1
|
Wu C, Gou Y, Jing S, Li W, Ge F, Li J, Ren Y. Analysis of glutamate-dependent mechanism and optimization of fermentation conditions for poly-gamma-glutamic acid production by Bacillus subtilis SCP017-03. PLoS One 2025; 20:e0310556. [PMID: 39883687 DOI: 10.1371/journal.pone.0310556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/03/2024] [Indexed: 02/01/2025] Open
Abstract
Poly-gamma-glutamic acid (γ-PGA) is mainly synthesized by glutamate-dependent strains in the manufacturing industry. Therefore, understanding glutamate-dependent mechanisms is imperative. In this study, we first systematically analyzed the response of Bacillus subtilis SCP017-03 to glutamate addition by comparing transcriptomics and proteomics. The introduction of glutamate substantially altered gene expression within the central metabolic pathway of cellular carbon. Most genes in the pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and energy-consuming phase of the glycolysis pathway (EMP) were down-regulated, whereas those in the energy-producing phase of glycolysis and those responsible for γ-PGA synthesis were up-regulated. Based on these findings, the fermentation conditions were optimized, and γ-PGA production was improved by incorporating oxygen carriers. In a batch-fed fermentor with glucose, the γ-PGA production reached 95.2 g/L, demonstrating its industrial production potential. This study not only elucidated the glutamate dependence mechanism of Bacillus subtilis but also identified a promising metabolic target for further enhancing γ-PGA production.
Collapse
Affiliation(s)
- Caiyun Wu
- College of life Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Yutao Gou
- College of life Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Shuai Jing
- College of life Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Wei Li
- College of life Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Fanglan Ge
- College of life Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Jiao Li
- College of life Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Yao Ren
- College of life Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zhang X, Wu W, Mou H, Liu J, Lei L, Li X, Cai D, Zhan Y, Ma X, Chen S. Synthesis of Super-High-Viscosity Poly-γ-Glutamic Acid by pgdS-Deficient Strain of Bacillus licheniformis and Its Application in Microalgae Harvesting. Microorganisms 2024; 12:2398. [PMID: 39770601 PMCID: PMC11679365 DOI: 10.3390/microorganisms12122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer whose molecular weight and viscosity are critical for its application in various fields. However, research on super-high-molecular-weight or -viscosity γ-PGA is limited. In this study, the pgdS gene in Bacillus licheniformis WX-02 was knocked out using homologous recombination, and the batch fermentation performances of the recombinant strain WX-ΔpgdS were compared to those of WX-02. Nitrate accumulation was observed in the early fermentation stages of WX-ΔpgdS, and gene transcription analysis and cell morphology observations revealed that nitrite accumulation was caused by oxygen limitation due to cell aggregation. When the aeration and agitation rates were increased to 2.5 vvm and 600 r/min, respectively, and citrate was used as a precursor, nitrite accumulation was alleviated in WX-ΔpgdS fermentation broth, while γ-PGA yield and broth viscosity reached 17.3 g/L and 4988 mPa·s. Scanning electron microscopy (SEM) showed that the γ-PGA produced by WX-ΔpgdS exhibited a three-dimensional porous network structure. At a γ-PGA concentration of 5 mg/L, the fermentation broth of WX-ΔpgdS achieved a flocculation efficiency of 95.7% after 30 min of microalgae settling. These findings demonstrate that pgdS knockout results in super-high-viscosity γ-PGA, positioning it as an eco-friendly and cost-effective biocoagulant for microalgae harvesting.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Wei Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Hongxiao Mou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Jun Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Lei Lei
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Xin Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (X.Z.); (W.W.); (H.M.); (J.L.); (L.L.)
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (D.C.); (Y.Z.); (X.M.)
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (D.C.); (Y.Z.); (X.M.)
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (D.C.); (Y.Z.); (X.M.)
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; (D.C.); (Y.Z.); (X.M.)
| |
Collapse
|
3
|
Wei X, Yang L, Chen Z, Xia W, Chen Y, Cao M, He N. Molecular weight control of poly-γ-glutamic acid reveals novel insights into extracellular polymeric substance synthesis in Bacillus licheniformis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:60. [PMID: 38711141 DOI: 10.1186/s13068-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The structural diversity of extracellular polymeric substances produced by microorganisms is attracting particular attention. Poly-gamma-glutamic acid (γ-PGA) is a widely studied extracellular polymeric substance from Bacillus species. The function of γ-PGA varies with its molecular weight (Mw). RESULTS Herein, different endogenous promoters in Bacillus licheniformis were selected to regulate the expression levels of pgdS, resulting in the formation of γ-PGA with Mw values ranging from 1.61 × 103 to 2.03 × 104 kDa. The yields of γ-PGA and exopolysaccharides (EPS) both increased in the pgdS engineered strain with the lowest Mw and viscosity, in which the EPS content was almost tenfold higher than that of the wild-type strain. Subsequently, the compositions of EPS from the pgdS engineered strain also changed. Metabolomics and RT-qPCR further revealed that improving the transportation efficiency of EPS and the regulation of carbon flow of monosaccharide synthesis could affect the EPS yield. CONCLUSIONS Here, we present a novel insight that increased pgdS expression led to the degradation of γ-PGA Mw and changes in EPS composition, thereby stimulating EPS and γ-PGA production. The results indicated a close relationship between γ-PGA and EPS in B. licheniformis and provided an effective strategy for the controlled synthesis of extracellular polymeric substances.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
4
|
Zhu J, Wang X, Zhao J, Ji F, Zeng J, Wei Y, Xu L, Dong G, Ma X, Wang C. Genomic characterization and related functional genes of γ- poly glutamic acid producing Bacillus subtilis. BMC Microbiol 2024; 24:125. [PMID: 38622505 PMCID: PMC11017564 DOI: 10.1186/s12866-024-03262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/15/2024] [Indexed: 04/17/2024] Open
Abstract
γ- poly glutamic acid (γ-PGA), a high molecular weight polymer, is synthesized by microorganisms and secreted into the extracellular space. Due to its excellent performance, γ-PGA has been widely used in various fields, including food, biomedical and environmental fields. In this study, we screened natto samples for two strains of Bacillus subtilis N3378-2at and N3378-3At that produce γ-PGA. We then identified the γ-PGA synthetase gene cluster (PgsB, PgsC, PgsA, YwtC and PgdS), glutamate racemase RacE, phage-derived γ-PGA hydrolase (PghB and PghC) and exo-γ-glutamyl peptidase (GGT) from the genome of these strains. Based on these γ-PGA-related protein sequences from isolated Bacillus subtilis and 181 B. subtilis obtained from GenBank, we carried out genotyping analysis and classified them into types 1-5. Since we found B. amyloliquefaciens LL3 can produce γ-PGA, we obtained the B. velezensis and B. amyloliquefaciens strains from GenBank and classified them into types 6 and 7 based on LL3. Finally, we constructed evolutionary trees for these protein sequences. This study analyzed the distribution of γ-PGA-related protein sequences in the genomes of B. subtilis, B. velezensis and B. amyloliquefaciens strains, then the evolutionary diversity of these protein sequences was analyzed, which provided novel information for the development and utilization of γ-PGA-producing strains.
