphate limitation. Our results highlight distinct adaptive mechanisms harbored by this cyanobacterium that enabled its natural regeneration following extensive cell lysis and uranium biomineralization under sustained uranium exposure. Such complex interactions between environmental microbes such as Anabaena torulosa and uranium over a broader time range advance our understanding on the impact of microbial processes on uranium biogeochemistry.
Collapse
|
21
|
Majumder ELW, Wall JD. Uranium Bio-Transformations: Chemical or Biological Processes? ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ojic.2017.72003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Zhao C, Liu J, Li X, Li F, Tu H, Sun Q, Liao J, Yang J, Yang Y, Liu N. Biosorption and bioaccumulation behavior of uranium on Bacillus sp. dwc-2: Investigation by Box-Behenken design method. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.05.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Islam E, Sar P. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:12-21. [PMID: 26796528 DOI: 10.1016/j.ecoenv.2016.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes.
Collapse
Affiliation(s)
- Ekramul Islam
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India.
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|
24
|
Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp. dwc-1 as investigated by FTIR, TEM and XPS. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4797-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.tbs-0018-2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
Bacteria are one of the premier biological forces that, in combination with chemical and physical forces, drive metal availability in the environment. Bacterial spores, when found in the environment, are often considered to be dormant and metabolically inactive, in a resting state waiting for favorable conditions for them to germinate. However, this is a highly oversimplified view of spores in the environment. The surface of bacterial spores represents a potential site for chemical reactions to occur. Additionally, proteins in the outer layers (spore coats or exosporium) may also have more specific catalytic activity. As a consequence, bacterial spores can play a role in geochemical processes and may indeed find uses in various biotechnological applications. The aim of this review is to introduce the role of bacteria and bacterial spores in biogeochemical cycles and their potential use as toxic metal bioremediation agents.
Collapse
|
26
|
Liang X, Csetenyi L, Gadd GM. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates. Appl Microbiol Biotechnol 2016; 100:5141-51. [PMID: 26846744 DOI: 10.1007/s00253-016-7327-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/14/2023]
Abstract
In this research, we have demonstrated the ability of several yeast species to mediate U(VI) biomineralization through uranium phosphate biomineral formation when utilizing an organic source of phosphorus (glycerol 2-phosphate disodium salt hydrate (C3H7Na2O6P·xH2O (G2P)) or phytic acid sodium salt hydrate (C6H18O24P6·xNa(+)·yH2O (PyA))) in the presence of soluble UO2(NO3)2. The formation of meta-ankoleite (K2(UO2)2(PO4)2·6(H2O)), chernikovite ((H3O)2(UO2)2(PO4)2·6(H2O)), bassetite (Fe(++)(UO2)2(PO4)2·8(H2O)), and uramphite ((NH4)(UO2)(PO4)·3(H2O)) on cell surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid medium amended with uranium and an organic phosphorus source, as well as in yeasts pre-grown in organic phosphorus-containing media and then subsequently exposed to UO2(NO3)2. The resulting minerals depended on the yeast species as well as physico-chemical conditions. The results obtained in this study demonstrate that phosphatase-mediated uranium biomineralization can occur in yeasts supplied with an organic phosphate substrate as sole source of phosphorus. Further understanding of yeast interactions with uranium may be relevant to development of potential treatment methods for uranium waste and utilization of organic phosphate sources and for prediction of microbial impacts on the fate of uranium in the environment.
Collapse
Affiliation(s)
- Xinjin Liang
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Laszlo Csetenyi
- Concrete Technology Group, Department of Civil Engineering, University of Dundee, Dundee, Scotland, DD1 4HN, UK
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK.
| |
Collapse
|
27
|
Theodorakopoulos N, Chapon V, Coppin F, Floriani M, Vercouter T, Sergeant C, Camilleri V, Berthomieu C, Février L. Use of combined microscopic and spectroscopic techniques to reveal interactions between uranium and Microbacterium sp. A9, a strain isolated from the Chernobyl exclusion zone. JOURNAL OF HAZARDOUS MATERIALS 2015; 285:285-293. [PMID: 25528226 DOI: 10.1016/j.jhazmat.2014.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/20/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Although uranium (U) is naturally found in the environment, soil remediation programs will become increasingly important in light of certain human activities. This work aimed to identify U(VI) detoxification mechanisms employed by a bacteria strain isolated from a Chernobyl soil sample, and to distinguish its active from passive mechanisms of interaction. The ability of the Microbacterium sp. A9 strain to remove U(VI) from aqueous solutions at 4 °C and 25 °C was evaluated, as well as its survival capacity upon U(VI) exposure. The subcellular localisation of U was determined by TEM/EDX microscopy, while functional groups involved in the interaction with U were further evaluated by FTIR; finally, the speciation of U was analysed by TRLFS. We have revealed, for the first time, an active mechanism promoting metal efflux from the cells, during the early steps following U(VI) exposure at 25 °C. The Microbacterium sp. A9 strain also stores U intracellularly, as needle-like structures that have been identified as an autunite group mineral. Taken together, our results demonstrate that this strain exhibits a high U(VI) tolerance based on multiple detoxification mechanisms. These findings support the potential role of the genus Microbacterium in the remediation of aqueous environments contaminated with U(VI) under aerobic conditions.
