1
|
Ovari G, Johnson TF, Foroutan F, Malmquist G, Townsend M, Bracewell DG. Fabrication of electrospun ion exchanger adsorbents with morphologies designed for the separation of proteins and plasmid DNA. J Chromatogr A 2024; 1734:465268. [PMID: 39191182 DOI: 10.1016/j.chroma.2024.465268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Electrospun cellulose adsorbents are an emergent class of materials applied to a variety of bioprocess separations as an analogue to conventional packed bed chromatography. Electrospun adsorbents have proven to be effective as rapid cycling media, enabling high throughput separation of proteins and viral vectors without compromising selectivity and recovery. However, there is a current lack of knowledge in relation to the manipulation and control of electrospun adsorbent structure with function and performance to cater to the separation needs of emerging, diverse biological products. In this study, a series of electrospun cellulose adsorbents were fabricated by adjusting their manufacturing conditions. A range of fiber diameters (400 to 600 nm) was created by changing the electrospinning polymer solution. Additionally, a range of porosities (0.4 to 0.7 v/v) was achieved by varying the laminating pressures on the electrospun sheets. The adsorbents were functionalized with different degrees of quaternary amine ligand density to create 18 prototype anion exchangers. Their morphology was characterized by BET nitrogen adsorption surface area, X-ray computed tomography, capillary flow porometry and scanning electron microscopy measurements. The physical characteristics of the adsorbents were used in an adapted semi-empirical model and compared to measured permeability data. Permeabilities of prototypes ranged from 10-2 to 10-4 mDarcy. The measured data showed good adherence to modelled data with possible improvements in acquiring wet adsorbent characteristics instead of dried material. Finally, the electrospun adsorbents were characterized for their binding capacity of model proteins of different sizes (diameters of 3.5 nm and 8.9 nm) and plasmid DNA. Static binding capacities ranged from 5 mg/ml to 25 mg/ml for the proteins and plasmid DNA and showed <20 % deviation from monolayer coverage based on BET surface area. Therefore, it was concluded that the electrospun adsorbents most likely adsorb monolayers of proteins and plasmid DNA on the surface with minimal steric hindrance.
Collapse
Affiliation(s)
- Gyorgy Ovari
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT UK.
| | - Thomas F Johnson
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT UK
| | - Farzad Foroutan
- Cytiva, Sycamore House, Gunnels Wood Road, Stevenage, SG1 2BP UK
| | | | - Matthew Townsend
- Cytiva, Sycamore House, Gunnels Wood Road, Stevenage, SG1 2BP UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT UK
| |
Collapse
|
2
|
Hahn T, Trunzer T, Rusly F, Zolyomi R, Shekhawat LK, Malmquist G, Hesslein A, Tjandra H. Predictive scaling of fiber-based protein A capture chromatography using mechanistic modeling. Biotechnol Bioeng 2024; 121:2388-2399. [PMID: 37209384 DOI: 10.1002/bit.28434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Protein A affinity chromatography is an important step in the purification of monoclonal antibodies (mAbs) and mAb-derived biotherapeutics. While the biopharma industry has extensive expertise in the operation of protein A chromatography, the mechanistic understanding of the adsorption/desorption processes is still limited, and scaling up and scaling down can be challenging because of complex mass transfer effects in bead-based resins. In convective media, such as fiber-based technologies, complex mass transfer effects such as film and pore diffusions do not occur which facilitates the study of the adsorption phenomena in more detail and simplifies the process scale-up. In the present study, the experimentation with small-scale fiber-based protein A affinity adsorber units using different flow rates forms the basis for modeling of mAb adsorption and elution behavior. The modeling approach combines aspects of both stoichiometric and colloidal adsorption models, and an empirical part for the pH. With this type of model, it was possible to describe the experimental chromatograms on a small scale very well. An in silico scale-up could be carried out solely with the help of system and device characterization without feedstock. The adsorption model could be transferred without adaption. Although only a limited number of runs were used for modeling, the predictions of up to 37 times larger units were accurate.
Collapse
|
3
|
Guo Y, Kangwa M, Ali W, Mayer-Gall T, Gutmann JS, Zenneck C, Winter M, Jungbauer A, Fernandez Lahore HM. Moving adsorption belt system for continuous bioproduct recovery utilizing composite fibrous adsorbents. Front Bioeng Biotechnol 2023; 11:1135447. [PMID: 37324416 PMCID: PMC10267413 DOI: 10.3389/fbioe.2023.1135447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
A continuous protein recovery and purification system based on the true moving bed concept is presented. A novel adsorbent material, in the form of an elastic and robust woven fabric, served as a moving belt following the general designs observed in known belt conveyors. The composite fibrous material that forms the said woven fabric showed high protein binding capacity, reaching a static binding capacity equal to 107.3 mg/g, as determined via isotherm experiments. Moreover, testing the same cation exchange fibrous material in a packed bed format resulted in excellent dynamic binding capacity values (54.5 mg/g) even when operating at high flow rates (480 cm/h). In a subsequent step, a benchtop prototype was designed, constructed, and tested. Results indicated that the moving belt system could recover a model protein (hen egg white lysozyme) with a productivity up to 0.5 mg/cm2/h. Likewise, a monoclonal antibody was directly recovered from unclarified CHO_K1 cell line culture with high purity, as judged by SDS-PAGE, high purification factor (5.8), and in a single step, confirming the suitability and selectivity of the purification procedure.