Collapse
Affiliation(s)
- Jiayue Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Wang
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Jianan Zhao
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Fang Ji
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Jun Zeng
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Yanwen Wei
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - LiLi Xu
- Union Biology (Shanghai) Co., Ltd, Shanghai, 201100, China
| | - Guoying Dong
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chengmin Wang
- Guangdong key Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China.
| |
Collapse
|
5
|
Adilkhanova A, Ormantayeva A, Kaziullayeva A, Olaifa K, Eghtesadi N, Abbas AH, Calvio C, Pham TT, Ajunwa OM, Marsili E. Electrofermentation increases concentration of poly γ-glutamic acid in Bacillus subtilis biofilms. Microb Biotechnol 2024; 17:e14426. [PMID: 38497275 PMCID: PMC10945395 DOI: 10.1111/1751-7915.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/01/2024] [Indexed: 03/19/2024] Open
Abstract
Fluctuations in redox conditions in bioprocesses can alter the end-products, reduce their concentration, and lengthen the process time. Electrofermentation enables rapid metabolic modulation of biosynthesis and allows control of redox imbalances in biofilm-based fermentation processes. In this study, electrofermentation is used to boost the production of the bacterial biopolymer poly-γ-glutamic acid (γ-PGA) from Bacillus subtilis ATCC 6051. When compared to control experiments (3.3 ± 0.99 g L-1 ), the application of an electrode potential E = 0.4 V versus Ag/AgCl results in a more than two-fold increase in the production of γ-PGA (9.13 ± 1.4 g L-1 ). Using an engineered B. subtilis strain, in which γ-PGA production is driven by isopropyl β-d-1-thiogalactopyranoside, electrofermentation improves polymer concentrations from 15.4 ± 1.5 to 23.1 ± 1.6 versus g L-1 . These results confirm that electrofermentation conditions can be adopted to increase the concentration of γ-PGA and perhaps other extracellular biopolymers in industrial strains.
Collapse
Affiliation(s)
- Alina Adilkhanova
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Anar Ormantayeva
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Aisholpan Kaziullayeva
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Kayode Olaifa
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Neda Eghtesadi
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Azza H. Abbas
- Department of Petroleum Engineering, School of Mining and GeosciencesNazarbayev UniversityAstanaKazakhstan
| | - Cinzia Calvio
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingboChina
| | - Tri T. Pham
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | - Obinna M. Ajunwa
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
- Department of Biology, School of Sciences and HumanitiesNazarbayev UniversityAstanaKazakhstan
| | - Enrico Marsili
- Department of Biology, Faculty of Natural Sciences, Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
| |
Collapse
|
6
|
Elbanna K, Alsulami FS, Neyaz LA, Abulreesh HH. Poly (γ) glutamic acid: a unique microbial biopolymer with diverse commercial applicability. Front Microbiol 2024; 15:1348411. [PMID: 38414762 PMCID: PMC10897055 DOI: 10.3389/fmicb.2024.1348411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Microbial biopolymers have emerged as promising solutions for environmental pollution-related human health issues. Poly-γ-glutamic acid (γ-PGA), a natural anionic polymeric compound, is composed of highly viscous homo-polyamide of D and L-glutamic acid units. The extracellular water solubility of PGA biopolymer facilitates its complete biodegradation and makes it safe for humans. The unique properties have enabled its applications in healthcare, pharmaceuticals, water treatment, foods, and other domains. It is applied as a thickener, taste-masking agent, stabilizer, texture modifier, moisturizer, bitterness-reducing agent, probiotics cryoprotectant, and protein crystallization agent in food industries. γ-PGA is employed as a biological adhesive, drug carrier, and non-viral vector for safe gene delivery in tissue engineering, pharmaceuticals, and medicine. It is also used as a moisturizer to improve the quality of hair care and skincare cosmetic products. In agriculture, it serves as an ideal stabilizer, environment-friendly fertilizer synergist, plant-growth promoter, metal biosorbent in soil washing, and animal feed additive to reduce body fat and enhance egg-shell strength.
Collapse
Affiliation(s)
- Khaled Elbanna
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Fatimah S Alsulami
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Leena A Neyaz
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussein H Abulreesh
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Cai M, Han Y, Zheng X, Xue B, Zhang X, Mahmut Z, Wang Y, Dong B, Zhang C, Gao D, Sun J. Synthesis of Poly-γ-Glutamic Acid and Its Application in Biomedical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:15. [PMID: 38203869 PMCID: PMC10779536 DOI: 10.3390/ma17010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer composed of glutamic acid monomer and it has garnered substantial attention in both the fields of material science and biomedicine. Its remarkable cell compatibility, degradability, and other advantageous characteristics have made it a vital component in the medical field. In this comprehensive review, we delve into the production methods, primary application forms, and medical applications of γ-PGA, drawing from numerous prior studies. Among the four production methods for PGA, microbial fermentation currently stands as the most widely employed. This method has seen various optimization strategies, which we summarize here. From drug delivery systems to tissue engineering and wound healing, γ-PGA's versatility and unique properties have facilitated its successful integration into diverse medical applications, underlining its potential to enhance healthcare outcomes. The objective of this review is to establish a foundational knowledge base for further research in this field.
Collapse
Affiliation(s)
- Minjian Cai
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yumin Han
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xianhong Zheng
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Baigong Xue
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xinyao Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Zulpya Mahmut
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yuda Wang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Chunmei Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Donghui Gao
- Department of Anesthesiology and Operating Room, School and Hospital of Stomatology, Jilin University, Changchun 130012, China
| | - Jiao Sun
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Wei X, Chen Z, Liu A, Yang L, Xu Y, Cao M, He N. Advanced strategies for metabolic engineering of Bacillus to produce extracellular polymeric substances. Biotechnol Adv 2023; 67:108199. [PMID: 37330153 DOI: 10.1016/j.biotechadv.2023.108199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Extracellular polymeric substances are mainly synthesized via a variety of biosynthetic pathways in bacteria. Bacilli-sourced extracellular polymeric substances, such as exopolysaccharides (EPS) and poly-γ-glutamic acid (γ-PGA), can serve as active ingredients and hydrogels, and have other important industrial applications. However, the functional diversity and widespread applications of these extracellular polymeric substances, are hampered by their low yields and high costs. Biosynthesis of extracellular polymeric substances is very complex in Bacillus, and there is no detailed elucidation of the reactions and regulations among various metabolic pathways. Therefore, a better understanding of the metabolic mechanisms is required to broaden the functions and increase the yield of extracellular polymeric substances. This review systematically summarizes the biosynthesis and metabolic mechanisms of extracellular polymeric substances in Bacillus, providing an in-depth understanding of the relationships between EPS and γ-PGA synthesis. This review provides a better clarification of Bacillus metabolic mechanisms during extracellular polymeric substance secretion and thus benefits their application and commercialization.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Ailing Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
9
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Sun L, Cheng L, Fu H, Wang R, Gu Y, Qiu Y, Sun K, Xu H, Lei P. A strategy for nitrogen conversion in aquaculture water based on poly-γ-glutamic acid synthesis. Int J Biol Macromol 2023; 229:1036-1043. [PMID: 36603727 DOI: 10.1016/j.ijbiomac.2022.12.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Ammonia and nitrite are nitrogenous pollutants in aquaculture effluents, which pose a major threat to the health of aquatic animals. In this study, we developed a nitrogen conversion strategy based on synthesis of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis NX-2. The nitrogen removal efficiency of NX-2 was closely related to synthesizing γ-PGA, and was positively correlated with the inoculum level. The degradation rates of ammonia nitrogen and nitrite at 104 CFU/mL were 84.42 % and 62.56 %, respectively. Through adaptive laboratory evolution (ALE) experiment, we obtained a strain named ALE 5 M with ammonia degradation rate of 98.03 % and nitrite of 93.62 % at the inoculum level of 104 CFU/mL. Transcriptome analysis showed that the strain was more likely to produce γ-PGA after ALE. By enzyme activity and qPCR analysis, we confirmed that ALE 5 M degraded ammonia nitrogen through γ-PGA synthesis, which provided a new way for nitrogen removal in aquaculture water.
