1
|
Lim KT, Patel DK, Dutta SD, Ganguly K. Fluid Flow Mechanical Stimulation-Assisted Cartridge Device for the Osteogenic Differentiation of Human Mesenchymal Stem Cells. MICROMACHINES 2021; 12:927. [PMID: 34442549 PMCID: PMC8398302 DOI: 10.3390/mi12080927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have the potential to differentiate into different types of mesodermal tissues. In vitro proliferation and differentiation of hMSCs are necessary for bone regeneration in tissue engineering. The present study aimed to design and develop a fluid flow mechanically-assisted cartridge device to enhance the osteogenic differentiation of hMSCs. We used the fluorescence-activated cell-sorting method to analyze the multipotent properties of hMSCs and found that the cultured cells retained their stemness potential. We also evaluated the cell viabilities of the cultured cells via water-soluble tetrazolium salt 1 (WST-1) assay under different rates of flow (0.035, 0.21, and 0.35 mL/min) and static conditions and found that the cell growth rate was approximately 12% higher in the 0.035 mL/min flow condition than the other conditions. Moreover, the cultured cells were healthy and adhered properly to the culture substrate. Enhanced mineralization and alkaline phosphatase activity were also observed under different perfusion conditions compared to the static conditions, indicating that the applied conditions play important roles in the proliferation and differentiation of hMSCs. Furthermore, we determined the expression levels of osteogenesis-related genes, including the runt-related protein 2 (Runx2), collagen type I (Col1), osteopontin (OPN), and osteocalcin (OCN), under various perfusion vis-à-vis static conditions and found that they were significantly affected by the applied conditions. Furthermore, the fluorescence intensities of OCN and OPN osteogenic gene markers were found to be enhanced in the 0.035 mL/min flow condition compared to the control, indicating that it was a suitable condition for osteogenic differentiation. Taken together, the findings of this study reveal that the developed cartridge device promotes the proliferation and differentiation of hMSCs and can potentially be used in the field of tissue engineering.
Collapse
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (D.-K.P.); (S.-D.D.); (K.G.)
- Biomechagen Co., Ltd., Chuncheon 24341, Korea
| | - Dinesh-K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (D.-K.P.); (S.-D.D.); (K.G.)
| | - Sayan-Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (D.-K.P.); (S.-D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (D.-K.P.); (S.-D.D.); (K.G.)
| |
Collapse
|
2
|
Paim Á, Tessaro IC, Cardozo NSM, Pranke P. Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. J Biol Phys 2018; 44:245-271. [PMID: 29508186 PMCID: PMC6082795 DOI: 10.1007/s10867-018-9482-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering is a multidisciplinary field of research in which the cells, biomaterials, and processes can be optimized to develop a tissue substitute. Three-dimensional (3D) architectural features from electrospun scaffolds, such as porosity, tortuosity, fiber diameter, pore size, and interconnectivity have a great impact on cell behavior. Regarding tissue development in vitro, culture conditions such as pH, osmolality, temperature, nutrient, and metabolite concentrations dictate cell viability inside the constructs. The effect of different electrospun scaffold properties, bioreactor designs, mesenchymal stem cell culture parameters, and seeding techniques on cell behavior can be studied individually or combined with phenomenological modeling techniques. This work reviews the main culture and scaffold factors that affect tissue development in vitro regarding the culture of cells inside 3D matrices. The mathematical modeling of the relationship between these factors and cell behavior inside 3D constructs has also been critically reviewed, focusing on mesenchymal stem cell culture in electrospun scaffolds.
Collapse
Affiliation(s)
- Ágata Paim
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n, Porto Alegre, Rio Grande do Sul, 90040-040, Brazil.