Collapse
Affiliation(s)
- Yijia Guo
- School of Science, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Martin Kangwa
- School of Science, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Wael Ali
- Deutschen Textilforschungszentrum Nord-West gGmbH, Krefeld, Germany
- Department of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Thomas Mayer-Gall
- Deutschen Textilforschungszentrum Nord-West gGmbH, Krefeld, Germany
- Department of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Jochen S. Gutmann
- Deutschen Textilforschungszentrum Nord-West gGmbH, Krefeld, Germany
- Department of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Claus Zenneck
- MDX Biotechnik International GmbH, Nörten-Hardenberg, Germany
| | - Martina Winter
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hector Marcelo Fernandez Lahore
- School of Science, Jacobs University Bremen gGmbH, Bremen, Germany
- Unit Biotechnologies, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Neto S, Mendes JP, Santos SBD, Solbrand A, Carrondo MJT, Peixoto C, Silva RJS. Efficient adeno-associated virus serotype 5 capture with affinity functionalized nanofiber adsorbents. Front Bioeng Biotechnol 2023; 11:1183974. [PMID: 37260828 PMCID: PMC10229133 DOI: 10.3389/fbioe.2023.1183974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Adeno-associated viruses (AAVs) are one of the most promising tools for gene therapy applications. These vectors are purified using affinity and ion exchange chromatography, typically using packed beds of resin adsorbents. This leads to diffusion and pressure drop limitations that affect process productivity. Due to their high surface area and porosity, electrospun nanofiber adsorbents offer mass transfer and flow rate advantages over conventional chromatographic media. The present work investigated the use of affinity cellulose-based nanofiber adsorbents for adeno-associated virus serotype 5 (AAV5) capture, evaluating dynamic binding capacity, pressure drop, and AAV5 recovery at residence times (RT) less than 5 s. The dynamic binding capacity was found to be residence time-dependent, but nevertheless higher than 1.0 × 1014 TP mL-1 (RT = 1.6 s), with a pressure drop variation of 0.14 MPa obtained after loading more than 2,000 column volumes of clarified AAV5 feedstock. The single affinity chromatography purification step using these new affinity adsorbents resulted in 80% virus recovery, with the removal of impurities comparable to that of bead-based affinity adsorbents. The high binding capacity, virus recovery and reduced pressure drop observed at residence times in the sub-minute range can potentially eliminate the need for prior concentration steps, thereby reducing the overall number of unit operations, process time and costs.
Collapse
Affiliation(s)
- Salomé Neto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P. Mendes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
Osuofa J, Husson SM. Comparative Evaluation of Commercial Protein A Membranes for the Rapid Purification of Antibodies. MEMBRANES 2023; 13:511. [PMID: 37233572 PMCID: PMC10220532 DOI: 10.3390/membranes13050511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Protein A chromatography is ubiquitous to antibody purification. The high specificity of Protein A for binding the Fc-region of antibodies and related products enables unmatched clearance of process impurities like host cell proteins, DNA, and virus particles. A recent development is the commercialization of research-scale Protein A membrane chromatography products that can perform capture step purification with short residence times (RT) on the order of seconds. This study investigates process-relevant performance and physical properties of four Protein A membranes: Purilogics Purexa™ PrA, Gore® Protein Capture Device, Cytiva HiTrap™ Fibro PrismA, and Sartorius Sartobind® Protein A. Performance metrics include dynamic binding capacity, equilibrium binding capacity, regeneration-reuse, impurity clearance, and elution volumes. Physical properties include permeability, pore diameter, specific surface area, and dead volume. Key results indicate that all membranes except the Gore® Protein Capture Device operate with flow rate-independent binding capacities; the Purilogics Purexa™ PrA and Cytiva HiTrap Fibro™ PrismA have binding capacities on par with resins, with orders of magnitude faster throughput; and dead volume and hydrodynamics play major roles in elution behavior. Results from this study will enable bioprocess scientists to understand the ways that Protein A membranes can fit into their antibody process development strategies.
Collapse
Affiliation(s)
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
6
|
Homer WJA, Lisnenko M, Gardner AC, Kostakova EK, Valtera J, Wall IB, Jencova V, Topham PD, Theodosiou E. Assessment of thermally stabilized electrospun poly(vinyl alcohol) materials as cell permeable membranes for a novel blood salvage device. BIOMATERIALS ADVANCES 2022; 144:213197. [PMID: 36462387 DOI: 10.1016/j.bioadv.2022.213197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The use of Intraoperative Cell Salvage (ICS) is currently limited in oncological surgeries, due to safety concerns associated with the ability of existing devices to successfully remove circulating tumour cells. In this work, we present the first stages towards the creation of an alternative platform to current cell savers, based on the extremely selective immunoaffinity membrane chromatography principle. Non-woven membranes were produced via electrospinning using poly(vinyl alcohol) (PVA), and further heat treated at 180 °C to prevent their dissolution in aqueous environments and preserve their fibrous morphology. The effects of the PVA degree of hydrolysis (DH) (98 % vs 99 %), method of electrospinning (needleless DC vs AC), and heat treatment duration (1-8 h) were investigated. All heat treated supports maintained their cytocompatibility, whilst tensile tests indicated that the 99 % hydrolysed DC electrospun mats were stronger compared to their 98 % DH counterparts. Although, and at the described conditions, AC electrospinning produced fibres with more than double the diameter compared to those from DC electrospinning, it was not chosen for subsequent experiments because it is still under development. Evidence of unimpeded passage of SY5Y neuroblastoma cells and undiluted defibrinated sheep's blood in flow-through filtration experiments confirmed the successful creation of 3D networks with minimum resistance to mass transfer and lack of non-specific cell binding to the base material, paving the way for the development of novel, highly selective ICS devices for tumour surgeries.