Collapse
Affiliation(s)
- Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lifangyu Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Heng Fu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ke Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Nair P, Navale GR, Dharne MS. Poly-gamma-glutamic acid biopolymer: a sleeping giant with diverse applications and unique opportunities for commercialization. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:4555-4573. [PMID: 33824848 PMCID: PMC8016157 DOI: 10.1007/s13399-021-01467-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Poly-gamma-glutamic acid (γ-PGA) is a biodegradable, non-toxic, ecofriendly, and non-immunogenic biopolymer. Its phenomenal properties have gained immense attention in the field of regenerative medicine, the food industry, wastewater treatment, and even in 3D printing bio-ink. The γ-PGA has the potential to replace synthetic non-degradable counterparts, but the main obstacle is the high production cost and lower productivity. Extensive research has been carried out to reduce the production cost by using different waste; however, it is unable to match the commercialization needs. This review focuses on the biosynthetic mechanism of γ-PGA, its production using the synthetic medium as well as different wastes by L-glutamic acid-dependent and independent microbial strains. Furthermore, various metabolic engineering strategies and the recovery processes for γ-PGA and their possible applications are discussed. Finally, highlights on the challenges and unique approaches to reduce the production cost and to increase the productivity for commercialization of γ-PGA are also summarized.
Collapse
Affiliation(s)
- Pranav Nair
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Govinda R. Navale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Mahesh S. Dharne
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| |
Collapse
|
12
|
Hoffmann K, Halmschlag B, Briel S, Sieben M, Putri S, Fukusaki E, Blank LM, Büchs J. Online measurement of the viscosity in shake flasks enables monitoring of γ-PGA production in depolymerase knockout mutants of Bacillus subtilis with the phosphate-starvation inducible promoter P pst. Biotechnol Prog 2023; 39:e3293. [PMID: 36081345 DOI: 10.1002/btpr.3293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a biopolymer with a wide range of applications, mainly produced using Bacillus strains. The formation and concomitant secretion of γ-PGA increases the culture broth viscosity, while enzymatic depolymerisation and degradation of γ-PGA decreases the culture broth viscosity. In this study, the recently published ViMOS (Viscosity Monitoring Online System) is applied for optical online measurements of broth viscosity in eight parallel shake flasks. It is shown that the ViMOS is suitable to monitor γ-PGA production and degradation online in shake flasks. This online monitoring enables the detailed analysis of the Ppst promoter and γ-PGA depolymerase knockout mutants in genetically modified Bacillus subtilis 168. The Ppst promoter becomes active under phosphate starvation. The different single depolymerase knockout mutants are ∆ggt, ∆pgdS, ∆cwlO and a triple knockout mutant. An increase in γ-PGA yield in gγ-PGA /gglucose of 190% could be achieved with the triple knockout mutant compared to the Ppst reference strain. The single cwlO knockout also increased γ-PGA production, while the other single knockouts of ggt and pgdS showed no impact. Partial depolymerisation of γ-PGA occurred despite the triple knockout. The online measured data are confirmed with offline measurements. The online viscosity system directly reflects γ-PGA synthesis, γ-PGA depolymerisation, and changes in the molecular weight. Thus, the ViMOS has great potential to rapidly gain detailed and reliable information about new strains and cultivation conditions. The broadened knowledge will facilitate the further optimization of γ-PGA production.
Collapse
Affiliation(s)
- Kyra Hoffmann
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Birthe Halmschlag
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Simon Briel
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Michaela Sieben
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sastia Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Wang D, Fu X, Zhou D, Gao J, Bai W. Engineering of a newly isolated Bacillus tequilensis BL01 for poly-γ-glutamic acid production from citric acid. Microb Cell Fact 2022; 21:276. [PMID: 36581997 PMCID: PMC9798646 DOI: 10.1186/s12934-022-01994-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Poly γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. For glutamic acid-independent strains, the titer of γ-PGA is too low to meet the industrial demand. In this study, we isolated a novel γ-PGA-producing strain, Bacillus tequilensis BL01, and multiple genetic engineering strategies were implemented to improve γ-PGA production. RESULTS First, the one-factor-at-a-time method was used to investigate the influence of carbon and nitrogen sources and temperature on γ-PGA production. The optimal sources of carbon and nitrogen were sucrose and (NH4)2SO4 at 37 °C, respectively. Second, the sucA, gudB, pgdS, and ggt genes were knocked out simultaneously, which increased the titer of γ-PGA by 1.75 times. Then, the titer of γ-PGA increased to 18.0 ± 0.3 g/L by co-overexpression of the citZ and pyk genes in the mutant strain. Furthermore, the γ-PGA titer reached 25.3 ± 0.8 g/L with a productivity of 0.84 g/L/h and a yield of 1.50 g of γ-PGA/g of citric acid in fed-batch fermentation. It should be noted that this study enables the synthesis of low (1.84 × 105 Da) and high (2.06 × 106 Da) molecular weight of γ-PGA by BL01 and the engineering strain. CONCLUSION The application of recently published strategies to successfully improve γ-PGA production for the new strain B. tequilensis BL01 is reported. The titer of γ-PGA increased 2.17-fold and 1.32-fold compared with that of the wild type strain in the flask and 5 L fermenter. The strain shows excellent promise as a γ-PGA producer compared with previous studies. Meanwhile, different molecular weights of γ-PGA were obtained, enhancing the scope of application in industry.
Collapse
Affiliation(s)
- Dexin Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China
| | - Xiaoping Fu
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China
| | - Dasen Zhou
- grid.413109.e0000 0000 9735 6249College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Jiaqi Gao
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049 China
| | - Wenqin Bai
- grid.9227.e0000000119573309CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China ,National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
14
|
Parati M, Khalil I, Tchuenbou-Magaia F, Adamus G, Mendrek B, Hill R, Radecka I. Building a circular economy around poly(D/L-γ-glutamic acid)- a smart microbial biopolymer. Biotechnol Adv 2022; 61:108049. [DOI: 10.1016/j.biotechadv.2022.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
|
15
|
Zhang Z, He P, Cai D, Chen S. Genetic and metabolic engineering for poly-γ-glutamic acid production: current progress, challenges, and prospects. World J Microbiol Biotechnol 2022; 38:208. [DOI: 10.1007/s11274-022-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
|
16
|
Li D, Hou L, Gao Y, Tian Z, Fan B, Wang F, Li S. Recent Advances in Microbial Synthesis of Poly-γ-Glutamic Acid: A Review. Foods 2022; 11:foods11050739. [PMID: 35267372 PMCID: PMC8909396 DOI: 10.3390/foods11050739] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural, safe, non-immunogenic, biodegradable, and environmentally friendly glutamic biopolymer. γ-PGA has been regarded as a promising bio-based materials in the food field, medical field, even in environmental engineering field, and other industrial fields. Microbial synthesis is an economical and effective way to synthesize γ-PGA. Bacillus species are the most widely studied producing strains. γ-PGA biosynthesis involves metabolic pathway of racemization, polymerization, transfer, and catabolism. Although microbial synthesis of γ-PGA has already been used extensively, productivity and yield remain the major constraints for its industrial application. Metabolic regulation is an attempt to solve the above bottleneck problems and meet the demands of commercialization. Therefore, it is important to understand critical factors that influence γ-PGA microbial synthesis in depth. This review focuses on production strains, biosynthetic pathway, and metabolic regulation. Moreover, it systematically summarizes the functional properties, purification procedure, and industrial application of γ-PGA.