| | - Isabel C Tessaro
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n, Porto Alegre, Rio Grande do Sul, 90040-040, Brazil
| | - Nilo S M Cardozo
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n, Porto Alegre, Rio Grande do Sul, 90040-040, Brazil
| | - Patricia Pranke
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
- Stem Cell Research Institute, Porto Alegre, Rio Grande do Sul, 90020-010, Brazil
| |
Collapse
|
3
|
Baumgartner W, Schneider I, Hess SC, Stark WJ, Märsmann S, Brunelli M, Calcagni M, Cinelli P, Buschmann J. Cyclic uniaxial compression of human stem cells seeded on a bone biomimetic nanocomposite decreases anti-osteogenic commitment evoked by shear stress. J Mech Behav Biomed Mater 2018; 83:84-93. [DOI: 10.1016/j.jmbbm.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
|
4
|
Raimondi MT, Bertoldi S, Caddeo S, Farè S, Arrigoni C, Moretti M. The effect of polyurethane scaffold surface treatments on the adhesion of chondrocytes subjected to interstitial perfusion culture. Tissue Eng Regen Med 2016; 13:364-374. [PMID: 30603418 DOI: 10.1007/s13770-016-9047-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/02/2015] [Accepted: 10/20/2015] [Indexed: 10/21/2022] Open
Abstract
The purpose of this study was to measure chondrocytes detachment from cellularized constructs cultured in a perfusion bioreactor, and to evaluate the effect of different scaffold coatings on cell adhesion under a fixed flow rate. The scaffolds were polyurethane foams, treated to promote cell attachment and seeded with human chondrocytes. In a preliminary static culture experiment, the scaffolds were imbibed with fetal bovine serum (FBS) and then cultured for 4 weeks. To quantify cell detachment, the number of detached cells from the scaffold treated with FBS was estimated under different interstitial perfusion flow rates and shear stress levels (0.005 mL/min equivalent to 0.05 mPa, 0.023 mL/min equivalent to 0.23 mPa, and 0.045 mL/min equivalent to 0.45 mPa). Finally, groups of scaffolds differently treated (FBS, plasma plus FBS, plasma plus collagen type I) were cultured under a fixed perfusion rate of 0.009 mL/min, equivalent to a shear stress of 0.09 mPa, and the detached cells were counted. Static cultivation showed that cell proliferation increased with time and matrix biosynthesis decreased after the first week of culture. Perfused culture showed that the number of detached cells increased with the perfusion rate on FBS-treated constructs. The plasma-treated/collagen-coated scaffolds showed the highest resistance to cell detachment. To minimize cell detachment, the perfusion rate must be maintained in the order of 0.02 mL/min, giving a shear stress of 0.2 mPa. Our set-up allowed estimating the resistance to cell detachment under interstitial perfusion in a repeatable manner, to test other scaffold coatings and cell types.
Collapse
Affiliation(s)
- Manuela Teresa Raimondi
- 1Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milano, Italy.,5Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133 Italy
| | - Serena Bertoldi
- 1Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milano, Italy.,2Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Local Unit Politecnico di Milano, Milano, Italy
| | - Silvia Caddeo
- 3Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Silvia Farè
- 1Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milano, Italy.,2Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Local Unit Politecnico di Milano, Milano, Italy
| | - Chiara Arrigoni
- 4Cell and Tissue Engineering Laboratory, I.R.C.C.S. Istituto Ortopedico Galeazzi, Milano, Italy
| | - Matteo Moretti
- 4Cell and Tissue Engineering Laboratory, I.R.C.C.S. Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
5
|
Rosa N, Simoes R, Magalhães FD, Marques AT. From mechanical stimulus to bone formation: A review. Med Eng Phys 2016; 37:719-28. [PMID: 26117332 DOI: 10.1016/j.medengphy.2015.05.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 05/12/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023]
Abstract
Bone is a remarkable tissue that can respond to external stimuli. The importance of mechanical forces on the mass and structural development of bone has long been accepted. This adaptation behaviour is very complex and involves multidisciplinary concepts, and significant progress has recently been made in understanding this process. In this review, we describe the state of the art studies in this area and highlight current insights while simultaneously clarifying some basic yet essential topics related to the origin of mechanical stimulus in bone, the biomechanisms associated with mechanotransduction, the nature of physiological bone stimuli and the test systems most commonly used to study the mechanical stimulation of bone.
Collapse
Affiliation(s)
- Natacha Rosa
- DEMec, Faculty of Engineering, University of Porto, Rua Roberto Frias, 4200-465 Porto, Portugal.
| | - Ricardo Simoes
- Polytechnic Institute of Cávado and Ave, School of Technology, Campus do IPCA, 4750-810 Barcelos, Portugal; Institute for Polymers and Composites IPC/I3N, University of Minho, Campus de Azurem, 4800-058 Guimarães, Portugal
| | - Fernão D Magalhães
- LEPABE - Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
| | - Antonio Torres Marques
- DEMec, Faculty of Engineering, University of Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
Gelinsky M, Bernhardt A, Milan F. Bioreactors in tissue engineering: Advances in stem cell culture and three-dimensional tissue constructs. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Gelinsky
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Anne Bernhardt
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Falk Milan
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| |
Collapse
|
7
|
Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 2015; 84:1-29. [PMID: 25236302 DOI: 10.1016/j.addr.2014.09.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023]
Abstract
The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.