Collapse
Affiliation(s)
- Nicolas Theodorakopoulos
- CEA, DSV, IBEB, SBVME, LIPM, F-13108 Saint-Paul-lez-Durance, France; CNRS, UMR 7265, F-13108 Saint-Paul-lez-Durance, France; Université d'Aix-Marseille, F-13108 Saint-Paul-lez-Durance, France; IRSN/PRP-ENV/SERIS/L2BT, bat 183, B.P. 3, F-13115 Saint Paul-lez-Durance, France
| | - Virginie Chapon
- CEA, DSV, IBEB, SBVME, LIPM, F-13108 Saint-Paul-lez-Durance, France; CNRS, UMR 7265, F-13108 Saint-Paul-lez-Durance, France; Université d'Aix-Marseille, F-13108 Saint-Paul-lez-Durance, France
| | - Fréderic Coppin
- IRSN/PRP-ENV/SERIS/L2BT, bat 183, B.P. 3, F-13115 Saint Paul-lez-Durance, France
| | - Magali Floriani
- IRSN/PRP-ENV/SERIS/L2BT, bat 183, B.P. 3, F-13115 Saint Paul-lez-Durance, France
| | - Thomas Vercouter
- CEA, DEN, DANS, DPC SEARS, LANIE, F-91191 Gif-Sur-Yvette Cedex, France
| | - Claire Sergeant
- Univ Bordeaux, CENBG, UMR5797, F-33170 Gradignan, France; CNRS, IN2P3, CENBG, UMR5797, F-33170 Gradignan, France
| | - Virginie Camilleri
- IRSN/PRP-ENV/SERIS/L2BT, bat 183, B.P. 3, F-13115 Saint Paul-lez-Durance, France
| | - Catherine Berthomieu
- CEA, DSV, IBEB, SBVME, LIPM, F-13108 Saint-Paul-lez-Durance, France; CNRS, UMR 7265, F-13108 Saint-Paul-lez-Durance, France; Université d'Aix-Marseille, F-13108 Saint-Paul-lez-Durance, France
| | - Laureline Février
- IRSN/PRP-ENV/SERIS/L2BT, bat 183, B.P. 3, F-13115 Saint Paul-lez-Durance, France.
| |
Collapse
|
28
|
Liang X, Hillier S, Pendlowski H, Gray N, Ceci A, Gadd GM. Uranium phosphate biomineralization by fungi. Environ Microbiol 2015; 17:2064-75. [PMID: 25580878 DOI: 10.1111/1462-2920.12771] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/30/2014] [Indexed: 11/29/2022]
Abstract
Geoactive soil fungi were investigated for phosphatase-mediated uranium precipitation during growth on an organic phosphorus source. Aspergillus niger and Paecilomyces javanicus were grown on modified Czapek-Dox medium amended with glycerol 2-phosphate (G2P) as sole P source and uranium nitrate. Both organisms showed reduced growth on uranium-containing media but were able to extensively precipitate uranium and phosphorus-containing minerals on hyphal surfaces, and these were identified by X-ray powder diffraction as uranyl phosphate species, including potassium uranyl phosphate hydrate (KPUO6 .3H2 O), meta-ankoleite [(K1.7 Ba0.2 )(UO2 )2 (PO4 )2 .6H2 O], uranyl phosphate hydrate [(UO2 )3 (PO4 )2 .4H2 O], meta-ankoleite (K(UO2 )(PO4 ).3H2 O), uramphite (NH4 UO2 PO4 .3H2 O) and chernikovite [(H3 O)2 (UO2 )2 (PO4 )2 .6H2 O]. Some minerals with a morphology similar to bacterial hydrogen uranyl phosphate were detected on A. niger biomass. Geochemical modelling confirmed the complexity of uranium speciation, and the presence of meta-ankoleite, uramphite and uranyl phosphate hydrate between pH 3 and 8 closely matched the experimental data, with potassium as the dominant cation. We have therefore demonstrated that fungi can precipitate U-containing phosphate biominerals when grown with an organic source of P, with the hyphal matrix serving to localize the resultant uranium minerals. The findings throw further light on potential fungal roles in U and P biogeochemistry as well as the application of these mechanisms for element recovery or bioremediation.