Collapse
Affiliation(s)
- W Joseph A Homer
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Maxim Lisnenko
- Dpt. Of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Adrian C Gardner
- The Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK; College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Eva K Kostakova
- Dpt. Of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Jan Valtera
- Dpt. Of Textile Machine Design, Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Ivan B Wall
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Vera Jencova
- Dpt. Of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Paul D Topham
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Eirini Theodosiou
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
7
|
Fu Q, Xie D, Ge J, Zhang W, Shan H. Negatively Charged Composite Nanofibrous Hydrogel Membranes for High-Performance Protein Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193500. [PMID: 36234628 PMCID: PMC9565482 DOI: 10.3390/nano12193500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 06/02/2023]
Abstract
Nanofibrous materials are considered as promising candidates for fabricating high-efficiency chromatography media, which are urgently needed in protein pharmaceuticals purification and biological research, yet still face several bottlenecks. Herein, novel negatively charged composite nanofibrous hydrogel membranes (NHMs) are obtained by a facile combination of electrospinning and surface coating modification. The resulting NHMs exhibit controllable morphologies and chemical structures. Benefitting from the combined effect of the stable framework of silicon dioxide (SiO2) nanofiber and the function layer of negatively charged hydrogel, as well as good pore connectivity among nanofibers, NHMs exhibit a high protein adsorption capacity of around 1000 mg g-1, and are superior to the commercial cellulose fibrous adsorbent (Sartobind®) and the reported nanofibrous membranous adsorbents. Moreover, due to their relatively stable physicochemical and mechanical properties, NHMs possess comprehensive adsorption performance, favorable resistance to acid and solvents, good selectivity, and excellent regenerability. The designed NHMs composite adsorbents are expected to supply a new protein chromatography platform for effective protein purification in biopharmaceuticals and biochemical reagents.
Collapse
Affiliation(s)
- Qiuxia Fu
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Dandan Xie
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jianlong Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Haoru Shan
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| |
Collapse
|
8
|
Fan J, Barbieri E, Shastry S, Menegatti S, Boi C, Carbonell RG. Purification of Adeno-Associated Virus (AAV) Serotype 2 from Spodoptera frugiperda (Sf9) Lysate by Chromatographic Nonwoven Membranes. MEMBRANES 2022; 12:membranes12100944. [PMID: 36295703 PMCID: PMC9606886 DOI: 10.3390/membranes12100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/02/2023]
Abstract
The success of adeno-associated virus (AAV)-based therapeutics in gene therapy poses the need for rapid and efficient processes that can support the growing clinical demand. Nonwoven membranes represent an ideal tool for the future of virus purification: owing to their small fiber diameters and high porosity, they can operate at high flowrates while allowing full access to target viral particles without diffusional limitations. This study describes the development of nonwoven ion-exchange membrane adsorbents for the purification of AAV2 from an Sf9 cell lysate. A strong anion-exchange (AEX) membrane was developed by UV grafting glycidyl methacrylate on a polybutylene terephthalate nonwoven followed by functionalization with triethylamine (TEA), resulting in a quaternary amine ligand (AEX-TEA membrane). When operated in bind-and-elute mode at a pH higher than the pI of the capsids, this membrane exhibited a high AAV2 binding capacity (9.6 × 1013 vp·mL-1) at the residence time of 1 min, and outperformed commercial cast membranes by isolating AAV2 from an Sf9 lysate with high productivity (2.4 × 1013 capsids·mL-1·min-1) and logarithmic reduction value of host cell proteins (HCP LRV ~ 1.8). An iminodiacetic acid cation-exchange nonwoven (CEX-IDA membrane) was also prepared and utilized at a pH lower than the pI of capsids to purify AAV2 in a bind-and-elute mode, affording high capsid recovery and impurity removal by eluting with a salt gradient. To further increase purity, the CEX-IDA and AEX-TEA membranes were utilized in series to purify the AAV2 from the Sf9 cell lysate. This membrane-based chromatography process also achieved excellent DNA clearance and a recovery of infectivity higher that that reported using ion-exchange resin chromatography.
Collapse
Affiliation(s)
- Jinxin Fan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Shriarjun Shastry
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
- Department of Civil, Chemical Environmental and Materials Engineering, DICAM, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Ruben G. Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE 19711, USA
| |
Collapse
|
9
|
Guo Y, Ali W, Schneider A, Salma A, Mayer‐Gall T, Gutmann JS, Fernandez Lahore HM. Megaporous monolithic adsorbents for bioproduct recovery as prepared on the basis of nonwoven fabrics. Electrophoresis 2022; 43:1387-1398. [DOI: 10.1002/elps.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yijia Guo
- Life Sciences & Chemistry Jacobs University Bremen gGmbH Bremen Germany
| | - Wael Ali
- Deutschen Textilforschungszentrum Nord‐West gGmbH Krefeld Germany
- Department of Physical Chemistry and Center for Nanointegration (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Anna Schneider
- Life Sciences & Chemistry Jacobs University Bremen gGmbH Bremen Germany
| | - Alaa Salma
- Deutschen Textilforschungszentrum Nord‐West gGmbH Krefeld Germany
| | - Thomas Mayer‐Gall
- Deutschen Textilforschungszentrum Nord‐West gGmbH Krefeld Germany
- Department of Physical Chemistry and Center for Nanointegration (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Jochen S. Gutmann
- Deutschen Textilforschungszentrum Nord‐West gGmbH Krefeld Germany
- Department of Physical Chemistry and Center for Nanointegration (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Hector Marcelo Fernandez Lahore
- Life Sciences & Chemistry Jacobs University Bremen gGmbH Bremen Germany
- Unit Biotechnologies Department of Environmental Research and Innovation Luxembourg Institute of Science and Technology Esch‐sur‐Alzette Luxembourg
| |
Collapse
|
10
|
Winderl J, Neumann E, Hubbuch J. Exploration of fiber-based cation exchange adsorbents for the removal of monoclonal antibody aggregates. J Chromatogr A 2021; 1654:462451. [PMID: 34399144 DOI: 10.1016/j.chroma.2021.462451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Cation exchange chromatography (CEX) is a widely used technique for the removal of monoclonal antibody (mAb) aggregates. At present, resins are mainly used for this purpose, as convective types of adsorbents such as membrane adsorbers (MAs) have often not demonstrated overall comparable performance for this particular application. Fiber-based adsorbents can overcome the current limitations of MAs with respect to permeability, binding capacity, and adsorbent cost, and could therefore be a viable alternative to resins for the removal of mAb aggregates. It has not been evaluated, however, whether and under which conditions the use of such adsorbents is feasible for this purpose. In the present study, the use of fiber-based CEX adsorbents for mAb aggregate removal was examined. Two types of fiber-based adsorbents, an uncontrolled grafted and a controlled grafted fiber-based adsorbent, were evaluated with respect to permeability, dynamic mAb binding capacity (DBC), resolution capabilities, and the performance in bind and elute (B/E) and frontal chromatography mode with respect to typical performance indicators. The permeabilities of the fiber-based adsorbents ranged from 200 to 1700 mD, making it possible to use the fiber-based adsorbents at larger bed heights than membrane adsorbers with fast mobile phase velocities. Antibody DBCs ranged from 20 to 41 g/L at 150 cm/h, and at higher mobile phase velocities exceeded the DBC of an existing resin material, Poros 50 HS, which has frequently been used for aggregate removal. Both fiber types showed good resolution capabilities of monomer and aggregates, and provided better resolution per column length than Poros 50 HS. Typical purity and yield constraints were fulfilled for both fiber types in both B/E and frontal chromatography mode for mobile phase velocities ranging up to 480 cm/h and 1060 cm/h. The overall performance of the controlled grafted fibers was found to be superior to the performance of uncontrolled grafted fiber-based adsorbents due to higher productivity and lower buffer consumption. The overall performance of the fiber-based adsorbents was found to be comparable to the performance of Poros 50 HS at typical operating conditions. The results in this study indicate that the use of fiber-based adsorbents for mAb aggregate removal is feasible with a performance that is comparable to the performance of an existing resin material. Depending on the cost of the adsorbents and the use scenario, the usage of such adsorbents could be beneficial.
