1
|
Wißmann R, Martirosian P, Danalache M, Grözinger G, Schick F, Elser S. Imaging cell spheroid clusters: An MRI protocol for non-invasive standardized characterization. Heliyon 2025; 11:e41803. [PMID: 39897913 PMCID: PMC11787676 DOI: 10.1016/j.heliyon.2025.e41803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Over the past decade, significant progress has been made in the utilization of three-dimensional cell cultures in the form of spheroids as a bridge between in vitro and in vivo models. This is contributed by natural cell-cell interactions that occur within spheroids, leading to the subsequent development of extracellular matrix. The assessment of cell spheroids with conventional microscopy is destructive, requiring sectioning that damages their micro-structures. To address these issues, we developed and propose a non-invasive approach using magnetic resonance imaging (MRI). Despite its limited spatial resolution, this method adeptly reveals information about the composition and vitality of stem cell and cancer spheroids and their micro-environment in a non-invasive manner. This work reports on the development of an MRI-compatible setup for culturing cell spheroids, tailored for use with standard 3 T whole-body MRI systems. Systematic studies with different cell types show the potential of the proposed approach for simultaneous actuation and visualization of cell spheroids, with potential across a broad spectrum of applications.
Collapse
Affiliation(s)
- Rebecca Wißmann
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, D-72076, Tübingen, Germany
| | - Petros Martirosian
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, D-72076, Tübingen, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Tübingen University Hospital, Tübingen, Germany
| | - Marina Danalache
- Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72076, Tübingen, Germany
| | - Gerd Grözinger
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, D-72076, Tübingen, Germany
| | - Fritz Schick
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, D-72076, Tübingen, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Tübingen University Hospital, Tübingen, Germany
| | - Stefanie Elser
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, D-72076, Tübingen, Germany
| |
Collapse
|
2
|
Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease. J Hepatol 2024; 80:805-821. [PMID: 38237864 PMCID: PMC11828489 DOI: 10.1016/j.jhep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease affects millions of people worldwide. Progress towards a definitive cure has been incremental and treatment is currently limited to lifestyle modification. Hepatocyte-specific lipid accumulation is the main trigger of lipotoxic events, driving inflammation and fibrosis. The underlying pathology is extraordinarily heterogenous, and the manifestations of steatohepatitis are markedly influenced by metabolic communications across non-hepatic organs. Synthetic human tissue models have emerged as powerful platforms to better capture the mechanistic diversity in disease progression, while preserving person-specific genetic traits. In this review, we will outline current research efforts focused on integrating multiple synthetic tissue models of key metabolic organs, with an emphasis on organoid-based systems. By combining functional genomics and population-scale en masse profiling methodologies, human tissues derived from patients can provide insights into personalised genetic, transcriptional, biochemical, and metabolic states. These collective efforts will advance our understanding of steatohepatitis and guide the development of rational solutions for mechanism-directed diagnostic and therapeutic investigation.
Collapse
Affiliation(s)
- Sho Osonoi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; WPI Premium Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
3
|
Zhang FL, Hu Z, Wang YF, Zhang WJ, Zhou BW, Sun QS, Lin ZB, Liu KX. Organoids transplantation attenuates intestinal ischemia/reperfusion injury in mice through L-Malic acid-mediated M2 macrophage polarization. Nat Commun 2023; 14:6779. [PMID: 37880227 PMCID: PMC10600233 DOI: 10.1038/s41467-023-42502-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Intestinal organoid transplantation is a promising therapy for the treatment of mucosal injury. However, how the transplanted organoids regulate the immune microenvironment of recipient mice and their role in treating intestinal ischemia-reperfusion (I/R) injury remains unclear. Here, we establish a method for transplanting intestinal organoids into intestinal I/R mice. We find that transplantation improve mouse survival, promote self-renewal of intestinal stem cells and regulate the immune microenvironment after intestinal I/R, depending on the enhanced ability of macrophages polarized to an anti-inflammatory M2 phenotype. Specifically, we report that L-Malic acid (MA) is highly expressed and enriched in the organoids-derived conditioned medium and cecal contents of transplanted mice, demonstrating that organoids secrete MA during engraftment. Both in vivo and in vitro experiments demonstrate that MA induces M2 macrophage polarization and restores interleukin-10 levels in a SOCS2-dependent manner. This study provides a therapeutic strategy for intestinal I/R injury.