Collapse
Affiliation(s)
- Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.W.); (S.L.); Tel.: +86-010-62815977 (F.W.); +86-010-62810295 (S.L.)
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
- Correspondence: (F.W.); (S.L.); Tel.: +86-010-62815977 (F.W.); +86-010-62810295 (S.L.)
| |
Collapse
|
17
|
Zhang Q, Chen Y, Gao L, Chen J, Ma X, Cai D, Wang D, Chen S. Enhanced production of poly-γ-glutamic acid via optimizing the expression cassette of Vitreoscilla hemoglobin in Bacillus licheniformis. Synth Syst Biotechnol 2022; 7:567-573. [PMID: 35155838 PMCID: PMC8801620 DOI: 10.1016/j.synbio.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/16/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer with various applications, and its high-viscosity hinders oxygen transmission and improvement of synthesis level. Vitreoscilla hemoglobin (VHB) has been introduced into various hosts as oxygen carrier, however, its expression strength and contact efficiency with oxygen hindered efficient oxygen transfer and metabolite synthesis. Here, we want to optimize the expression cassette of VHB for γ-PGA production. Firstly, our results implied that γ-PGA yields were enhanced when introducing twin-arginine translocation (Tat) signal peptides (SPYwbN, SPPhoD and SPTorA) into VHB expression cassette, and the best performance was attained by SPYwbN from Bacillus subtilis, the γ-PGA yield of which was 18.53% higher than that of control strain, and intracellular ATP content and oxygen transfer coefficient (KLa) were increased by 29.71% and 73.12%, respectively, indicating that VHB mediated by SPYwbN benefited oxygen transfer and ATP generation for γ-PGA synthesis. Furthermore, four promoters were screened, and Pvgb was proven as the more suitable promoter for VHB expression and γ-PGA synthesis, and γ-PGA yield of attaining strain WX/pPvgb-YwbN-Vgb was further increased to 40.59 g/L by 10.18%. Finally, WX/pPvgb-YwbN-Vgb was cultivated in 3 L fermentor for fed-batch fermentation, and 46.39 g/L γ-PGA was attained by glucose feeding, increased by 49.26% compared with the initial yield (31.01 g/L). Taken together, this study has attained an efficient VHB expression cassette for oxygen transfer and γ-PGA synthesis, which could also be applied in the production of other metabolites.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yaozhong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Lin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jian'gang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Wuhan Junan Biotechnology Co. Ltd., Wuhan, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| |
Collapse
|
18
|
Ermoli F, Bontà V, Vitali G, Calvio C. SwrA as global modulator of the two-component system DegSU in Bacillus subtilis. Res Microbiol 2021; 172:103877. [PMID: 34487843 DOI: 10.1016/j.resmic.2021.103877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
The two-component system DegSU of Bacillus subtilis controls more than one hundred genes involved in several different cellular behaviours. Over the last four decades, the degU32Hy allele, supposedly encoding a constitutively active mutant of the response regulator DegU, was exploited to define the impact of this system on cell physiology. Those studies concluded that phosphorylated DegU (DegU∼P) induced degradative enzyme expression while repressing flagellar motility and competence. Recent experiments, however, demonstrated that flagella expression is enhanced by DegU∼P if SwrA, a protein only encoded by wild strains, is present. Yet, to promote motility, SwrA must interact with DegU∼P produced by a wild-type degU allele, as it cannot correctly cooperate with the mutant DegU32Hy protein. In this work, the impact of DegSU was reanalysed in the presence or absence of SwrA employing a DegS kinase mutant, degS200Hy, to force the activation of the TCS. Our results demonstrate that the role of SwrA in B. subtilis physiology is wider than expected and affects several other DegSU targets. SwrA reduces subtilisin, cellulases and xylanases production while, besides motility, it also positively modulates competence for DNA uptake, remarkably relieving the inhibition caused by DegU∼P alone and restoring transformability in degS200Hy strains.
Collapse
Affiliation(s)
- Francesca Ermoli
- Dept. of Biology and Biotechnology, Laboratories of Genetics and Microbiology, University of Pavia, Via Ferrata 9, 27100 Pavia (I), Italy.
| | - Valeria Bontà
- Dept. of Biology and Biotechnology, Laboratories of Genetics and Microbiology, University of Pavia, Via Ferrata 9, 27100 Pavia (I), Italy.
| | - Giulia Vitali
- Dept. of Biology and Biotechnology, Laboratories of Genetics and Microbiology, University of Pavia, Via Ferrata 9, 27100 Pavia (I), Italy.
| | - Cinzia Calvio
- Dept. of Biology and Biotechnology, Laboratories of Genetics and Microbiology, University of Pavia, Via Ferrata 9, 27100 Pavia (I), Italy.
| |
Collapse
|
19
|
Luo ZW, Ahn JH, Chae TU, Choi SY, Park SY, Choi Y, Kim J, Prabowo CPS, Lee JA, Yang D, Han T, Xu H, Lee SY. Metabolic Engineering of
Escherichia
coli. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
21
|
Li M, Zhang Z, Li S, Tian Z, Ma X. Study on the mechanism of production of γ-PGA and nattokinase in Bacillus subtilis natto based on RNA-seq analysis. Microb Cell Fact 2021; 20:83. [PMID: 33836770 PMCID: PMC8034199 DOI: 10.1186/s12934-021-01570-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) and nattokinase (NK) are the main substances produced by Bacillus subtilis natto in solid-state fermentation and have wide application prospects. We found that our strains had higher activity of nattokinase when soybeans were used as substrate to increase the yield of γ-PGA. Commercial production of γ-PGA and nattokinase requires an understanding of the mechanism of co-production. Here, we obtained the maximum γ-PGA yield (358.5 g/kg, w/w) and highest activity of NK during fermentation and analyzed the transcriptome of Bacillus subtilis natto during co-production of γ-PGA and NK. By comparing changes in expression of genes encoding key enzymes and the metabolic pathways associated with the products in genetic engineering, the mechanism of co-production of γ-PGA and nattokinase can be summarized based on RNA-seq analysis. This study firstly provides new insights into the mechanism of co-production of γ-PGA and nattokinase by Bacillus subtilis natto and reveals potential molecular targets to promote the co-production of γ-PGA and nattokinase.
Collapse
Affiliation(s)
- Min Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zilong Zhang
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R, Shanghai, 200335, China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R, Shanghai, 200335, China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R, Shanghai, 200335, China.