Collapse
|
8
|
Analysis of Gene Expression Signatures for Osteogenic 3D Perfusion-Bioreactor Cell Cultures Based on a Multifactorial DoE Approach. Processes (Basel) 2014. [DOI: 10.3390/pr2030639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Papantoniou I, Guyot Y, Sonnaert M, Kerckhofs G, Luyten FP, Geris L, Schrooten J. Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes. Biotechnol Bioeng 2014; 111:2560-70. [PMID: 24902541 DOI: 10.1002/bit.25303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/22/2014] [Accepted: 05/27/2014] [Indexed: 12/21/2022]
Abstract
Perfusion bioreactors have shown great promise for tissue engineering applications providing a homogeneous and consistent distribution of nutrients and flow-induced shear stresses throughout tissue-engineered constructs. However, non-uniform fluid-flow profiles found in the perfusion chamber entrance region have been shown to affect tissue-engineered construct quality characteristics during culture. In this study a whole perfusion and construct, three dimensional (3D) computational fluid dynamics approach was used in order to optimize a critical design parameter such as the location of the regular pore scaffolds within the perfusion bioreactor chamber. Computational studies were coupled to bioreactor experiments for a case-study flow rate. Two cases were compared in the first instance seeded scaffolds were positioned immediately after the perfusion chamber inlet while a second group was positioned at the computationally determined optimum distance were a steady state flow profile had been reached. Experimental data showed that scaffold location affected significantly cell content and neo-tissue distribution, as determined and quantified by contrast enhanced nanoCT, within the constructs both at 14 and 21 days of culture. However, gene expression level of osteopontin and osteocalcin was not affected by the scaffold location. This study demonstrates that the bioreactor chamber environment, incorporating a scaffold and its location within it, affects the flow patterns within the pores throughout the scaffold requiring therefore dedicated optimization that can lead to bone tissue engineered constructs with improved quality attributes.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Herestraat 49-PB813, B-3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Cigognini D, Lomas A, Kumar P, Satyam A, English A, Azeem A, Pandit A, Zeugolis D. Engineering in vitro microenvironments for cell based therapies and drug discovery. Drug Discov Today 2013; 18:1099-108. [DOI: 10.1016/j.drudis.2013.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
|
12
|
Papantoniou Ir I, Chai YC, Luyten FP, Schrooten Ir J. Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Eng Part C Methods 2013. [PMID: 23198999 DOI: 10.1089/ten.tec.2012.0526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incorporation of Quality-by-Design (QbD) principles in tissue-engineering bioprocess development toward clinical use will ensure that manufactured constructs possess prerequisite quality characteristics addressing emerging regulatory requirements and ensuring the functional in vivo behavior. In this work, the QbD principles were applied on a manufacturing process step for the in vitro production of osteogenic three-dimensional (3D) hybrid scaffolds that involves cell matrix deposition on a 3D titanium (Ti) alloy scaffold. An osteogenic cell source (human periosteum-derived cells) cultured in a bioinstructive medium was used to functionalize regular Ti scaffolds in a perfusion bioreactor, resulting in an osteogenic hybrid carrier. A two-level three-factor fractional factorial design of experiments was employed to explore a range of production-relevant process conditions by simultaneously changing value levels of the following parameters: flow rate (0.5-2 mL/min), cell culture duration (7-21 days), and cell-seeding density (1.5×10(3)-3×10(3) cells/cm(2)). This approach allowed to evaluate the individual impact of the aforementioned process parameters upon key quality attributes of the produced hybrids, such as collagen production, mineralization level, and cell number. The use of a fractional factorial design approach helped create a design space in which hybrid scaffolds of predefined quality attributes may be robustly manufactured while minimizing the number of required experiments.
Collapse
Affiliation(s)
- Ioannis Papantoniou Ir
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|