Collapse
Affiliation(s)
- Fang-Ling Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Fan Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Juan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo-Wei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qi-Shun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ze-Bin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Unagolla JM, Jayasuriya AC. Recent advances in organoid engineering: A comprehensive review. APPLIED MATERIALS TODAY 2022; 29:101582. [PMID: 38264423 PMCID: PMC10804911 DOI: 10.1016/j.apmt.2022.101582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Organoid, a 3D structure derived from various cell sources including progenitor and differentiated cells that self-organize through cell-cell and cell-matrix interactions to recapitulate the tissue/organ-specific architecture and function in vitro. The advancement of stem cell culture and the development of hydrogel-based extracellular matrices (ECM) have made it possible to derive self-assembled 3D tissue constructs like organoids. The ability to mimic the actual physiological conditions is the main advantage of organoids, reducing the excessive use of animal models and variability between animal models and humans. However, the complex microenvironment and complex cellular structure of organoids cannot be easily developed only using traditional cell biology. Therefore, several bioengineering approaches, including microfluidics, bioreactors, 3D bioprinting, and organoids-on-a-chip techniques, are extensively used to generate more physiologically relevant organoids. In this review, apart from organoid formation and self-assembly basics, the available bioengineering technologies are extensively discussed as solutions for traditional cell biology-oriented problems in organoid cultures. Also, the natural and synthetic hydrogel systems used in organoid cultures are discussed when necessary to highlight the significance of the stem cell microenvironment. The selected organoid models and their therapeutic applications in drug discovery and disease modeling are also presented.
Collapse
Affiliation(s)
- Janitha M. Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
| | - Ambalangodage C. Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| |
Collapse
|
5
|
Wen Y, Liu Y, Huang Q, Farag MA, Li X, Wan X, Zhao C. Nutritional assessment models for diabetes and aging. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yuanyuan Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Qihui Huang
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry Universidade de Vigo, Nutrition and Bromatology Group, Faculty of Sciences Ourense Spain
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Xiaoqing Li
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xuzhi Wan
- College of Biosystem Engineering and Food Science Zhejiang University Hangzhou China
| | - Chao Zhao
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
6
|
Kemas AM, Lauschke VM. Measuring Glucose Consumption and Gluconeogenesis in 3D Human Tissue Cultures with Nanoliter Input Volumes. Methods Mol Biol 2022; 2445:337-349. [PMID: 34973002 DOI: 10.1007/978-1-0716-2071-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organotypic and microphysiological culture of primary human tissues and cancers has emerged as a powerful set of technologies that allow to faithfully mimic cellular metabolism and functions ex vivo. The predominant 3D culture methods include spheroids and microfluidic chips. These cultures use low cell numbers and culture volumes, which, however, poses important limitations for the available amounts of sample for downstream analyses. Here, we describe a detailed method for the measurement of glucose consumption dynamics in organotypic culture using a bienzymatic colorimetric assay that accurately quantifies glucose levels using nanoliter input volumes. As an example we utilize spheroids consisting of primary human hepatocytes. The assay has been carefully optimized and benchmarked and is compatible with both longitudinal and high-throughput screening in both static and perfused conditions. The method is straightforward and only requires a microplate reader capable of running absorbance kinetic measurements.
Collapse
Affiliation(s)
- Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
7
|
Kemas AM, Youhanna S, Zandi Shafagh R, Lauschke VM. Insulin-dependent glucose consumption dynamics in 3D primary human liver cultures measured by a sensitive and specific glucose sensor with nanoliter input volume. FASEB J 2021; 35:e21305. [PMID: 33566368 DOI: 10.1096/fj.202001989rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
The liver plays a central role in glucose homeostasis and hepatic insulin resistance constitutes a key feature of type 2 diabetes. However, platforms that accurately mimic human hepatic glucose disposition and allow for rapid and scalable quantification of glucose consumption dynamics are lacking. Here, we developed and optimized a colorimetric glucose assay based on the glucose oxidase-peroxidase system and demonstrate that the system can monitor glucose consumption in 3D primary human liver cell cultures over multiple days. The system was highly sensitive (limit of detection of 3.5 µM) and exceptionally accurate (R2 = 0.999) while requiring only nanoliter input volumes (250 nL), enabling longitudinal profiling of individual liver microtissues. By utilizing a novel polymer, off-stoichiometric thiol-ene (OSTE), and click-chemistry based on thiol-Michael additions, we furthermore show that the assay can be covalently bound to custom-build chips, facilitating the integration of the sensor into microfluidic devices. Using this system, we find that glucose uptake of our 3D human liver cultures closely resembles human hepatic glucose uptake in vivo as measured by euglycemic-hyperinsulinemic clamp. By comparing isogenic insulin-resistant and insulin-sensitive liver cultures we furthermore show that insulin and extracellular glucose levels account for 55% and 45% of hepatic glucose consumption, respectively. In conclusion, the presented data show that the integration of accurate and scalable nanoliter glucose sensors with physiologically relevant organotypic human liver models enables longitudinal profiling of hepatic glucose consumption dynamics that will facilitate studies into the biology and pathobiology of glycemic control, as well as antidiabetic drug screening.