Collapse
Affiliation(s)
- Johannes Winderl
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Eric Neumann
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
11
|
Davis RR, Suber F, Heller I, Yang B, Martinez J. Improving mAb capture productivity on batch and continuous downstream processing using nanofiber PrismA adsorbents. J Biotechnol 2021; 336:50-55. [PMID: 34118332 DOI: 10.1016/j.jbiotec.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Improving productivity and decreasing costs for biotherapeutic agents has been a focal driving force in the manufacturing of biologics. Advances in upstream processes have been continuously outpacing the ability for downstream operations to purify biologics, especially monoclonal antibodies. Continuous chromatography has several benefits for biologic purification including automated control, decreased labor, improved productivity, and more consistent product attributes. The goal of this study was to improve productivity and decrease costs associated with batch-mode and continuous purification processes. Productivities using cellulose nanofibers with a protein A ligand offer greater than 30-fold higher productivities than their resin-based equivalents using periodic countercurrent technology with multiple column chromatography. The smaller columns needed for convective mass transfer, faster processing times, and decreased costs allow for a more efficient mAb capture step. Additionally, high throughput purification (grams of mAbs/day) can be achieved from the scale-down model developed using periodic countercurrent technology. These advancements will help drive the evolution of downstream operations to manage the higher workloads due to increased upstream titers in a cost-effective manner.
Collapse
Affiliation(s)
- Ryan R Davis
- Ology Bioservices, Process Development, 13200 NW Nano Ct., Alachua, FL, 32615, USA
| | - Fletcher Suber
- Ology Bioservices, Process Development, 13200 NW Nano Ct., Alachua, FL, 32615, USA
| | - Ian Heller
- Ology Bioservices, Process Development, 13200 NW Nano Ct., Alachua, FL, 32615, USA
| | - Boxuan Yang
- Ology Bioservices, Process Development, 13200 NW Nano Ct., Alachua, FL, 32615, USA
| | - Juan Martinez
- Ology Bioservices, Process Development, 13200 NW Nano Ct., Alachua, FL, 32615, USA.
| |
Collapse
|
12
|
Winderl J, Bürkle S, Hubbuch J. High throughput screening of fiber-based adsorbents for material and process development. J Chromatogr A 2021; 1653:462387. [PMID: 34375899 DOI: 10.1016/j.chroma.2021.462387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
There has been a growing interest in fibers and fiber-based adsorbents as alternative adsorbents for preparative chromatography. While the benefits of fiber-based adsorbents in terms of productivity have been highlighted in several recent studies, microscale tools that enable a fast characterization of these novel adsorbents, and an easy integration into process development workflows, are still lacking. In the present study an automated high-throughput screening (HTS) for fiber-based adsorbents was established on a robotic liquid handling station in 96 well filter plates. Two techniques - punching and weighing - were identified as techniques that enabled accurate and reproducible portioning of short-cut fiber-based adsorbents. The impact of several screening parameters such as phase ratio, shaking frequency, and incubation time were investigated and optimized for different types of fiber-based adsorbents. The data from the developed HTS correlated with data from packed fiber columns, and binding capacities from both scales matched closely. Subsequently, the developed HTS was utilized to optimize the hydrogel architecture of anion exchange (AEX) fiber-based adsorbent prototypes. A novel AEX fiber-based adsorbent was developed that compared favorably with existing resin and membrane adsorbents in terms of productivity and DNA binding capacity. In addition, the developed HTS was also successfully employed in order to identify step elution conditions for the purification of a monoclonal antibody from product- and process-related impurities with a cation exchange (CEX) fiber-based adsorbent. Trends from the HTS were found to be in good agreement with trends from lab scale column runs. The tool developed in this paper will enable a faster and more complete characterization of fiber-based adsorbents, easier tailoring of such adsorbents towards specific process applications, and an easier integration of such materials into processes. In comparison to previous lab scale experiments, material requirements are reduced by a factor of 3-40 and time requirements are reduced by a factor of 2-5.