Collapse
Affiliation(s)
- Xinjin Liang
- Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Stephen Hillier
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK.,Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Helen Pendlowski
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Nia Gray
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Andrea Ceci
- Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.,Laboratorio Biodiversità dei Funghi, Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, 00185, Italy
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.,Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
29
|
Troyer LD, Tang Y, Borch T. Simultaneous reduction of arsenic(V) and uranium(VI) by mackinawite: role of uranyl arsenate precipitate formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14326-14334. [PMID: 25383895 DOI: 10.1021/es5037496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Uranium (U) and arsenic (As) often occur together naturally and, as a result, can be co-contaminants at sites of uranium mining and processing, yet few studies have examined the simultaneous redox dynamics of U and As. This study examines the influence of arsenate (As(V)) on the reduction of uranyl (U(VI)) by the redox-active mineral mackinawite (FeS). As(V) was added to systems containing 47 or 470 μM U(VI) at concentrations ranging from 0 to 640 μM. In the absence of As(V), U was completely removed from solution and fully reduced to nano-uraninite (nano-UO2). While the addition of As(V) did not reduce U uptake, at As(V) concentrations above 320 μM, the reduction of U(VI) was limited due to the formation of a trögerite-like uranyl arsenate precipitate. The presence of U also significantly inhibited As(V) reduction. While less U(VI) reduction to nano-UO2 may take place in systems with high As(V) concentrations, formation of trögerite-like mineral phases may be an acceptable reclamation end point due to their high stability under oxic conditions.
Collapse
Affiliation(s)
- Lyndsay D Troyer
- Department of Chemistry, Colorado State University , 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | | | | |
Collapse
|
30
|
Alessi D, Lezama-Pacheco JS, Janot N, Suvorova EI, Cerrato JM, Giammar DE, Davis JA, Fox PM, Williams KH, Long PE, Handley KM, Bernier-Latmani R, Bargar JR. Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12842-50. [PMID: 25265543 PMCID: PMC4224495 DOI: 10.1021/es502701u] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 05/18/2023]
Abstract
In this study, we report the results of in situ U(VI) bioreduction experiments at the Integrated Field Research Challenge site in Rifle, Colorado, USA. Columns filled with sediments were deployed into a groundwater well at the site and, after a period of conditioning with groundwater, were amended with a mixture of groundwater, soluble U(VI), and acetate to stimulate the growth of indigenous microorganisms. Individual reactors were collected as various redox regimes in the column sediments were achieved: (i) during iron reduction, (ii) just after the onset of sulfate reduction, and (iii) later into sulfate reduction. The speciation of U retained in the sediments was studied using X-ray absorption spectroscopy, electron microscopy, and chemical extractions. Circa 90% of the total uranium was reduced to U(IV) in each reactor. Noncrystalline U(IV) comprised about two-thirds of the U(IV) pool, across large changes in microbial community structure, redox regime, total uranium accumulation, and reaction time. A significant body of recent research has demonstrated that noncrystalline U(IV) species are more suceptible to remobilization and reoxidation than crystalline U(IV) phases such as uraninite. Our results highlight the importance of considering noncrystalline U(IV) formation across a wide range of aquifer parameters when designing in situ remediation plans.
Collapse
Affiliation(s)
- Daniel
S. Alessi
- Environmental
Microbiology Laboratory, Ecole Polytechnique
Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Juan S. Lezama-Pacheco
- Chemistry
and Catalysis Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Noémie Janot
- Chemistry
and Catalysis Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Elena I. Suvorova
- Environmental
Microbiology Laboratory, Ecole Polytechnique
Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - José M. Cerrato
- Department
of Energy, Environmental, and Chemical Engineering, One Brookings
Drive, Washington University, Saint Louis, Missouri 63130, United States
| | - Daniel E. Giammar
- Department
of Energy, Environmental, and Chemical Engineering, One Brookings
Drive, Washington University, Saint Louis, Missouri 63130, United States
| | - James A. Davis
- Earth
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Patricia M. Fox
- Earth
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Kenneth H. Williams
- Earth
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Philip E. Long
- Earth
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Kim M. Handley
- Department
of Earth & Planetary Sciences, University
of California, Berkeley, California 97420, United States
| | - Rizlan Bernier-Latmani
- Environmental
Microbiology Laboratory, Ecole Polytechnique
Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - John R. Bargar
- Chemistry
and Catalysis Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
31
|
Mtimunye PJ, Chirwa EMN. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria. CHEMOSPHERE 2014; 113:22-29. [PMID: 25065785 DOI: 10.1016/j.chemosphere.2014.03.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes.