Collapse
Affiliation(s)
- Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Micro and Nanosystem, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Mansouri M, Leipzig ND. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs. BIOPHYSICS REVIEWS 2021; 2:021305. [PMID: 38505119 PMCID: PMC10903443 DOI: 10.1063/5.0048837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 03/21/2024]
Abstract
Spheroids and organoids are promising models for biomedical applications ranging from human disease modeling to drug discovery. A main goal of these 3D cell-based platforms is to recapitulate important physiological parameters of their in vivo organ counterparts. One way to achieve improved biomimetic architectures and functions is to culture cells at higher density and larger total numbers. However, poor nutrient and waste transport lead to low stability, survival, and functionality over extended periods of time, presenting outstanding challenges in this field. Fortunately, important improvements in culture strategies have enhanced the survival and function of cells within engineered microtissues/organs. Here, we first discuss the challenges of growing large spheroids/organoids with a focus on mass transport limitations, then highlight recent tools and methodologies that are available for producing and sustaining functional 3D in vitro models. This information points toward the fact that there is a critical need for the continued development of novel cell culture strategies that address mass transport in a physiologically relevant human setting to generate long-lasting and large-sized spheroids/organoids.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
9
|
Brooks A, Liang X, Zhang Y, Zhao CX, Roberts MS, Wang H, Zhang L, Crawford DHG. Liver organoid as a 3D in vitro model for drug validation and toxicity assessment. Pharmacol Res 2021; 169:105608. [PMID: 33852961 DOI: 10.1016/j.phrs.2021.105608] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
The past decade has seen many advancements in the development of three-dimensional (3D) in vitro models in pharmaceutical sciences and industry. Specifically, organoids present a self-organising, self-renewing and more physiologically relevant model than conventional two-dimensional (2D) cell cultures. Liver organoids have been developed from a variety of cell sources, including stem cells, cell lines and primary cells. They have potential for modelling patient-specific disease and establishing personalised therapeutic approaches. Additionally, liver organoids have been used to test drug efficacy and toxicity. Herein we summarise cell sources for generating liver organoids, the advantages and limitations of each cell type, as well as the application of the organoids in modelling liver diseases. We focus on the use of liver organoids as tools for drug validation and toxicity assessment.
Collapse
Affiliation(s)
- Anastasia Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Yonglong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Michael S Roberts
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Haolu Wang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Darrell H G Crawford
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Rauth S, Karmakar S, Batra SK, Ponnusamy MP. Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer 2021; 1875:188527. [PMID: 33640383 PMCID: PMC8068668 DOI: 10.1016/j.bbcan.2021.188527] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
An improved understanding of stem cell niches, organogenesis, and disease models has paved the way for developing a three-dimensional (3D) organoid culture system. Organoid cultures can be derived from primary tissues (single cells or tissue subunits), adult stem cells (ASCs), induced pluripotent stem cells (iPSCs), or embryonic stem cells (ESCs). As a significant technological breakthrough, 3D organoid models offer a promising approach for understanding the complexities of human diseases ranging from the mechanistic investigation of disease pathogenesis to therapy. Here, we discuss the recent applications, advantages, and limitations of organoids as in vitro models for studying metabolomics, drug development, infectious diseases, and the gut microbiome. We further discuss the use of organoids in cancer modeling using high throughput sequencing approaches.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Baquerre C, Montillet G, Pain B. Liver organoids in domestic animals: an expected promise for metabolic studies. Vet Res 2021; 52:47. [PMID: 33736676 PMCID: PMC7977275 DOI: 10.1186/s13567-021-00916-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
The liver is one of the most important organs, both in terms of the different metabolic processes (energy, lipid, ferric, uric, etc.) and of its central role in the processes of detoxification of substances of food origin or noxious substances (alcohol, drugs, antibiotics, etc.). The development of a relevant model that reproduces some of the functions of this tissue has become a challenge, in particular for human medicine. Thus, in recent years, most studies aimed at producing hepatocytes in vitro with the goal of developing hepatic 3D structures have been carried out in the human model. However, the tools and protocols developed using this unique model can also be considered to address physiological questions specific to this tissue in other species, such as the pig, chicken, and duck. Different strategies are presently being considered to carry out in vitro studies of the hepatic metabolism of these agronomic species.
Collapse
Affiliation(s)
- Camille Baquerre
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, 69500, Bron, France
| | - Guillaume Montillet
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, 69500, Bron, France
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, 69500, Bron, France.
| |
Collapse
|
12
|
Vibrational Spectroscopy for In Vitro Monitoring Stem Cell Differentiation. Molecules 2020; 25:molecules25235554. [PMID: 33256146 PMCID: PMC7729886 DOI: 10.3390/molecules25235554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cell technology has attracted considerable attention over recent decades due to its enormous potential in regenerative medicine and disease therapeutics. Studying the underlying mechanisms of stem cell differentiation and tissue generation is critical, and robust methodologies and different technologies are required. Towards establishing improved understanding and optimised triggering and control of differentiation processes, analytical techniques such as flow cytometry, immunohistochemistry, reverse transcription polymerase chain reaction, RNA in situ hybridisation analysis, and fluorescence-activated cell sorting have contributed much. However, progress in the field remains limited because such techniques provide only limited information, as they are only able to address specific, selected aspects of the process, and/or cannot visualise the process at the subcellular level. Additionally, many current analytical techniques involve the disruption of the investigation process (tissue sectioning, immunostaining) and cannot monitor the cellular differentiation process in situ, in real-time. Vibrational spectroscopy, as a label-free, non-invasive and non-destructive analytical technique, appears to be a promising candidate to potentially overcome many of these limitations as it can provide detailed biochemical fingerprint information for analysis of cells, tissues, and body fluids. The technique has been widely used in disease diagnosis and increasingly in stem cell technology. In this work, the efforts regarding the use of vibrational spectroscopy to identify mechanisms of stem cell differentiation at a single cell and tissue level are summarised. Both infrared absorption and Raman spectroscopic investigations are explored, and the relative merits, and future perspectives of the techniques are discussed.