Collapse
Affiliation(s)
- Johannes Winderl
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Stephan Bürkle
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
13
|
Iminodiacetic Acid (IDA) Cation-Exchange Nonwoven Membranes for Efficient Capture of Antibodies and Antibody Fragments. MEMBRANES 2021; 11:membranes11070530. [PMID: 34357180 PMCID: PMC8305546 DOI: 10.3390/membranes11070530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
There is strong need to reduce the manufacturing costs and increase the downstream purification efficiency of high-value therapeutic monoclonal antibodies (mAbs). This paper explores the performance of a weak cation-exchange membrane based on the coupling of IDA to poly(butylene terephthalate) (PBT) nonwoven fabrics. Uniform and conformal layers of poly(glycidyl methacrylate) (GMA) were first grafted to the surface of the nonwovens. Then IDA was coupled to the polyGMA layers under optimized conditions, resulting in membranes with very high permeability and binding capacity. This resulted in IgG dynamic binding capacities at very short residence times (0.1–2.0 min) that are much higher than those achieved by the best cation-exchange resins. Similar results were obtained in the purification of a single-chain (scFv) antibody fragment. As is customary with membrane systems, the dynamic binding capacities did not change significantly over a wide range of residence times. Finally, the excellent separation efficiency and potential reusability of the membrane were confirmed by five consecutive cycles of mAb capture from its cell culture harvest. The present work provides significant evidence that this weak cation-exchange nonwoven fabric platform might be a suitable alternative to packed resin chromatography for low-cost, higher productivity manufacturing of therapeutic mAbs and antibody fragments.
Collapse
|
14
|
A custom ÄKTA avant configuration enabling automated parallel protein purification over a range of process scales. Protein Expr Purif 2021; 182:105842. [PMID: 33582289 DOI: 10.1016/j.pep.2021.105842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/20/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
Biologics are making up an increasing proportion of the global drug discovery pipeline. Supporting the expansion of biologics drug discovery requires higher throughput techniques for the expression, purification and characterization of both therapeutic candidates and reagents. Here we describe the programming and development of a novel ÄKTA™ instrument configuration that enables automated parallel and multistep chromatography over a range of scales. The programming strategy is offered as open source and the custom plumbing configuration was developed with off the shelf components available from Cytiva. Combined with high flow resin technology we show how this strategy can reduce the duration of a standard antibody purification process by 4.5X, from 4.5 h down to 1 h per run. An automated loading strategy was also developed to enable true walk away application of up to 24 samples and around the clock processing capability. The techniques used here to accomplish parallel multistep chromatography can be duplicated or modified for specific applications and represent a straightforward and cost-effective means to eliminate protein purification bottlenecks.
Collapse
|
15
|
Bolzon LB, Bindeiro AKDS, de Oliveira Souza ALM, Zanatta LD, de Paula R, Cerqueira BC, dos Santos JS. Rhodamine B oxidation promoted by P450-bioinspired Jacobsen catalysts/cellulose systems. RSC Adv 2021; 11:33823-33834. [PMID: 35497525 PMCID: PMC9042282 DOI: 10.1039/d1ra04915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
P450-bioinspired Jacobsen/Cell(NEt2) catalysts have been applied in RhB dye oxidation, which is used illegally in food industries of some countries.
Collapse
Affiliation(s)
- Lucas Bomfim Bolzon
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Anna Karolina dos Santos Bindeiro
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Ana Luiza Marques de Oliveira Souza
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Lucas Dimarô Zanatta
- Laboratório de Bioinorgânica, Departamento de Química, FFCLRP-USP, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo de Paula
- Centro de Formação de Professores, UFRB, Av. Nestor de Melo Pita 535, Campus de Amargosa, 45300-000, Amargosa, BA, Brazil
- Programa de Pós-Graduação em Química Pura e Aplicada-POSQUIPA, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Real, 47810-059, Barreiras, BA, Brazil
| | - Bruna Costa Cerqueira
- Centro de Formação de Professores, UFRB, Av. Nestor de Melo Pita 535, Campus de Amargosa, 45300-000, Amargosa, BA, Brazil
| | - Joicy Santamalvina dos Santos
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| |
Collapse
|
16
|
Abdelghaffar F, Abdelghaffar RA, Rashed UM, Ahmed HM. Highly effective surface modification using plasma technologies toward green coloration of polyester fabrics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28949-28961. [PMID: 32418110 DOI: 10.1007/s11356-020-09081-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/27/2020] [Indexed: 05/04/2023]
Abstract
This study is anchored on the use of an eco-friendly effective plasma technique and cationization treatment to improve the hydrophobic nature of polyester (PET) fabric by incorporating hydrophilic functional groups onto the PET surface. The PET surface was initially treated with three different plasma gases prior to cationization treatment with quaternary ammonium salt (Quat 188). Madder roots were used, to produce natural dyes for the green coloration of PET fabrics in both dyeing and printing processes. The color strength (K/S) was measured to study the influence of both plasma gases and the cationization treatment on the coloration of PET fabric. Exposure to nitrogen plasma gases prior to the cationization treatment showed promising results for efficient PET coloration, resulting in the selection of nitrogen as a working gas at a flow rate of 3 l/min. The results also demonstrated that by combining the nitrogen plasma technique and cationization treatment, PET fabric with a highly effective surface was obtained, resulting in improved coloration, wettability, tensile strength, and roughness properties.
Collapse
Affiliation(s)
- Fatma Abdelghaffar
- Textile Research Industrial Division, National Research Centre, El-Behouth St. Dokki, Giza, PO 12622, Egypt.