Collapse
Affiliation(s)
- Phalazane J Mtimunye
- Environmental Engineering Group, Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa.
| | - Evans M N Chirwa
- Environmental Engineering Group, Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
32
|
Decrease of U(VI) immobilization capability of the facultative anaerobic strain Paenibacillus sp. JG-TB8 under anoxic conditions due to strongly reduced phosphatase activity. PLoS One 2014; 9:e102447. [PMID: 25157416 PMCID: PMC4144796 DOI: 10.1371/journal.pone.0102447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 06/19/2014] [Indexed: 11/28/2022] Open
Abstract
Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization.
Collapse
|
33
|
Determination of U(VI) and U(IV) concentrations in aqueous samples containing strong luminescence quenchers using TRLFS. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3319-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Martinez RJ, Wu CH, Beazley MJ, Andersen GL, Conrad ME, Hazen TC, Taillefert M, Sobecky PA. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments. PLoS One 2014; 9:e100383. [PMID: 24950228 PMCID: PMC4065101 DOI: 10.1371/journal.pone.0100383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4(3-)) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration.
Collapse
Affiliation(s)
- Robert J. Martinez
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Cindy H. Wu
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Melanie J. Beazley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Gary L. Andersen
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Mark E. Conrad
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Martial Taillefert
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Patricia A. Sobecky
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| |
Collapse
|
35
|
de Smidt O, Smit NJ, Botes E. Bacterial diversity in soil from geophagic mining sites in the Qwa-Qwa region of South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:184-195. [PMID: 24852929 DOI: 10.1080/09603123.2014.915019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Geophagia is practised in many parts of the world and can be associated with medicinal treatments, ceremonial events and spiritual behaviours/practices. This is the first report on a systematic investigation and description of the bacterial diversity in soil regularly ingested by geophagic individuals using a culture-independent method. Diversity in 17 different mining sites was investigated using denaturing gradient gel electrophoresis. Genetic material from Pantoea, Stenotrophomonas, Listeria, Rhodococcus and Sphingomonads was present in most of the soil samples. Species from these genera are recognised, potential or immerging human pathogens, and are of special interest in immune-compromised individuals. Other genera able to produce a variety of bacteriocins and antimicrobial/antifungal substances inhibitory towards food borne pathogens (Dactylosporangium and Bacillus) and able to degrade a range of environmental pollutants and toxins (Duganella and Massilia) were also present. These essential insights provide the platform for adjusting culturing strategies to isolate specific bacteria, further phylogenetic studies and microbial mining prospect for bacterial species of possible economic importance.
Collapse
Affiliation(s)
- Olga de Smidt
- a Life Sciences , Central University of Technology, Free State , Bloemfontein , South Africa
| | | | | |
Collapse
|
36
|
Phosphate solubilizing uranium tolerant bacteria associated with monazite sand of a natural background radiation site in South-West coast of India. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0812-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Zhang C, Malhotra SV, Francis AJ. Toxicity of ionic liquids to Clostridium sp. and effects on uranium biosorption. JOURNAL OF HAZARDOUS MATERIALS 2014; 264:246-253. [PMID: 24316798 DOI: 10.1016/j.jhazmat.2013.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
As green solvents ionic liquids (ILs) show high potential in nuclear industry for extraction and purification of actinides. However, to date relatively little information has been gained on ILs application in microbial processes, for example biosorption of radionuclides. We investigated the effects of three ILs, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), N-ethylpyridinium trifluoroacetate (EtPyCF3COO) and N-ethylpyridinium tetrafluoroborate (EtPyBF4) on the growth and biosorption of uranium by Clostridium sp. The ILs affected the growth of the bacterium as evidenced by decreases in optical density, total gas production, and organic acids production from glucose metabolism. The IC50-48h of three ILs decreased in the order of BMIMPF6 (8.26mM)>EtPyBF4 (7.04mM)>EtPyCF3COO (4.05mM). Uranium biosorption by the bacterial cells decreased by 75% in the presence of 1% (v/v) BMIMPF6 and by about 90% with 1% (v/v) EtPyBF4 or EtPyCF3COO, in comparison to the control without ILs. The diminished biosorption may be attributed to the membrane damages induced by EtPyBF4 and EtPyCF3COO, which can be visualized by Transmission Electron Microscope (TEM) analysis. Energy-dispersive X-ray spectroscopy (EDS) analysis revealed the accumulation of uranium inside peripheral membrane of the cells exposed to uranium alone or with BMIMPF6, while little or no accumulation was observed in the presence of EtPyBF4 and EtPyCF3COO. These results imply that potential toxicity of ILs towards microorganisms is a particularly important issue in limiting its biotechnological applications.