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China. .,State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd, Shanghai, 200436, China.
| |
Collapse
|
22
|
Saini M, Kashyap A, Bindal S, Saini K, Gupta R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure-Function Relationship and Its Biotechnological Applications. Front Microbiol 2021; 12:641251. [PMID: 33897647 PMCID: PMC8062742 DOI: 10.3389/fmicb.2021.641251] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) enzyme is ubiquitously present in all life forms and plays a variety of roles in diverse organisms. Higher eukaryotes mainly utilize GGT for glutathione degradation, and mammalian GGTs have implications in many physiological disorders also. GGTs from unicellular prokaryotes serve different physiological functions in Gram-positive and Gram-negative bacteria. In the present review, the physiological significance of bacterial GGTs has been discussed categorizing GGTs from Gram-negative bacteria like Escherichia coli as glutathione degraders and from pathogenic species like Helicobacter pylori as virulence factors. Gram-positive bacilli, however, are considered separately as poly-γ-glutamic acid (PGA) degraders. The structure-function relationship of the GGT is also discussed mainly focusing on the crystallization of bacterial GGTs along with functional characterization of conserved regions by site-directed mutagenesis that unravels molecular aspects of autoprocessing and catalysis. Only a few crystal structures have been deciphered so far. Further, different reports on heterologous expression of bacterial GGTs in E. coli and Bacillus subtilis as hosts have been presented in a table pointing toward the lack of fermentation studies for large-scale production. Physicochemical properties of bacterial GGTs have also been described, followed by a detailed discussion on various applications of bacterial GGTs in different biotechnological sectors. This review emphasizes the potential of bacterial GGTs as an industrial biocatalyst relevant to the current switch toward green chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
23
|
Connor AJ, Zha RH, Koffas M. Bioproduction of biomacromolecules for antiviral applications. Curr Opin Biotechnol 2021; 69:263-272. [PMID: 33667798 DOI: 10.1016/j.copbio.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The societal damage brought on by viral epidemics indicates that next-generation antiviral treatments must be developed and deployed. Biomacromolecules are a diverse class of compounds that can potentially exhibit potent antiviral activity. Their efficacy and mechanisms of action are dependent upon multiple structural factors, including molecular weight, degree and position of sulfation, and backbone stereochemistry. Extracting biomacromolecules from animals and plants for healthcare applications is undesirable, as these methods are unable to yield products with well-defined chemical structures. Modern advances utilizing recombinant microbes and metabolic pathway engineering can be a key step towards large-scale bioproduction of tailored biomacromolecules for targeted antiviral applications.
Collapse
Affiliation(s)
- Alexander J Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Runye H Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
24
|
Zaccaria CL, Cedrati V, Nitti A, Chiesa E, Martinez de Ilarduya A, Garcia-Alvarez M, Meli M, Colombo G, Pasini D. Biocompatible graft copolymers from bacterial poly(γ-glutamic acid) and poly(lactic acid). Polym Chem 2021. [DOI: 10.1039/d1py00737h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible graft copolymers from bacterial poly(γ-glutamic acid) and poly(lactic acid) are realized using a “grafting to” approach combined with click chemistry.
Collapse
Affiliation(s)
| | - Valeria Cedrati
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| | - Enrica Chiesa
- Department of Civil Engineering and Architecture
- University of Pavia
- 27100 Pavia
- Italy
| | | | | | | | - Giorgio Colombo
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
- SCITEC-CNR
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| |
Collapse
|
25
|
Motta Nascimento B, Nair NU. Characterization of a membrane enzymatic complex for heterologous production of poly-γ-glutamate in E. coli. Metab Eng Commun 2020; 11:e00144. [PMID: 32963960 PMCID: PMC7490850 DOI: 10.1016/j.mec.2020.e00144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 11/06/2022] Open
Abstract
Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts. Successfully expressed active poly-γ-glutamate synthetase (PGS) in E. coli. Confirmed PGS localization at inner membrane of E. coli. Elucidated topology of PGS components in E. coli membrane. Culture and expression in microplates might allow future screening of a high number of samples. Faster production of poly-γ-glutamate in E. coli supernatant compared to B. subtilis.
Collapse
Affiliation(s)
- Bruno Motta Nascimento
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
26
|
Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis. J Biosci Bioeng 2020; 130:272-282. [DOI: 10.1016/j.jbiosc.2020.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 11/18/2022]
|
27
|
Wang D, Wang H, Zhan Y, Xu Y, Deng J, Chen J, Cai D, Wang Q, Sheng F, Chen S. Engineering Expression Cassette of pgdS for Efficient Production of Poly-γ-Glutamic Acids With Specific Molecular Weights in Bacillus licheniformis. Front Bioeng Biotechnol 2020; 8:728. [PMID: 32754581 PMCID: PMC7381323 DOI: 10.3389/fbioe.2020.00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is an emerging biopolymer with various applications and γ-PGAs with different molecular weights exhibit distinctive properties. However, studies on the controllable molecular weights of biopolymers are limited. The purpose of this study is to achieve production of γ-PGAs with a wide range of molecular weights through manipulating the expression of γ-PGA depolymerase (PgdS) in Bacillus licheniformis WX-02. Firstly, the expression and secretion of PgdS were regulated through engineering its expression elements (four promoters and eight signal peptides), which generated γ-PGAs with molecular weights ranging from 6.82 × 104 to 1.78 × 106 Da. Subsequently, through combination of promoters with signal peptides, the production of γ-PGAs with a specific molecular weight could be efficiently obtained. Interestingly, the γ-PGA yield increased with the reduced molecular weight in flask cultures (Pearson correlation coefficient of −0.968, P < 0.01). Finally, in batch fermentation, the highest yield of γ-PGA with a weight-average molecular weight of 7.80 × 104 Da reached 39.13 g/L under glutamate-free medium. Collectively, we developed an efficient strategy for one-step production of γ-PGAs with specific molecular weights, which have potential application for industrial production of desirable γ-PGAs.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Huan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Yong Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Jie Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | | | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| |
Collapse
|
28
|
Azarhava H, Bajestani MI, Jafari A, Vakilchap F, Mousavi SM. Production and physicochemical characterization of bacterial poly gamma- (glutamic acid) to investigate its performance on enhanced oil recovery. Int J Biol Macromol 2020; 147:1204-1212. [PMID: 31739030 DOI: 10.1016/j.ijbiomac.2019.10.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
Bacillus licheniformis LMG 7559, which is capable of producing extracellular poly gamma- (glutamic acid) (PGA), was provided for the biopolymer synthesis. Using a modified PGA medium for PGA production, the isolated biopolymer, undergone dialysis process mainly for desalination and removal of other impurities. The bacteria produced high molecular weight biopolymers with a weight average molecular weight (M̅n) of 1.6 × 105 g/mole identified by gel permeation chromatography (GPC). Furthermore, GPC analysis was utilized to determine the poly-dispersity of PGA as well as molecular weight variation by cultivation time. The heavy weight fraction of 1.85 × 105 g/mole with poly-dispersity index of 7.42 was distinguished. For the extracted and dialyzed biopolymer, thermal properties were studied using DSC/TGA by which a mass loss of 36 percent was observed. Eventually, the biopolymer solution was injected into the oil saturated heterogeneous porous medium to evaluate the recovery factor enhancement by PGA flooding. It was found that 31.45% of oil in place was recovered by biopolymer flooding, whereas only 16.6% of oil in place was obtained by water flooding.