| | - Rehab A Abdelghaffar
- Textile Research Industrial Division, National Research Centre, El-Behouth St. Dokki, Giza, PO 12622, Egypt
| | - Usama M Rashed
- Physics Dept., Faculty of Science, Al-Azhar University, Cairo, Egypt
- Center of Plasma Technology, Al-Azhar University, Cairo, Egypt
| | - Hend M Ahmed
- Textile Research Industrial Division, National Research Centre, El-Behouth St. Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
17
|
Roque ACA, Pina AS, Azevedo AM, Aires‐Barros R, Jungbauer A, Di Profio G, Heng JYY, Haigh J, Ottens M. Anything but Conventional Chromatography Approaches in Bioseparation. Biotechnol J 2020; 15:e1900274. [DOI: 10.1002/biot.201900274] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | - Ana Sofia Pina
- UCIBIOChemistry DepartmentNOVA School of Science and Technology Caparica 2829‐516 Portugal
| | - Ana Margarida Azevedo
- IBB – Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais Lisbon 1049‐001 Portugal
| | - Raquel Aires‐Barros
- IBB – Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais Lisbon 1049‐001 Portugal
| | - Alois Jungbauer
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 Vienna Muthgasse 1190 Austria
| | - Gianluca Di Profio
- National Research Council of Italy (CNR) – Institute on Membrane Technology (ITM) via P. Bucci Cubo 17/C Rende (CS) 87036 Italy
| | - Jerry Y. Y. Heng
- Department of Chemical EngineeringImperial College London South Kensington Campus London SW7 2AZ UK
| | - Jonathan Haigh
- FUJIFILM Diosynth Biotechnologies UK Limited Belasis Avenue Billingham TS23 1LH UK
| | - Marcel Ottens
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| |
Collapse
|
18
|
Fu Q, Liu L, Si Y, Yu J, Ding B. Shapeable, Underwater Superelastic, and Highly Phosphorylated Nanofibrous Aerogels for Large-Capacity and High-Throughput Protein Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44874-44885. [PMID: 31670935 DOI: 10.1021/acsami.9b15760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Developing nanofibrous aerogels with high porosity, robust underwater mechanical strength, and rich adsorption ligands, has been considered as one of the most promising strategies for preparing the next generation of high-efficiency and high-throughput chromatographic media; yet great challenges still remain. Herein, a novel type of highly phosphorylated nanofibrous aerogels (PNFAs) is fabricated, for the first time, by combining electrospinning, cryogenic induced phase separation regulation, and in situ phosphorylation modification. The PNFAs exhibit outstanding underwater superelasticity and excellent compression fatigue resistance (∼0% plastic deformation after 1000 compression cycles), as well as favorable shape-memory property. Besides, the PNFAs also can be bent and compressed even in the ultracold liquid nitrogen without obvious plastic deformation, further highlighting their robust structural stability. Benefiting from the superelastic, interconnected, and highly phosphorylated 3D nanofibrous frameworks, the PNFAs possess a superb protein adsorption capability of 3.3 × 103 mg g-1 and a large liquid flux of 1.5 × 104 L m-2 h-1, which are superior to the commercial and previously reported fiber-based chromatographic media. Moreover, the PNFAs also exhibit superior performance stability, easy assembly, and outstanding applicability, highlighting their potential actual application. The successful preparation of such fascinating PNFAs may not only provide a new option for the current protein adsorption and purification engineering, but also could open up some new perspectives for further design and development of next-generation nanofibrous aerogel-based chromatographic media for various bioseparation applications.
Collapse
Affiliation(s)
- Qiuxia Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Lifang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
19
|
Ruscic J, Perry C, Mukhopadhyay T, Takeuchi Y, Bracewell DG. Lentiviral Vector Purification Using Nanofiber Ion-Exchange Chromatography. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:52-62. [PMID: 31649955 PMCID: PMC6804883 DOI: 10.1016/j.omtm.2019.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/23/2019] [Indexed: 01/04/2023]
Abstract
Lentiviral vectors (LVs) are used in cell and gene therapies due to their ability to transduce both dividing and non-dividing cells while carrying a relatively large genetic payload and providing long-term gene expression via gene integration. Current cultivation methods produce titers of 105–107 transduction unit (TU)/mL; thus, it is necessary to concentrate LVs as well as remove process- and product-related impurities. In this work, we used a packaging cell line WinPac-RD-HV for LV production to simplify upstream processing. A direct capture method based on ion-exchange chromatography and cellulose nanofibers for LV concentration and purification was developed. This novel scalable stationary phase provides a high surface area that is accessible to LV and, therefore, has potential for high-capacity operation compared to traditional bead-based supports. We were able to concentrate LVs 100-fold while achieving a two-log removal of host cell protein and maintaining up to a 90% yield of functional vector.
Collapse
Affiliation(s)
- Jelena Ruscic
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Christopher Perry
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK.,Division of Infection and Immunology, University College London, The Rayne Building, 5 University Street, London WC1E 6EJ, UK.,Advanced Therapies Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Tarit Mukhopadhyay
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Yasu Takeuchi
- Division of Infection and Immunology, University College London, The Rayne Building, 5 University Street, London WC1E 6EJ, UK.,Advanced Therapies Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
20
|
Sharma A, Bracewell DG. Characterisation of porous anodic alumina membranes for ultrafiltration of protein nanoparticles as a size mimic of virus particles. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Turnbull J, Wright B, Green NK, Tarrant R, Roberts I, Hardick O, Bracewell DG. Adenovirus 5 recovery using nanofiber ion‐exchange adsorbents. Biotechnol Bioeng 2019; 116:1698-1709. [DOI: 10.1002/bit.26972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/29/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jordan Turnbull
- Department of Biochemical EngineeringUniversity College LondonLondon United Kingdom
| | - Bernice Wright
- Department of Biochemical EngineeringUniversity College LondonLondon United Kingdom
| | - Nicola K. Green
- Clinical BioManufacturing FacilityUniversity of OxfordOxford United Kingdom
| | - Richard Tarrant
- Clinical BioManufacturing FacilityUniversity of OxfordOxford United Kingdom
| | - Iwan Roberts
- Puridify, Stevenage Bioscience CatalystStevenage United Kingdom
| | - Oliver Hardick