Collapse
|
13
|
Labour MN, Le Guilcher C, Aid-Launais R, El Samad N, Lanouar S, Simon-Yarza T, Letourneur D. Development of 3D Hepatic Constructs Within Polysaccharide-Based Scaffolds with Tunable Properties. Int J Mol Sci 2020; 21:ijms21103644. [PMID: 32455711 PMCID: PMC7279349 DOI: 10.3390/ijms21103644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Organoids production is a key tool for in vitro studies of physiopathological conditions, drug-induced toxicity assays, and for a potential use in regenerative medicine. Hence, it prompted studies on hepatic organoids and liver regeneration. Numerous attempts to produce hepatic constructs had often limited success due to a lack of viability or functionality. Moreover, most products could not be translated for clinical studies. The aim of this study was to develop functional and viable hepatic constructs using a 3D porous scaffold with an adjustable structure, devoid of any animal component, that could also be used as an in vivo implantable system. We used a combination of pharmaceutical grade pullulan and dextran with different porogen formulations to form crosslinked scaffolds with macroporosity ranging from 30 µm to several hundreds of microns. Polysaccharide scaffolds were easy to prepare and to handle, and allowed confocal observations thanks to their transparency. A simple seeding method allowed a rapid impregnation of the scaffolds with HepG2 cells and a homogeneous cell distribution within the scaffolds. Cells were viable over seven days and form spheroids of various geometries and sizes. Cells in 3D express hepatic markers albumin, HNF4α and CYP3A4, start to polarize and were sensitive to acetaminophen in a concentration-dependant manner. Therefore, this study depicts a proof of concept for organoid production in 3D scaffolds that could be prepared under GMP conditions for reliable drug-induced toxicity studies and for liver tissue engineering.
Collapse
Affiliation(s)
- Marie-Noëlle Labour
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
- École Pratique des Hautes Études, Paris Sciences et Lettres (PSL) Research University, 4-14 rue Ferrus, 75014 Paris, France
| | - Camile Le Guilcher
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Rachida Aid-Launais
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM UMS-34, FRIM Université de Paris, X Bichat School of Medicine, F-75018 Paris, France
| | - Nour El Samad
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Soraya Lanouar
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Teresa Simon-Yarza
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
| | - Didier Letourneur
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 rue H Huchard, F-75018 Paris, France; (M.-N.L.); (C.L.G.); (R.A.-L.); (N.E.S.); (S.L.); (T.S.-Y.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 av JB Clément, 93430 Villetaneuse, France
- Correspondence:
| |
Collapse
|
14
|
Wei J, Xia T, Chen W, Ran P, Chen M, Li X. Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments. J Tissue Eng Regen Med 2020; 14:774-788. [PMID: 32285997 DOI: 10.1002/term.3042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
With the rise of obesity, diabetes, and other metabolic diseases, in vitro hepatic cell and tissue models play an essential role in the identification of active pharmaceutical ingredients. Up to now, three-dimensional (3D) culture models have rarely focused on hepatic glucose and lipid metabolism. In addition, primary human liver cells suffer from limited availability and interdonor difference for establishing reproducible models. Thus, in the current study, the most available human liver cancer cell line (HepG2) and primary hepatocytes from rats (rPH) were proposed to construct 3D spheroids using injectable fiber fragments with galactose grafts (gSF) as the substrate. rPH and HepG2 spheroids show strong cell-cell and cell-fiber fragment interactions to promote the cell viability, albumin, and urea syntheses. Compared with HepG2 spheroids, rPH spheroids indicate stronger glucose metabolism abilities in terms of glucose consumption, intracellular glycogen content, gluconeogenesis rate, and sensitivity to glucose modulator hormones like insulin and glucagon. On the other hand, HepG2 spheroids display strong lipid metabolism abilities in producing significantly higher levels of total cholesterol and triglyceride. Compared with those without fiber fragments, the gSF-supported 3D culture establishes effective models for in vitro glucose (rPH spheroids) and lipid metabolisms (HepG2 spheroids). The screening models are confirmed from the respective enzyme activities and gene expressions and show significantly higher sensitivity and clinically related responses to hypoglycemic and lipid-lowering drugs. Thus, the culture configuration demonstrates a predictable in vitro platform for defining glucose and lipid metabolism profiles and screening therapeutic agents for metabolism disorders like diabetes and obesity.