Collapse
Affiliation(s)
- Hadi Azarhava
- Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Maryam Ijadi Bajestani
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Arezou Jafari
- Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
| | - Farzane Vakilchap
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
29
|
Cedrati V, Pacini A, Nitti A, Martínez de Ilarduya A, Muñoz-Guerra S, Sanyal A, Pasini D. “Clickable” bacterial poly(γ-glutamic acid). Polym Chem 2020. [DOI: 10.1039/d0py00843e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The controlled functionalization of bacterial γ-PGA is realized through sonication, solubilization using quaternary ammonium salts and click chemistry.
Collapse
Affiliation(s)
- Valeria Cedrati
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| | - Aurora Pacini
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| | | | - Sebastián Muñoz-Guerra
- Departament d'Enginyeria Química
- Universitat Politècnica de Catalunya
- ETSEIB
- 08028 Barcelona
- Spain
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit
- University of Pavia
- 27100 Pavia
- Italy
| |
Collapse
|
30
|
Mahaboob Ali AA, Momin B, Ghogare P. Isolation of a novel poly- γ-glutamic acid-producing Bacillus licheniformis A14 strain and optimization of fermentation conditions for high-level production. Prep Biochem Biotechnol 2019; 50:445-452. [PMID: 31873055 DOI: 10.1080/10826068.2019.1706560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study, bacteria producing poly-γ-glutamic acid were isolated from marine sands, and an efficient producer identified. γ-PGA was rapidly screened by thin-layer chromatography and UV spectrophotometer assay. Media optimization was carried out, and for the cost-effective production of γ-PGA, monosodium glutamate was used as the substrate for the synthesis of γ-PGA instead of glutamic acid. Lastly, Plackett-Buman design (PB) and Response surface methodology (RSM) were used to determine significant media components and their interaction effect to achieve maximum γ-PGA production. With this integrated method, a bacterial strain with a high yield of γ-PGA was obtained rapidly, and the production was increased up to 37.8 g/L after optimization.
Collapse
Affiliation(s)
- Anees Ahmed Mahaboob Ali
- Department of Microbiology, SIES College of Arts, Science and Commerce, Sion West, Mumbai, India
| | - Bilal Momin
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Pramod Ghogare
- Department of Microbiology, SIES College of Arts, Science and Commerce, Sion West, Mumbai, India
| |
Collapse
|
31
|
Liu CL, Dong HG, Xue K, Yang W, Liu P, Cai D, Liu X, Yang Y, Bai Z. Biosynthesis of poly-γ-glutamic acid in Escherichia coli by heterologous expression of pgsBCAE operon from Bacillus. J Appl Microbiol 2019; 128:1390-1399. [PMID: 31837088 DOI: 10.1111/jam.14552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 01/05/2023]
Abstract
AIMS Poly-γ-glutamic acid (γ-PGA) is an excellent water-soluble biosynthesis material. To confirm the rate-limiting steps of γ-PGA biosynthesis pathway, we introduced a heterologous Bacillus strain pathway and employed an enzyme-modulated dismemberment strategy in Escherichia coli. METHODS AND RESULTS In this study, we heterologously introduced the γ-PGA biosynthesis pathway of two laboratory-preserved strains-Bacillus amyloliquefaciens FZB42 and Bacillus subtilis 168 into E. coli, and compared their γ-PGA production levels. Next, by changing the plasmid copy numbers and supplying sodium glutamate, we explored the effects of gene expression levels and concentrations of the substrate l-glutamic acid on γ-PGA production. We finally employed a two-plasmid induction system using an enzyme-modulated dismemberment of pgsBCAE operon to confirm the rate-limiting genes of the γ-PGA biosynthesis pathway. CONCLUSION Through heterologously over-expressing the genes of the γ-PGA biosynthesis pathway and exploring gene expression levels, we produced 0·77 g l-1 γ-PGA in strain RSF-EBCAE(BS). We also confirmed that the rate-limiting genes of the γ-PGA biosynthesis pathway were pgsB and pgsC. SIGNIFICANCE AND IMPACT OF THE STUDY This work is beneficial to increase γ-PGA production and study the mechanism of γ-PGA biosynthesis enzymes.
Collapse
Affiliation(s)
- C-L Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - H-G Dong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - K Xue
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - W Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - P Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - D Cai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - X Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Y Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Z Bai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
Gao W, He Y, Zhang F, Zhao F, Huang C, Zhang Y, Zhao Q, Wang S, Yang C. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synthesis. Microb Biotechnol 2019; 12:932-945. [PMID: 31219230 PMCID: PMC6680638 DOI: 10.1111/1751-7915.13446] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/17/2019] [Indexed: 01/29/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a biocompatible and biodegradable polypeptide with wide-ranging applications in foods, cosmetics, medicine, agriculture and wastewater treatment. Bacillus amyloliquefaciens LL3 can produce γ-PGA from sucrose that can be obtained easily from sugarcane and sugar beet. In our previous work, it was found that low intracellular glutamate concentration was the limiting factor for γ-PGA production by LL3. In this study, the γ-PGA synthesis by strain LL3 was enhanced by chromosomally engineering its glutamate metabolism-relevant networks. First, the downstream metabolic pathways were partly blocked by deleting fadR, lysC, aspB, pckA, proAB, rocG and gudB. The resulting strain NK-A6 synthesized 4.84 g l-1 γ-PGA, with a 31.5% increase compared with strain LL3. Second, a strong promoter PC 2up was inserted into the upstream of icd gene, to generate strain NK-A7, which further led to a 33.5% improvement in the γ-PGA titre, achieving 6.46 g l-1 . The NADPH level was improved by regulating the expression of pgi and gndA. Third, metabolic evolution was carried out to generate strain NK-A9E, which showed a comparable γ-PGA titre with strain NK-A7. Finally, the srf and itu operons were deleted respectively, from the original strains NK-A7 and NK-A9E. The resulting strain NK-A11 exhibited the highest γ-PGA titre (7.53 g l-1 ), with a 2.05-fold improvement compared with LL3. The results demonstrated that the approaches described here efficiently enhanced γ-PGA production in B. amyloliquefaciens fermentation.