Collapse
Affiliation(s)
- C Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China 300071; Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07104 USA.
| | - S V Malhotra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07104 USA
| | - A J Francis
- Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973 USA; Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang, 790-784 South Korea
| |
Collapse
|
38
|
de Carvalho CCCR, Caramujo MJ. Bacterial diversity assessed by cultivation-based techniques shows predominance ofStaphylococccusspecies on coins collected in Lisbon and Casablanca. FEMS Microbiol Ecol 2013; 88:26-37. [DOI: 10.1111/1574-6941.12266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Carla C. C. R. de Carvalho
- IBB-Institute for Biotechnology and Bioengineering; Centre for Biological and Chemical Engineering; Department of Bioengineering; Instituto Superior Técnico; Universidade de Lisboa; Lisbon Portugal
| | - Maria José Caramujo
- Centre for Environmental Biology; Faculty of Sciences; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
39
|
Sousa T, Chung AP, Pereira A, Piedade AP, Morais PV. Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes. Metallomics 2013; 5:390-7. [PMID: 23487302 DOI: 10.1039/c3mt00052d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Severe environmental problems arise from old uranium mines, which continue to discharge uranium (U) via acid mine drainage water, resulting in soil, subsoil and groundwater contamination. Bioremediation of U contaminated environments has been attempted, but most of the conceptual models propose U removal by cell suspensions of anaerobic bacteria. In this study, strain Rhodanobacter A2-61, isolated from Urgeiriça Mine, Portugal, was shown to resist up to 2 mM of U(vi). The conditions used (low nutrient content and pH 5) potentiated the interaction of the toxic uranyl ion with the tested strain. The strain was able to remove approximately 120 μM of U(vi) when grown aerobically in the presence of 500 μM U. Under these conditions, this strain was also able to lower the phosphate concentration in the medium and increased its capacity to take up inorganic phosphate, accumulating up to 0.52 μmol phosphate per optical density unit of the medium at 600 nm, after 24 hours, corresponding approximately to the late log phase of the bacterial culture. Microscopically dense intracellular structures with nanometer size were visible. The extent of U inside the cells was quantified by LS counting. EDS analysis of heated cells showed the presence of complexes composed of phosphate and uranium, suggesting the simultaneous precipitation of U and phosphate within the cells. XRD analysis of the cells containing the U-phosphate complexes suggested the presence of a meta-autunite-like mineral structure. SEM identified, in pyrolyzed cells, crystalline nanoparticles with shape in the tetragonal system characteristic of the meta-autunite-like mineral structures. U removal has been reported previously but mainly by cell suspensions and through release of phosphate. The innovative Rhodanobacter A2-61 can actively grow aerobically, in the presence of U, and can efficiently remove U(vi) from the environment, accumulating it in a structural form consistent with that of the mineral meta-autunite inside the cell, corresponding to effective metal immobilization. This work supports previous findings that U bioremediation could be achieved via the biomineralization of U(vi) in phosphate minerals.
Collapse
|
40
|
Cerrato JM, Ashner MN, Alessi DS, Lezama-Pacheco JS, Bernier-Latmani R, Bargar JR, Giammar DE. Relative reactivity of biogenic and chemogenic uraninite and biogenic noncrystalline U(IV). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9756-63. [PMID: 23906226 PMCID: PMC3830940 DOI: 10.1021/es401663t] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aqueous chemical extractions and X-ray absorption spectroscopy (XAS) analyses were conducted to investigate the reactivity of chemogenic uraninite, nanoparticulate biogenic uraninite, and biogenic monomeric U(IV) species. The analyses were conducted in systems containing a total U concentration that ranged from 1.48 to 2.10 mM. Less than 0.02% of the total U was released to solution in extractions that targeted water-soluble and ion exchangeable fractions. Less than 5% of the total U was solubilized via complexation with a 0.1 M solution of NaF. Greater than 90% of the total U was extracted from biogenic uraninite and monomeric U(IV) after 6 h of reaction in an oxidizing solution of 50 mM K2S2O8. Additional oxidation experiments with lower concentrations (2 mM and 10 mM) of K2S2O8 and 8.2 mg L(-1) dissolved oxygen suggested that monomeric U(IV) species are more labile than biogenic uraninite; chemogenic uraninite was much less susceptible to oxidation than either form of biogenic U(IV). These results suggest that noncrystalline forms of U(IV) may be more labile than uraninite in subsurface environments. This work helps fill critical gaps in our understanding of the behavior of solid-associated U(IV) species in bioremediated sites and natural uranium ore deposits.