Collapse
Affiliation(s)
- Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Tian Xia
- Department of Pathology, Western Theater Command Air Force Hospital, Chengdu, China
| | - Weijia Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
15
|
Peng X, Wang B, Yang Y, Zhang Y, Liu Y, He Y, Zhang C, Fan H. Liver Tumor Spheroid Reconstitution for Testing Mitochondrial Targeted Magnetic Hyperthermia Treatment. ACS Biomater Sci Eng 2019; 5:1635-1644. [DOI: 10.1021/acsbiomaterials.8b01630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xuqi Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xuefu Street No. 1, Xi’an, 710127, China
- School of Chemical Engineering, Northwest University, Xuefu Street No. 1, Xi’an, 710069, China
| | - Bingquan Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xuefu Street No. 1, Xi’an 710127, China
| | - Yu Yang
- College of Life Science, Northwest University, Xuefu Street No. 1, Xi’an, 710069, China
| | - Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xuefu Street No. 1, Xi’an, 710127, China
| | - Yonggang Liu
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Medical School Road NO. 1, Chongqing 400016, China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xuefu Street No. 1, Xi’an, 710127, China
| | - Ce Zhang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xuefu Street No. 1, Xi’an 710127, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xuefu Street No. 1, Xi’an, 710127, China
- School of Chemical Engineering, Northwest University, Xuefu Street No. 1, Xi’an, 710069, China
| |
Collapse
|
16
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
17
|
Kim D, Ryu J, Son M, Oh J, Chung K, Lee S, Lee J, Ahn J, Min J, Ahn J, Kang HM, Kim J, Jung C, Kim N, Cho H. A liver-specific gene expression panel predicts the differentiation status of in vitro hepatocyte models. Hepatology 2017; 66. [PMID: 28640507 PMCID: PMC5698781 DOI: 10.1002/hep.29324] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Alternative cell sources, such as three-dimensional organoids and induced pluripotent stem cell-derived cells, might provide a potentially effective approach for both drug development applications and clinical transplantation. For example, the development of cell sources for liver cell-based therapy has been increasingly needed, and liver transplantation is performed for the treatment for patients with severe end-stage liver disease. Differentiated liver cells and three-dimensional organoids are expected to provide new cell sources for tissue models and revolutionary clinical therapies. However, conventional experimental methods confirming the expression levels of liver-specific lineage markers cannot provide complete information regarding the differentiation status or degree of similarity between liver and differentiated cell sources. Therefore, in this study, to overcome several issues associated with the assessment of differentiated liver cells and organoids, we developed a liver-specific gene expression panel (LiGEP) algorithm that presents the degree of liver similarity as a "percentage." We demonstrated that the percentage calculated using the LiGEP algorithm was correlated with the developmental stages of in vivo liver tissues in mice, suggesting that LiGEP can correctly predict developmental stages. Moreover, three-dimensional cultured HepaRG cells and human pluripotent stem cell-derived hepatocyte-like cells showed liver similarity scores of 59.14% and 32%, respectively, although general liver-specific markers were detected. CONCLUSION Our study describes a quantitative and predictive model for differentiated samples, particularly liver-specific cells or organoids; and this model can be further expanded to various tissue-specific organoids; our LiGEP can provide useful information and insights regarding the differentiation status of in vitro liver models. (Hepatology 2017;66:1662-1674).
Collapse
Affiliation(s)
- Dae‐Soo Kim
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| | - Jea‐Woon Ryu
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Mi‐Young Son
- Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea,Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Jung‐Hwa Oh
- Korea Institute of ToxicologyDaejeonRepublic of Korea
| | - Kyung‐Sook Chung
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| | - Sugi Lee
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| | - Jeong‐Ju Lee
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Jun‐Ho Ahn
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Ju‐Sik Min
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Jiwon Ahn
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Hyun Mi Kang
- Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Janghwan Kim
- Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea,Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Cho‐Rok Jung
- Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea,Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Nam‐Soon Kim
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| | - Hyun‐Soo Cho
- Genome Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea,Department of Functional GenomicsKorea University of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
18
|
Vu LT, Orbach SM, Ray WK, Cassin ME, Rajagopalan P, Helm RF. The hepatocyte proteome in organotypic rat liver models and the influence of the local microenvironment. Proteome Sci 2017; 15:12. [PMID: 28649179 PMCID: PMC5480101 DOI: 10.1186/s12953-017-0120-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liver models that closely mimic the in vivo microenvironment are useful for understanding liver functions, capabilities, and intercellular communication processes. Three-dimensional (3D) liver models assembled using hepatocytes and liver sinusoidal endothelial cells (LSECs) separated by a polyelectrolyte multilayer (PEM) provide a functional system while also permitting isolation of individual cell types for proteomic analyses. METHODS To better understand the mechanisms and processes that underlie liver model function, hepatocytes were maintained as monolayers and 3D PEM-based formats in the presence or absence of primary LSECs. The resulting hepatocyte proteomes, the proteins in the PEM, and extracellular levels of urea, albumin and glucose after three days of culture were compared. RESULTS All systems were ketogenic and found to release glucose. The presence of the PEM led to increases in proteins associated with both mitochondrial and peroxisomal-based β-oxidation. The PEMs also limited production of structural and migratory proteins associated with dedifferentiation. The presence of LSECs increased levels of Phase I and Phase II biotransformation enzymes as well as several proteins associated with the endoplasmic reticulum and extracellular matrix remodeling. The proteomic analysis of the PEMs indicated that there was no significant change after three days of culture. These results are discussed in relation to liver model function. CONCLUSIONS Heterotypic cell-cell and cell-ECM interactions exert different effects on hepatocyte functions and phenotypes.