Collapse
Affiliation(s)
- Weixia Gao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of EducationNankai UniversityTianjin300071China
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Yulian He
- Prenatal Diagnosis and Genetic Diagnosis CenterTangshan Maternal and Child Health Care HospitalTangshan063000China
| | - Fang Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of EducationNankai UniversityTianjin300071China
| | - Fengjie Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of EducationNankai UniversityTianjin300071China
| | - Chao Huang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of EducationNankai UniversityTianjin300071China
| | - Yiting Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of EducationNankai UniversityTianjin300071China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of EducationNankai UniversityTianjin300071China
| |
Collapse
|
33
|
Ojima Y, Kobayashi J, Doi T, Azuma M. Knockout of pgdS and ggt gene changes poly-γ-glutamic acid production in Bacillus licheniformis RK14-46. J Biotechnol 2019; 304:57-62. [PMID: 31404564 DOI: 10.1016/j.jbiotec.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Abstract
Poly-gamma-glutamic acid (γ-PGA) is a water-soluble, nontoxic biocompatible polymer, which is extensively used in medicines, foodstuffs, cosmetics, and in water treatment. We previously isolated a novel γ-PGA producing strain Bacillus licheniformis RK14 from soil and developed a hyper-producing mutant strain RK14-46 by an ethyl methanesulfonate (EMS) treatment. In this study, endo-type (pgdS) and exo-type γ-PGA hydrolases (ggt) were disrupted by integrating plasmids into the genomic DNA of B. licheniformis RK14-46 strain. Unexpectedly, we observed strong inhibition of γ-PGA production following deletion of the pgdS gene, suggesting that pgdS is essential for γ-PGA biosynthesis in strain RK14-46, and in its parent strain RK14. In contrast, γ-PGA production increased by the deletion of the ggt gene and reached 39 g/L in the presence of 90 g/L glucose and elevated oxygen supply. Furthermore, γ-PGA from the ggt-disrupted mutant (Δggt) maintained a larger molecular mass throughout the culture period, whereas that from the original RK14-46 strain had degraded after glucose consumption. γ-PGA-containing culture supernatants from Δggt strain showed greater flocculation efficiency in sewage sludge than supernatants from the RK14-46 strain, reflecting greater production of γ-PGA with larger molecular mass by the Δggt strain. This is the first report concerning the deletion of pgdS and ggt genes in B. licheniformis strain and the properties of γ-PGA obtained from the mutant strain.
Collapse
Affiliation(s)
- Yoshihiro Ojima
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Joji Kobayashi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takeru Doi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masayuki Azuma
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
34
|
Ma Y, McClure DD, Somerville MV, Proschogo NW, Dehghani F, Kavanagh JM, Coleman NV. Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone-7. ACS Synth Biol 2019; 8:1620-1630. [PMID: 31250633 DOI: 10.1021/acssynbio.9b00077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.
Collapse
Affiliation(s)
- Yanwei Ma
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dale D. McClure
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark V. Somerville
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - John M. Kavanagh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
35
|
Qiu Y, Zhu Y, Zhang Y, Sha Y, Xu Z, Li S, Feng X, Xu H. Characterization of a Regulator pgsR on Endogenous Plasmid p2Sip and Its Complementation for Poly(γ-glutamic acid) Accumulation in Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3711-3722. [PMID: 30866628 DOI: 10.1021/acs.jafc.9b00332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacillus amyloliquefaciens NX-2S154 is a promising poly(γ-glutamic acid) (γ-PGA) producing strain discovered in previous studies. However, the wild-type strain contains an unknown endogenous plasmid, p2Sip, which causes low transformation efficiency and instability of exogenous plasmids. In our study, p2Sip is 5622 bp with 41% G+C content and contains four putative open reading frames (ORFs), including genes repB, hsp, and mobB and γ-PGA-synthesis regulator, pgsR. Elimination of p2Sip from strain NX-2S154 delayed γ-PGA secretion and decreased production of γ-PGA by 18.1%. Integration of a pgsR expression element into the genomic BamHI locus using marker-free manipulation based on pheS* increased the γ-PGA titer by 8%. pgsR overexpression upregulated the expression of γ-PGA synthase pgsB, regulator degQ, and glutamic acid synthase gltA, thus increasing the γ-PGA production in B. amyloliquefaciens NB. Our results indicated that pgsR from p2Sip plays an important regulatory role in γ-PGA synthesis in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yatao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yuanyuan Sha
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
36
|
Deciphering metabolic responses of biosurfactant lichenysin on biosynthesis of poly-γ-glutamic acid. Appl Microbiol Biotechnol 2019; 103:4003-4015. [PMID: 30923871 DOI: 10.1007/s00253-019-09750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/21/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an extracellularly produced biodegradable polymer, which has been widely used as agricultural fertilizer, mineral fortifier, cosmetic moisturizer, and drug carrier. This study firstly discovered that lichenysin, as a biosurfactant, showed the capability to enhance γ-PGA production in Bacillus licheniformis. The exogenous addition of lichenysin improved the γ-PGA yield up to 17.9% and 21.9%, respectively, in the native strain B. licheniformis WX-02 and the lichenysin-deficient strain B. licheniformis WX02-ΔlchAC. The capability of intracellular biosynthesis of lichenysin was positively correlated with γ-PGA production. The yield of γ-PGA increased by 25.1% in the lichenysin-enhanced strain B. licheniformis WX02-Psrflch and decreased by 12.2% in the lichenysin-deficient strain WX02-ΔlchAC. Analysis of key enzyme activities and gene expression in the TCA cycle, precursor glutamate synthesis, and γ-PGA synthesis pathway revealed that the existence of lichenysin led to increased γ-PGA via shifting the carbon flux in the TCA cycle towards glutamate and γ-PGA biosynthetic pathways, minimizing by-product formation, and facilitating the uptake of extracellular substrates and the polymerization of glutamate to γ-PGA. Insight into the mechanisms of enhanced production of γ-PGA by lichenysin would define the essential parameters involved in γ-PGA biosynthesis and provide the basis for large-scale production of γ-PGA.
Collapse
|
37
|
Massaiu I, Pasotti L, Sonnenschein N, Rama E, Cavaletti M, Magni P, Calvio C, Herrgård MJ. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains. Microb Cell Fact 2019; 18:3. [PMID: 30626384 PMCID: PMC6325765 DOI: 10.1186/s12934-018-1052-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022] Open
Abstract
Background Genome-scale metabolic models (GEMs) allow predicting metabolic phenotypes from limited data on uptake and secretion fluxes by defining the space of all the feasible solutions and excluding physio-chemically and biologically unfeasible behaviors. The integration of additional biological information in genome-scale models, e.g., transcriptomic or proteomic profiles, has the potential to improve phenotype prediction accuracy. This is particularly important for metabolic engineering applications where more accurate model predictions can translate to more reliable model-based strain design. Results Here we present a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO) model of Bacillus subtilis, which uses publicly available proteomic data and enzyme kinetic parameters for central carbon (CC) metabolic reactions to constrain the flux solution space. This model allows more accurate prediction of the flux distribution and growth rate of wild-type and single-gene/operon deletion strains compared to a standard genome-scale metabolic model. The flux prediction error decreased by 43% and 36% for wild-type and mutants respectively. The model additionally increased the number of correctly predicted essential genes in CC pathways by 2.5-fold and significantly decreased flux variability in more than 80% of the reactions with variable flux. Finally, the model was used to find new gene deletion targets to optimize the flux toward the biosynthesis of poly-γ-glutamic acid (γ-PGA) polymer in engineered B. subtilis. We implemented the single-reaction deletion targets identified by the model experimentally and showed that the new strains have a twofold higher γ-PGA concentration and production rate compared to the ancestral strain. Conclusions This work confirms that integration of enzyme constraints is a powerful tool to improve existing genome-scale models, and demonstrates the successful use of enzyme-constrained models in B. subtilis metabolic engineering. We expect that the new model can be used to guide future metabolic engineering efforts in the important industrial production host B. subtilis.