Collapse
Affiliation(s)
- José M. Cerrato
- Department of Energy, Environmental, and Chemical Engineering, One Brookings Drive, Washington University, Saint Louis, Missouri 63130, USA
- Corresponding Telephone: (001) (314) 935-3457 Fax: (001) (314) 935-5464
| | - Matthew N. Ashner
- Department of Energy, Environmental, and Chemical Engineering, One Brookings Drive, Washington University, Saint Louis, Missouri 63130, USA
| | - Daniel S. Alessi
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, CH 1015, Switzerland
| | - Juan S. Lezama-Pacheco
- Stanford Synchrotron Radiation Lightsource, SLAC, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, CH 1015, Switzerland
| | - John R. Bargar
- Stanford Synchrotron Radiation Lightsource, SLAC, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Daniel E. Giammar
- Department of Energy, Environmental, and Chemical Engineering, One Brookings Drive, Washington University, Saint Louis, Missouri 63130, USA
| |
Collapse
|
41
|
Baiget M, Constantí M, López MT, Medina F. Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system. N Biotechnol 2013; 30:788-92. [DOI: 10.1016/j.nbt.2013.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 03/15/2013] [Accepted: 05/01/2013] [Indexed: 11/28/2022]
|
42
|
Rui X, Kwon MJ, O'Loughlin EJ, Dunham-Cheatham S, Fein JB, Bunker B, Kemner KM, Boyanov MI. Bioreduction of hydrogen uranyl phosphate: mechanisms and U(IV) products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5668-5678. [PMID: 23634690 DOI: 10.1021/es305258p] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The mobility of uranium (U) in subsurface environments is controlled by interrelated adsorption, redox, and precipitation reactions. Previous work demonstrated the formation of nanometer-sized hydrogen uranyl phosphate (abbreviated as HUP) crystals on the cell walls of Bacillus subtilis, a non-U(VI)-reducing, Gram-positive bacterium. The current study examined the reduction of this biogenic, cell-associated HUP mineral by three dissimilatory metal-reducing bacteria, Anaeromyxobacter dehalogenans strain K, Geobacter sulfurreducens strain PCA, and Shewanella putrefaciens strain CN-32, and compared it to the bioreduction of abiotically formed and freely suspended HUP of larger particle size. Uranium speciation in the solid phase was followed over a 10- to 20-day reaction period by X-ray absorption fine structure spectroscopy (XANES and EXAFS) and showed varying extents of U(VI) reduction to U(IV). The reduction extent of the same mass of HUP to U(IV) was consistently greater with the biogenic than with the abiotic material under the same experimental conditions. A greater extent of HUP reduction was observed in the presence of bicarbonate in solution, whereas a decreased extent of HUP reduction was observed with the addition of dissolved phosphate. These results indicate that the extent of U(VI) reduction is controlled by dissolution of the HUP phase, suggesting that the metal-reducing bacteria transfer electrons to the dissolved or bacterially adsorbed U(VI) species formed after HUP dissolution, rather than to solid-phase U(VI) in the HUP mineral. Interestingly, the bioreduced U(IV) atoms were not immediately coordinated to other U(IV) atoms (as in uraninite, UO2) but were similar in structure to the phosphate-complexed U(IV) species found in ningyoite [CaU(PO4)2·H2O]. This indicates a strong control by phosphate on the speciation of bioreduced U(IV), expressed as inhibition of the typical formation of uraninite under phosphate-free conditions.
Collapse
Affiliation(s)
- Xue Rui
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Latta DE, Pearce CI, Rosso KM, Kemner KM, Boyanov MI. Reaction of U(VI) with titanium-substituted magnetite: influence of Ti on U(IV) speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4121-4130. [PMID: 23597442 DOI: 10.1021/es303383n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Reduction of hexavalent uranium (U(VI)) to less soluble tetravalent uranium (U(IV)) through enzymatic or abiotic redox reactions has the potential to alter U mobility in subsurface environments. As a ubiquitous natural mineral, magnetite (Fe3O4) is of interest because of its ability to act as a rechargeable reductant for U(VI). Natural magnetites are often impure with titanium, and structural Fe(3+) replacement by Ti(IV) yields a proportional increase in the relative Fe(2+) content in the metal sublattice to maintain bulk charge neutrality. In the absence of oxidation, the Ti content sets the initial bulk Fe(2+)/Fe(3+) ratio (R). Here, we demonstrate that Ti-doped magnetites (Fe3 - xTixO4) reduce U(VI) to U(IV). The U(VI)-Fe(2+) redox reactivity was found to be controlled directly by R but was otherwise independent of Ti content (xTi). However, in contrast to previous studies with pure magnetite where U(VI) was reduced to nanocrystalline uraninite (UO2), the presence of structural Ti (xTi = 0.25-0.53) results in the formation of U(IV) species that lack the bidentate U-O2-U bridges of uraninite. Extended X-ray absorption fine structure spectroscopic analysis indicated that the titanomagnetite-bound U(IV) phase has a novel U(IV)-Ti binding geometry different from the coordination of U(IV) in the mineral brannerite (U(IV)Ti2O6). The observed U(IV)-Ti coordination at a distance of 3.43 Å suggests a binuclear corner-sharing adsorption/incorporation U(IV) complex with the solid phase. Furthermore, we explored the effect of oxidation (decreasing R) and solids-to-solution ratio on the reduced U(IV) phase. The formation of the non-uraninite U(IV)-Ti phase appears to be controlled by availability of surface Ti sites rather than R. Our work highlights a previously unrecognized role of Ti in the environmental chemistry of U(IV) and suggests that further work to characterize the long-term stability of U(IV) phases formed in the presence of Ti is warranted.