Collapse
Affiliation(s)
- Lucas T. Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - Sophia M. Orbach
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - W. Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - Margaret E. Cassin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 USA
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061 USA
- ICTAS Center for Systems Biology and Engineered Tissues, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061 USA
- ICTAS Center for Systems Biology and Engineered Tissues, Virginia Tech, Blacksburg, Virginia 24061 USA
| |
Collapse
|
19
|
On the adhesion-cohesion balance and oxygen consumption characteristics of liver organoids. PLoS One 2017; 12:e0173206. [PMID: 28267799 PMCID: PMC5340403 DOI: 10.1371/journal.pone.0173206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/16/2017] [Indexed: 01/16/2023] Open
Abstract
Liver organoids (LOs) are of interest in tissue replacement, hepatotoxicity and pathophysiological studies. However, it is still unclear what triggers LO self-assembly and what the optimal environment is for their culture. Hypothesizing that LO formation occurs as a result of a fine balance between cell-substrate adhesion and cell-cell cohesion, we used 3 cell types (hepatocytes, liver sinusoidal endothelial cells and mesenchymal stem cells) to investigate LO self-assembly on different substrates keeping the culture parameters (e.g. culture media, cell types/number) and substrate stiffness constant. As cellular spheroids may suffer from oxygen depletion in the core, we also sought to identify the optimal culture conditions for LOs in order to guarantee an adequate supply of oxygen during proliferation and differentiation. The oxygen consumption characteristics of LOs were measured using an O2 sensor and used to model the O2 concentration gradient in the organoids. We show that no LO formation occurs on highly adhesive hepatic extra-cellular matrix-based substrates, suggesting that cellular aggregation requires an optimal trade-off between the adhesiveness of a substrate and the cohesive forces between cells and that this balance is modulated by substrate mechanics. Thus, in addition to substrate stiffness, physicochemical properties, which are also critical for cell adhesion, play a role in LO self-assembly.
Collapse
|
20
|
Kostrzewski T, Cornforth T, Snow SA, Ouro-Gnao L, Rowe C, Large EM, Hughes DJ. Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23:204-215. [PMID: 28127194 PMCID: PMC5236500 DOI: 10.3748/wjg.v23.i2.204] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To develop a human in vitro model of non-alcoholic fatty liver disease (NAFLD), utilising primary hepatocytes cultured in a three-dimensional (3D) perfused platform.
METHODS Fat and lean culture media were developed to directly investigate the effects of fat loading on primary hepatocytes cultured in a 3D perfused culture system. Oil Red O staining was used to measure fat loading in the hepatocytes and the consumption of free fatty acids (FFA) from culture medium was monitored. Hepatic functions, gene expression profiles and adipokine release were compared for cells cultured in fat and lean conditions. To determine if fat loading in the system could be modulated hepatocytes were treated with known anti-steatotic compounds.
RESULTS Hepatocytes cultured in fat medium were found to accumulate three times more fat than lean cells and fat uptake was continuous over a 14-d culture. Fat loading of hepatocytes did not cause any hepatotoxicity and significantly increased albumin production. Numerous adipokines were expressed by fatty cells and genes associated with NAFLD and liver disease were upregulated including: Insulin-like growth factor-binding protein 1, fatty acid-binding protein 3 and CYP7A1. The metabolic activity of hepatocytes cultured in fatty conditions was found to be impaired and the activities of CYP3A4 and CYP2C9 were significantly reduced, similar to observations made in NAFLD patients. The utility of the model for drug screening was demonstrated by measuring the effects of known anti-steatotic compounds. Hepatocytes, cultured under fatty conditions and treated with metformin, had a reduced cellular fat content compared to untreated controls and consumed less FFA from cell culture medium.
CONCLUSION The 3D in vitro NAFLD model recapitulates many features of clinical NAFLD and is an ideal tool for analysing the efficacy of anti-steatotic compounds.