- Puridify, Stevenage Bioscience CatalystStevenage United Kingdom
| | - Daniel G. Bracewell
- Department of Biochemical EngineeringUniversity College LondonLondon United Kingdom
| |
Collapse
|
22
|
Gong W, Li J, Ren G, Lv L. Wound healing and inflammation characteristics of the submicrometric mats prepared from electrospinning. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518813715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wenbin Gong
- School of Medicine, Southeast University, Nanjing, P.R. China
| | - Junsheng Li
- Department of General Surgery, Affiliated Zhongda Hospital, Southeast University, Nanjing, P.R. China
| | - Guanghui Ren
- Department of General Surgery, Nanjing 2nd Hospital, Nanjing, P.R. China
| | - Lanxin Lv
- Skate Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, P.R. China
| |
Collapse
|
23
|
Winderl J, Spies T, Hubbuch J. Packing characteristics of winged shaped polymer fiber supports for preparative chromatography. J Chromatogr A 2018; 1553:67-80. [DOI: 10.1016/j.chroma.2018.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/18/2018] [Accepted: 04/06/2018] [Indexed: 02/02/2023]
|
24
|
Rajesh S, Schneiderman S, Crandall C, Fong H, Menkhaus TJ. Synthesis of Cellulose-graft-Polypropionic Acid Nanofiber Cation-Exchange Membrane Adsorbers for High-Efficiency Separations. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41055-41065. [PMID: 29111637 DOI: 10.1021/acsami.7b13459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fabrication of membrane adsorbers with elevated binding capacity and high throughput is highly desired for simplifying and improving purification efficiencies of bioproducts (biotherapeutics, vaccines, etc.) in the biotechnological and biopharmaceutical industries. Here we demonstrate the preparation of a novel class of self-supported, cellulose-graft-polypropionic acid (CL-g-PPA) cation-exchange nanofiber membrane adsorbers under mild reaction conditions for the purification of positively charged therapeutic proteins. In our fabrication method, acrylonitrile was first polymerized and surface grafted onto cellulose nanofibers using cerium ammonium nitrate as a redox initiator to form cellulose-g-polyacrylonitrile (CL-g-PAN). CL-g-PAN was then submitted to a hydrolyzation reaction to form CL-g-PPA cationic membrane adsorbers. Morphology and structural characterization illustrated the formation of CL-g-PPA membranes with uniform coating of polyacid nanolayers along the individual nanofibers without disturbing the nanofiber structure. Benefiting from these numerous cationic polyacid binding sites and inherent large surface area and open porous structure, CL-g-PPA nanofiber membrane adsorbers showed a lysozyme static adsorption capacity of 1664 mg/g of nanofibers. These membranes showed a lysozyme dynamic binding capacity of 508 mg/g of nanofibers at 10% breakthrough (equivalent to 206 g/L capacity), with a residence time of less than 6 s. Moreover, CL-g-PPA self-supported nanofibers displayed excellent structural stability and reversibility after several cycles of protein binding studies. This dynamic binding capacity of the CL-g-PPA nanofiber membranes was 3.2 times higher than that of macroporous cellulose membranes and 8.5 times higher than that of the Sartobind S commercial membrane adsorber. Considering the simple fabrication method employed, excellent protein adsorption capacity, remarkable structural stability, and reusability, CL-g-PPA nanofiber membranes provided a versatile platform for the chromatographic separations of biomolecules (e.g., proteins, nucleic acids, and viral vaccines) as well as water purification and similar ion-exchange applications.
Collapse
Affiliation(s)
- Sahadevan Rajesh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Steven Schneiderman
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Caitlin Crandall
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Hao Fong
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Todd J Menkhaus
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| |
Collapse
|
25
|
Winderl J, Hahn T, Hubbuch J. A mechanistic model of ion-exchange chromatography on polymer fiber stationary phases. J Chromatogr A 2016; 1475:18-30. [DOI: 10.1016/j.chroma.2016.10.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
|
26
|
Johnson SA, Brown MR, Lute SC, Brorson KA. Adapting viral safety assurance strategies to continuous processing of biological products. Biotechnol Bioeng 2016; 114:21-32. [DOI: 10.1002/bit.26060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Sarah A. Johnson
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Matthew R. Brown
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Scott C. Lute
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Kurt A. Brorson
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| |
Collapse
|
27
|
Fu Q, Wang X, Si Y, Liu L, Yu J, Ding B. Scalable Fabrication of Electrospun Nanofibrous Membranes Functionalized with Citric Acid for High-Performance Protein Adsorption. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11819-29. [PMID: 27111287 DOI: 10.1021/acsami.6b03107] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fabricating protein adsorbents with high adsorption capacity and appreciable throughput is extremely important and highly desired for the separation and purification of protein products in the biomedical and pharmaceutical industries, yet still remains a great challenge. Herein, we demonstrate the synthesis of a novel protein adsorbent by in situ functionalizing eletrospun ethylene-vinyl alcohol (EVOH) nanofibrous membranes (NFM) with critic acid (CCA). Taking advantage of the merits of large specific surface area, highly tortuous open-porous structure, abundant active carboxyl groups introduced by CCA, superior chemical stability, and robust mechanical strength, the obtained CCA-grafted EVOH NFM (EVOH-CCA NFM) present an excellent integrated protein (take lysozyme as the model protein) adsorption performance with a high capacity of 284 mg g(-1), short equilibrium time of 6 h, ease of elution, and good reusability. Meanwhile, the adsorption performance of EVOH-CCA NFM can be optimized by regulating buffer pH, ionic strength, and initial concentration of protein solutions. More importantly, a dynamic binding efficiency of 250 mg g(-1) can be achieved driven solely by the gravity of protein solution, which matches well with the demands of the high yield and energy conservation in the actual protein purification process. Furthermore, the resultant EVOH-CCA NFM also possess unique selectivity for positively charged proteins which was confirmed by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Significantly, the successful synthesis of such intriguing and economic EVOH-CCA NFM may provide a promising candidate for the next generation of protein adsorbents for rapid, massive, and cost-effective separation and purification of proteins.