Collapse
Affiliation(s)
- Drew E Latta
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | | | | | | | | |
Collapse
|
44
|
Zachara JM, Long PE, Bargar J, Davis JA, Fox P, Fredrickson JK, Freshley MD, Konopka AE, Liu C, McKinley JP, Rockhold ML, Williams KH, Yabusaki SB. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 147:45-72. [PMID: 23500840 DOI: 10.1016/j.jconhyd.2013.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 01/10/2013] [Accepted: 02/06/2013] [Indexed: 05/22/2023]
Abstract
We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (<one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide.
Collapse
Affiliation(s)
- John M Zachara
- Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bargar JR, Williams KH, Campbell KM, Long PE, Stubbs JE, Suvorova EI, Lezama-Pacheco JS, Alessi DS, Stylo M, Webb SM, Davis JA, Giammar DE, Blue LY, Bernier-Latmani R. Uranium redox transition pathways in acetate-amended sediments. Proc Natl Acad Sci U S A 2013; 110:4506-4511. [PMCID: PMC3607047 DOI: 10.1073/pnas.1219198110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Redox transitions of uranium [from U(VI) to U(IV)] in low-temperature sediments govern the mobility of uranium in the environment and the accumulation of uranium in ore bodies, and inform our understanding of Earth’s geochemical history. The molecular-scale mechanistic pathways of these transitions determine the U(IV) products formed, thus influencing uranium isotope fractionation, reoxidation, and transport in sediments. Studies that improve our understanding of these pathways have the potential to substantially advance process understanding across a number of earth sciences disciplines. Detailed mechanistic information regarding uranium redox transitions in field sediments is largely nonexistent, owing to the difficulty of directly observing molecular-scale processes in the subsurface and the compositional/physical complexity of subsurface systems. Here, we present results from an in situ study of uranium redox transitions occurring in aquifer sediments under sulfate-reducing conditions. Based on molecular-scale spectroscopic, pore-scale geochemical, and macroscale aqueous evidence, we propose a biotic–abiotic transition pathway in which biomass-hosted mackinawite (FeS) is an electron source to reduce U(VI) to U(IV), which subsequently reacts with biomass to produce monomeric U(IV) species. A species resembling nanoscale uraninite is also present, implying the operation of at least two redox transition pathways. The presence of multiple pathways in low-temperature sediments unifies apparently contrasting prior observations and helps to explain sustained uranium reduction under disparate biogeochemical conditions. These findings have direct implications for our understanding of uranium bioremediation, ore formation, and global geochemical processes.
Collapse
Affiliation(s)
- John R. Bargar
- Chemistry and Catalysis Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Kenneth H. Williams
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | | | - Philip E. Long
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Joanne E. Stubbs
- Chemistry and Catalysis Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - ElenaI I. Suvorova
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; and
| | - Juan S. Lezama-Pacheco
- Chemistry and Catalysis Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Daniel S. Alessi
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; and
| | - Malgorzata Stylo
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; and
| | - Samuel M. Webb
- Chemistry and Catalysis Division, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - James A. Davis
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Daniel E. Giammar
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO 63130
| | - Lisa Y. Blue
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO 63130
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; and
| |
Collapse
|
46
|
Luan F, Burgos WD. Sequential extraction method for determination of Fe(II/III) and U(IV/VI) in suspensions of iron-bearing phyllosilicates and uranium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11995-12002. [PMID: 23075386 DOI: 10.1021/es303306f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Iron-bearing phyllosilicates strongly influence the redox state and mobility of uranium because of their limited hydraulic conductivity, high specific surface area, and redox reactivity. Standard extraction procedures cannot be accurately applied for the determination of clay-Fe(II/III) and U(IV/VI) in clay mineral-U suspensions such that advanced spectroscopic techniques are required. Instead, we developed and validated a sequential extraction method for determination of clay-Fe(II/III) and U(IV/VI) in clay-U suspensions. In our so-called "H(3)PO(4)-HF-H(2)SO(4) sequential extraction" method, H(3)PO(4)-H(2)SO(4) is used first to solubilize and remove U, and the remaining clay pellet is subject to HF-H(2)SO(4) digestion. Physical separation of U and clay eliminates valence cycling between U(IV/VI) and clay-Fe(II/III) that otherwise occurred in the extraction solutions and caused analytical discrepancies. We further developed an "automated anoxic KPA" method to measure soluble U(VI) and total U (calculate U(IV) by difference) and modified the conventional HF-H(2)SO(4) digestion method to eliminate a series of time-consuming weighing steps. We measured the kinetics of uraninite oxidation by nontronite using this sequential extraction method and anoxic KPA method and measured a stoichiometric ratio of 2.19 ± 0.05 mol clay-Fe(II) produced per mol U(VI) produced (theoretical value of 2.0). We found that we were able to recover 98.0-98.5% of the clay Fe and 98.1-98.5% of the U through the sequential extractions. Compared to the theoretical stoichiometric ratio of 2.0, the parallel extractions of 0.5 M HCl for clay-Fe(II) and 1 M NaHCO(3) for U(VI) leached two-times more Fe(II) than U(VI). The parallel extractions of HF-H(2)SO(4) for clay Fe(II) and 1 M NaHCO(3) for U(VI) leached six-times more Fe(II) than U(VI).