Collapse
|
21
|
Zeigerer A, Wuttke A, Marsico G, Seifert S, Kalaidzidis Y, Zerial M. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance. Exp Cell Res 2017; 350:242-252. [DOI: 10.1016/j.yexcr.2016.11.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022]
|
22
|
Thomas E, Liang TJ. Experimental models of hepatitis B and C - new insights and progress. Nat Rev Gastroenterol Hepatol 2016; 13:362-74. [PMID: 27075261 PMCID: PMC5578419 DOI: 10.1038/nrgastro.2016.37] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viral hepatitis is a major cause of morbidity and mortality, affecting hundreds of millions of people worldwide. Hepatitis-causing viruses initiate disease by establishing both acute and chronic infections, and several of these viruses are specifically associated with the development of hepatocellular carcinoma. Consequently, intense research efforts have been focusing on increasing our understanding of hepatitis virus biology and on improving antiviral therapy and vaccination strategies. Although valuable information on viral hepatitis emerged from careful epidemiological studies on sporadic outbreaks in humans, experimental models using cell culture, rodent and non-human primates were essential in advancing the field. Through the use of these experimental models, improvement in both the treatment and prevention of viral hepatitis has progressed rapidly; however, agents of viral hepatitis are still among the most common pathogens infecting humans. In this Review, we describe the important part that these experimental models have played in the study of viral hepatitis and led to monumental advances in our understanding and treatment of these pathogens. Ongoing developments in experimental models are also described.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases and Sylvester Cancer Center, Room
PAP514, Papanicolaou Building, 1550 NW 10th Avenue, Miami, Florida 33136, USA
| | - T. Jake Liang
- Liver Diseases Branch, NIH, Building 10-9B16, Bethesda, Maryland
20892–1800, USA
| |
Collapse
|
23
|
Willebrords J, Pereira IVA, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CPMS, Andraus W, Alves VA, Cogliati B, Vinken M. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 2015; 59:106-25. [PMID: 26073454 DOI: 10.1016/j.plipres.2015.05.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and '-omics'-based read-outs are still in their infancy, but show great promise. In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Bert Van Den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | | | - Wellington Andraus
- Department of Gastroenterology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Venâncio Avancini Alves
- Laboratory of Medical Investigation, Department of Pathology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
24
|
Lin C, Ballinger KR, Khetani SR. The application of engineered liver tissues for novel drug discovery. Expert Opin Drug Discov 2015; 10:519-40. [PMID: 25840592 DOI: 10.1517/17460441.2015.1032241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Drug-induced liver injury remains a major cause of drug attrition. Furthermore, novel drugs are being developed for treating liver diseases. However, differences between animals and humans in liver pathways necessitate the use of human-relevant liver models to complement live animal testing during preclinical drug development. Microfabrication tools and synthetic biomaterials now allow for the creation of tissue subunits that display more physiologically relevant and long-term liver functions than possible with declining monolayers. AREAS COVERED The authors discuss acellular enzyme platforms, two-dimensional micropatterned co-cultures, three-dimensional spheroidal cultures, microfluidic perfusion, liver slices and humanized rodent models. They also present the use of cell lines, primary liver cells and induced pluripotent stem cell-derived human hepatocyte-like cells in the creation of cell-based models and discuss in silico approaches that allow integration and modeling of the datasets from these models. Finally, the authors describe the application of liver models for the discovery of novel therapeutics for liver diseases. EXPERT OPINION Engineered liver models with varying levels of in vivo-like complexities provide investigators with the opportunity to develop assays with sufficient complexity and required throughput. Control over cell-cell interactions and co-culture with stromal cells in both two dimension and three dimension are critical for enabling stable liver models. The validation of liver models with diverse sets of compounds for different applications, coupled with an analysis of cost:benefit ratio, is important for model adoption for routine screening. Ultimately, engineered liver models could significantly reduce drug development costs and enable the development of more efficacious and safer therapeutics for liver diseases.
Collapse
Affiliation(s)
- Christine Lin
- Colorado State University, School of Biomedical Engineering , 200 W. Lake St, 1301 Campus Delivery, Fort Collins, CO 80523-1374 , USA
| | | | | |
Collapse
|
25
|
Davidson MD, Lehrer M, Khetani SR. Hormone and Drug-Mediated Modulation of Glucose Metabolism in a Microscale Model of the Human Liver. Tissue Eng Part C Methods 2015; 21:716-25. [PMID: 25517416 DOI: 10.1089/ten.tec.2014.0512] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Due to its central role in glucose homeostasis, the liver is an important target for drug development efforts for type 2 diabetes mellitus (T2DM). Significant differences across species in liver metabolism necessitate supplementation of animal data with assays designed to assess human-relevant responses. However, isolated primary human hepatocytes (PHHs) display a rapid decline in phenotypic functions in conventional monolayer formats. Cocultivation of PHHs with specific stromal cells, especially in micropatterned configurations, can stabilize some liver functions for ~4 weeks in vitro. However, it remains unclear whether coculture approaches can stabilize glucose metabolism that can be modulated with hormones in PHHs. Thus, in this study, we compared commonly employed conventional culture formats and previously developed micropatterned cocultures (MPCCs) of cryopreserved PHHs and stromal fibroblasts for mRNA expression of key glucose metabolism genes (i.e., phosphoenolpyruvate carboxykinase-1 [PCK1]) and sensitivity of gluconeogenesis to prototypical hormones, insulin and glucagon. We found that only MPCCs displayed high expression of all transcripts tested for at least 2 weeks and robust gluconeogenesis with responsiveness to hormones for at least 3 weeks in vitro. Furthermore, MPCCs displayed glycogen storage and lysis, which could be modulated with hormones under the appropriate feeding and fasting states, respectively. Finally, we utilized MPCCs in proof-of-concept experiments where we tested gluconeogenesis inhibitors and evaluated the effects of stimulation with high levels of glucose as in T2DM. Gluconeogenesis in MPCCs was decreased after stimulation with drugs (i.e., metformin) and the PHHs accumulated significant amount of lipids following incubation with excess glucose (i.e., 340% in 50 mM glucose relative to physiologic 5 mM glucose controls). In conclusion, MPCCs provide a platform to study glucose metabolism and hormonal responsiveness in cryopreserved PHHs from multiple donors for several weeks in vitro. This model is also useful to study the effects of drugs and overnutrition for applications in T2DM.