Collapse
Affiliation(s)
- Qiuxia Fu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Xueqin Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Lifang Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Jianyong Yu
- Nanofibers Research Center, Modern Textile Institute, Donghua University , Shanghai 200051, China
| | - Bin Ding
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
- Nanofibers Research Center, Modern Textile Institute, Donghua University , Shanghai 200051, China
| |
Collapse
|
28
|
Abstract
Nanofibers are extremely advantageous for drug delivery because of their high surface area-to-volume ratios, high porosities and 3D open porous structures. Local delivery of analgesics by using nanofibers allows site-specificity and requires a lower overall drug dosage with lower adverse side effects. Different analgesics have been loaded onto various nanofibers, including those that are natural, synthetic and copolymer, for various medical applications. Analgesics can also be singly or coaxially loaded onto nanofibers to enhance clinical applications. In particular, analgesic-eluting nanofibers provide additional benefits to preventing wound adhesion and scar formation. This paper reviews current research and breakthrough discoveries on the innovative application of analgesic-loaded nanofibers that will alter the clinical therapy of pain.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Jung Liu
- Biomaterials Lab, Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
29
|
Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydr Polym 2016; 140:299-307. [DOI: 10.1016/j.carbpol.2015.12.067] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/27/2015] [Accepted: 12/24/2015] [Indexed: 11/21/2022]
|
30
|
Hardick O, Dods S, Stevens B, Bracewell DG. Nanofiber adsorbents for high productivity continuous downstream processing. J Biotechnol 2015; 213:74-82. [DOI: 10.1016/j.jbiotec.2015.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/20/2014] [Accepted: 01/05/2015] [Indexed: 10/23/2022]
|
31
|
Ma J, Wang X, Fu Q, Si Y, Yu J, Ding B. Highly carbonylated cellulose nanofibrous membranes utilizing maleic anhydride grafting for efficient lysozyme adsorption. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15658-15666. [PMID: 26132415 DOI: 10.1021/acsami.5b04741] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Construction of adsorptive materials for simple, efficient, and high-throughput adsorption of proteins is critical to meet the great demands of highly purified proteins in biotechnological and biopharmaceutical industry; however, it has proven extremely challenging. Here, we report a cost-effective strategy to create carbonyl groups surface-functionalized nanofibrous membranes under mild conditions for positively charged protein adsorption. Our approach allows maleic anhydride to in situ graft on cellulose nanofibrous membranes (CMA) to construct adsorptive membranes with large surface area and tortuous porous structure. Thereby, the resultant CMA membranes exhibited high adsorption capacity of 160 mg g(-1), fast equilibrium within 12 h, and good reversibility to lysozyme. Moreover, the dynamic adsorption was performed under low pressure-drops (750 Pa), with a relatively high saturation adsorption amount of 118 mg g(-1), which matched well with the requirements for proteins purification. Considering the excellent adsorption performance of the as-prepared adsorptive membranes, this simple and intriguing approach may pave a way for the design and development of robust and cost-effective adsorption membranes to meet the great demands for fast and efficient adsorption of positively charged proteins.
Collapse
Affiliation(s)
| | - Xueqin Wang
- ‡State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | | | - Yang Si
- ‡State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- §Nanomaterials Research Center, Modern Textile Institute, Donghua University, Shanghai 200051, China
| | - Bin Ding
- ‡State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- §Nanomaterials Research Center, Modern Textile Institute, Donghua University, Shanghai 200051, China
| |
Collapse
|
32
|
Nestola P, Peixoto C, Silva RRJS, Alves PM, Mota JPB, Carrondo MJT. Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng 2015; 112:843-57. [PMID: 25677990 DOI: 10.1002/bit.25545] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 01/10/2023]
Abstract
The downstream processing of virus particles for vaccination or gene therapy is becoming a critical bottleneck as upstream titers keep improving. Moreover, the growing pressure to develop cost-efficient processes has brought forward new downstream trains. This review aims at analyzing the state-of-the-art in viral downstream purification processes, encompassing the classical unit operations and their recent developments. Emphasis is given to novel strategies for process intensification, such as continuous or semi-continuous systems based on multicolumn technology, opening up process efficiency. Process understanding in the light of the pharmaceutical quality by design (QbD) initiative is also discussed. Finally, an outlook of the upcoming breakthrough technologies is presented.
Collapse
Affiliation(s)
- Piergiuseppe Nestola
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
33
|
Wang X, Fu Q, Wang X, Si Y, Yu J, Wang X, Ding B. In situ cross-linked and highly carboxylated poly(vinyl alcohol) nanofibrous membranes for efficient adsorption of proteins. J Mater Chem B 2015; 3:7281-7290. [DOI: 10.1039/c5tb01192b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ cross-linked and highly carboxylated poly(vinyl alcohol) nanofibrous membranes for lysozyme adsorption were fabricated by a combination of electrospinning and graft polymerization of poly(vinyl alcohol) and maleic anhydride.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| | - Qiuxia Fu
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| | - Xueqin Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Jianyong Yu
- Nanomaterials Research Center
- Modern Textile Institute
- Donghua University
- Shanghai 200051
- China
| | - Xueli Wang
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| | - Bin Ding
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| |
Collapse
|
34
|
Dods SR, Hardick O, Stevens B, Bracewell DG. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography. J Chromatogr A 2014; 1376:74-83. [PMID: 25541092 PMCID: PMC4289918 DOI: 10.1016/j.chroma.2014.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/29/2022]
Abstract
Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000CV/h (2s and 0.3s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12mgBSA/mL for DEAE and from 10 to 21mglysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20mgBSA/mL and 27mglysozyme/mL, respectively. At 1MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000CV/h. For compression loads of 5MPa and 10MPa, adsorbents recorded lower DBCs than 1MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5 and 10MPa showed increases of 30%, 110% and 110%, respectively, for both functionalisations. The data presented show that capacity and mechanical strength can be balanced through compression after electrospinning and is particular to different functionalisations. This trade-off is critical to the development of nanofibre adsorbents into different packing configurations for application and scale up in bioseparation.
Collapse
Affiliation(s)
- Stewart R Dods
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1H 0AH, UK; Innovations Technology Access Centre - Micro and Nanotechnology, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Oxford, Didcot OX11 0QX, UK
| | - Oliver Hardick
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1H 0AH, UK
| | - Bob Stevens
- School of Science and Technology, Nottingham Trent University, Nottingham, NG1 4BU, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1H 0AH, UK.
| |
Collapse
|
35
|
Emerging technologies for the integration and intensification of downstream bioprocesses. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.55] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|