Collapse
Affiliation(s)
- Fubo Luan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801-1408, USA
| | | |
Collapse
|
47
|
Fe(III) reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments. Appl Environ Microbiol 2012; 78:8001-9. [PMID: 22961903 DOI: 10.1128/aem.01844-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.
Collapse
|
48
|
Ahmed B, Cao B, Mishra B, Boyanov MI, Kemner KM, Fredrickson JK, Beyenal H. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water. WATER RESEARCH 2012; 46:3989-3998. [PMID: 22683408 DOI: 10.1016/j.watres.2012.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/08/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (∼7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (∼93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water, desorption may be the primary process resulting in U remobilization from OA-SGW-stimulated 300 A sediments at the subsurface of the Hanford 300 A site.
Collapse
Affiliation(s)
- Bulbul Ahmed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Spokane St, PO Box 642710, Pullman, WA 99164-2710, United States
| | | | | | | | | | | | | |
Collapse
|
49
|
Jin H, Zhang Y, Buchko GW, Varnum SM, Robinson H, Squier TC, Long PE. Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii. PLoS One 2012; 7:e42432. [PMID: 22879982 PMCID: PMC3412864 DOI: 10.1371/journal.pone.0042432] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl) has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR) was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN) per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A) result in 90–95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A) participating in the coordination of FMN in the active site results in only modest (50%) reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.
Collapse
Affiliation(s)
- Hongjun Jin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.
| | | | | | | | | | | | | |
Collapse
|
50
|
Singh A, Catalano JG, Ulrich KU, Giammar DE. Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6594-6603. [PMID: 22612235 DOI: 10.1021/es300494x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The molecular-scale immobilization mechanisms of uranium uptake in the presence of phosphate and goethite were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. Wet chemistry data from U(VI)-equilibrated goethite suspensions at pH 4-7 in the presence of ~100 μM total phosphate indicated changes in U(VI) uptake mechanisms from adsorption to precipitation with increasing total uranium concentrations and with increasing pH. EXAFS analysis revealed that the precipitated U(VI) had a structure consistent with the meta-autunite group of solids. The adsorbed U(VI), in the absence of phosphate at pH 4-7, formed bidentate edge-sharing, ≡ Fe(OH)(2)UO(2), and bidentate corner-sharing, (≡ FeOH)(2)UO(2), surface complexes with respective U-Fe coordination distances of ~3.45 and ~4.3 Å. In the presence of phosphate and goethite, the relative amounts of precipitated and adsorbed U(VI) were quantified using linear combinations of the EXAFS spectra of precipitated U(VI) and phosphate-free adsorbed U(VI). A U(VI)-phosphate-Fe(III) oxide ternary surface complex is suggested as the dominant species at pH 4 and total U(VI) of 10 μM or less on the basis of the linear combination fitting, a P shell indicated by EXAFS, and the simultaneous enhancement of U(VI) and phosphate uptake on goethite. A structural model for the ternary surface complex was proposed that included a single phosphate shell at ~3.6 Å (U-P) and a single iron shell at ~4.3 Å (U-Fe). While the data can be explained by a U-bridging ternary surface complex, (≡ FeO)(2)UO(2)PO(4), it is not possible to statistically distinguish this scenario from one with P-bridging complexes also present.
Collapse
Affiliation(s)
- Abhas Singh
- Department of Energy, Environmental and Chemical Engineering, Washington University, St Louis, Missouri 63130, United States.
| | | | | | | |
Collapse
|