Collapse
Affiliation(s)
- Matthew D Davidson
- 1 School of Biomedical Engineering, Colorado State University , Fort Collins, Colorado
| | - Michael Lehrer
- 2 Department of Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Salman R Khetani
- 1 School of Biomedical Engineering, Colorado State University , Fort Collins, Colorado.,3 Department of Mechanical Engineering, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
26
|
Abstract
The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.
Collapse
Affiliation(s)
- Danielle M Minteer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jorg C Gerlach
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2014. [PMID: 25027500 DOI: 10.14573/altex1406111] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
|
28
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg HT, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 2014; 31:441-77. [PMID: 25027500 PMCID: PMC4783151 DOI: 10.14573/altex.1406111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
Affiliation(s)
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany
| | | | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alan Goldberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - John Haycock
- Department of Materials Science of Engineering, University of Sheffield, Sheffield, UK
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Lisa Hoelting
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | - Suzanne Kadereit
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Emily McVey
- Board for the Authorization of Plant Protection Products and Biocides, Wageningen, The Netherlands
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marc Lübberstedt
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbruecken, Germany
| | | | | | | | | | - Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Monika Schäfer-Korting
- Institute for Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Marie-Gabriele Zurich
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Swiss Center for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Rimann M, Angres B, Patocchi-Tenzer I, Braum S, Graf-Hausner U. Automation of 3D cell culture using chemically defined hydrogels. ACTA ACUST UNITED AC 2013; 19:191-7. [PMID: 24132162 DOI: 10.1177/2211068213508651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.
Collapse
Affiliation(s)
- Markus Rimann
- 1Institute of Chemistry and Biological Chemistry (ICBC), Zurich University of Applied Sciences, Waedenswil, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Soldatow VY, Lecluyse EL, Griffith LG, Rusyn I. In vitro models for liver toxicity testing. Toxicol Res (Camb) 2012; 2:23-39. [PMID: 23495363 DOI: 10.1039/c2tx20051a] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the years, various liver-derived in vitro model systems have been developed to enable investigation of the potential adverse effects of chemicals and drugs. Liver tissue slices, isolated microsomes, perfused liver, immortalized cell lines, and primary hepatocytes have been used extensively. Immortalized cell lines and primary isolated liver cells are currently most widely used in vitro models for liver toxicity testing. Limited throughput, loss of viability, and decreases in liver-specific functionality and gene expression are common shortcomings of these models. Recent developments in the field of in vitro hepatotoxicity include three-dimensional tissue constructs and bioartificial livers, co-cultures of various cell types with hepatocytes, and differentiation of stem cells into hepatic lineage-like cells. In an attempt to provide a more physiological environment for cultured liver cells, some of the novel cell culture systems incorporate fluid flow, micro-circulation, and other forms of organotypic microenvironments. Co-cultures aim to preserve liver-specific morphology and functionality beyond those provided by cultures of pure parenchymal cells. Stem cells, both embryonic- and adult tissue-derived, may provide a limitless supply of hepatocytes from multiple individuals to improve reproducibility and enable testing of the individual-specific toxicity. This review describes various traditional and novel in vitro liver models and provides a perspective on the challenges and opportunities afforded by each individual test system.
Collapse
Affiliation(s)
- Valerie Y Soldatow
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
31
|
Rimann M, Graf-Hausner U. Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 2012; 23:803-9. [PMID: 22326911 DOI: 10.1016/j.copbio.2012.01.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/09/2012] [Accepted: 01/20/2012] [Indexed: 12/31/2022]
Abstract
Since the 1970s, the limitations of two dimensional (2D) cell culture and the relevance of appropriate three dimensional (3D) cell systems have become increasingly evident. Extensive effort has thus been made to move cells from a flat world to a 3D environment. While 3D cell culture technologies are meanwhile widely used in academia, 2D culture technologies are still entrenched in the (pharmaceutical) industry for most kind of cell-based efficacy and toxicology tests. However, 3D cell culture technologies will certainly become more applicable if biological relevance, reproducibility and high throughput can be assured at acceptable costs. Most recent innovations and developments clearly indicate that the transition from 2D to 3D cell culture for industrial purposes, for example, drug development is simply a question of time.
Collapse
Affiliation(s)
- Markus Rimann
- Zurich University of Applied Sciences, Institute of Chemistry and Biological Chemistry, Einsiedlerstr. 31, 8820 Wädenswil, Switzerland
| | | |
Collapse
|