Collapse
Affiliation(s)
- Ilaria Massaiu
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Dep. Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy.,Centre for Health Technologies, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - Lorenzo Pasotti
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Dep. Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy.,Centre for Health Technologies, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Erlinda Rama
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Matteo Cavaletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Paolo Magni
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Dep. Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy.,Centre for Health Technologies, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
38
|
Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab Eng 2018; 50:109-121. [DOI: 10.1016/j.ymben.2018.05.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023]
|
39
|
Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 2018; 115:2541-2553. [PMID: 29940069 DOI: 10.1002/bit.26774] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important multifunctional biopolymer with various applications, for which adenosine triphosphate (ATP) supply plays a vital role in biosynthesis. In this study, the enhancement of γ-PGA production was attempted through various approaches of improving ATP supply in the engineered strains of Bacillus licheniformis. The first approach is to engineer respiration chain branches of B. licheniformis, elimination of cytochrome bd oxidase branch reduced the maintenance coefficient, leading to a 19.27% increase of γ-PGA yield. The second approach is to introduce Vitreoscilla hemoglobin (VHB) into recombinant B. licheniformis, led to a 13.32% increase of γ-PGA yield. In the third approach, the genes purB and adK in ATP-biosynthetic pathway were respectively overexpressed, with the AdK overexpressed strain increased γ-PGA yield by 14.69%. Our study also confirmed that the respiratory nitrate reductase, NarGHIJ, is responsible for the conversion of nitrate to nitrite, and assimilatory nitrate reductase NasBC is for conversion of nitrite to ammonia. Both NarGHIJ and NasBC were positively regulated by the two-component system ResD-ResE, and overexpression of NarG, NasC, and ResD also improved the ATP supply and the consequent γ-PGA yield. Based on the above individual methods, a method of combining the deletion of cydBC gene and overexpression of genes vgB, adK, and resD were used to enhance ATP content of the cells to 3.53 μmol/g of DCW, the mutant WX-BCVAR with this enhancement produced 43.81 g/L of γ-PGA, a 38.64% improvement compared to wild-type strain WX-02. Collectively, our results demonstrate that improving ATP content in B. licheniformis is an efficient strategy to improve γ-PGA production.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Penghui He
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyi Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Fei Mo
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, School of food and biological engineering, Hubei University of Technology, Wuhan, China
| | - Qin Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Christopher T Nomura
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry (SUNY ESF), Iowa State University, Syracuse, New York
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
40
|
Eymard-Vernain E, Coute Y, Adrait A, Rabilloud T, Sarret G, Lelong C. The poly-gamma-glutamate of Bacillus subtilis interacts specifically with silver nanoparticles. PLoS One 2018; 13:e0197501. [PMID: 29813090 PMCID: PMC5973573 DOI: 10.1371/journal.pone.0197501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/03/2018] [Indexed: 12/03/2022] Open
Abstract
For many years, silver nanoparticles, as with other antibacterial nanoparticles, have been extensively used in manufactured products. However, their fate in the environment is unclear and raises questions. We studied the fate of silver nanoparticles in the presence of bacteria under growth conditions that are similar to those found naturally in the environment (that is, bacteria in a stationary phase with low nutrient concentrations). We demonstrated that the viability and the metabolism of a gram-positive bacteria, Bacillus subtilis, exposed during the stationary phase is unaffected by 1 mg/L of silver nanoparticles. These results can be partly explained by a physical interaction of the poly-gamma-glutamate (PGA) secreted by Bacillus subtilis with the silver nanoparticles. The coating of the silver nanoparticles by the secreted PGA likely results in a loss of the bioavailability of nanoparticles and, consequently, a decrease of their biocidal effect.
Collapse
Affiliation(s)
- Elise Eymard-Vernain
- BIG, LCBM, ProMD, UMR CNRS-CEA-UGA, Grenoble, France
- ISTerre, CNRS-UGA, Grenoble, France
| | - Yohann Coute
- BIG, BGE, EDyP, INSERM-CEA-UGA, Grenoble, France
| | - Annie Adrait
- BIG, BGE, EDyP, INSERM-CEA-UGA, Grenoble, France
| | | | | | - Cécile Lelong
- BIG, LCBM, ProMD, UMR CNRS-CEA-UGA, Grenoble, France
- * E-mail:
| |
Collapse
|
41
|
Cao M, Feng J, Sirisansaneeyakul S, Song C, Chisti Y. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid. Biotechnol Adv 2018; 36:1424-1433. [PMID: 29852203 DOI: 10.1016/j.biotechadv.2018.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/27/2018] [Indexed: 12/15/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Chemical and Biological Engineering, NSF Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA 50011-1098, USA
| | - Jun Feng
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Sarote Sirisansaneeyakul
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| | - Cunjiang Song
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
42
|
Hsueh YH, Huang KY, Kunene SC, Lee TY. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation. Int J Mol Sci 2017; 18:E2644. [PMID: 29215550 PMCID: PMC5751247 DOI: 10.3390/ijms18122644] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/03/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.
Collapse
Affiliation(s)
- Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu city 300, Taiwan.
| | - Sikhumbuzo Charles Kunene
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| |
Collapse
|
43
|
Poly-γ-glutamic acid productivity of Bacillus subtilis BsE1 has positive function in motility and biocontrol against Fusarium graminearum. J Microbiol 2017; 55:554-560. [PMID: 28664519 DOI: 10.1007/s12275-017-6589-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
In this study, we investigate the relationship between γ-PGA productivity and biocontrol capacity of Bacillus subtilis BsE1; one bacterial isolate displayed 62.14% biocontrol efficacy against Fusarium root rot. The γ-PGA yield assay, motility assay, wheat root colonization assay, and biological control assay were analysed in different γ-PGA yield mutants of BsE1. The pgsB (PGA-synthase-CapB gene) deleted mutant of BsE1 reduced γ-PGA yield and exhibited apparent decline of in vitro motile ability. Deletion of pgsB impaired colonizing capacity of BsE1 on wheat root in 30 days, also lowered biocontrol efficacies from 62.08% (wild type BsE1) to 14.22% in greenhouse experiment against Fusarium root rot. The knockout of pgdS and ggt (genes relate to two γ-PGA degrading enzymes) on BsE1, leads to a considerable improvement in polymer yield and biocontrol efficacy, which attains higher level compared with wild type BsE1. Compared with ΔpgsB mutant, defense genes related to reactive oxygen species (ROS) and phytoalexin expressed changes by notable levels on wheat roots treated with BsE1, demonstrating the functional role γ-PGA plays in biocontrol against Fusarium root rot. γ-PGA is not only important to the motile and plant root colonization ability of BsE1, but also essential to the biological control performed by BsE1 against Fusarium root rot. Our goal in this study is to reveals a new perspective of BCAs screening on bacterial isolates, without good performance during pre-assays of antagonism ability.
Collapse
|
44
|
Bedrunka P, Graumann PL. Subcellular clustering of a putative c-di-GMP-dependent exopolysaccharide machinery affecting macro colony architecture in Bacillus subtilis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:211-222. [PMID: 27897378 DOI: 10.1111/1758-2229.12496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The structure of bacterial biofilms is predominantly established through the secretion of extracellular polymeric substances (EPS). They show that Bacillus subtilis contains an operon (ydaJ-N) whose induction leads to increased Congo Red staining of biofilms and strongly altered biofilm architecture, suggesting that it mediates the production of an unknown exopolysaccharide. Supporting this idea, overproduction of YdaJKLMN leads to cell clumping during exponential growth in liquid culture, and also causes colony morphology alterations in wild type cells, as well as in a mutant background lacking the major exopolysaccharide of B. subtilis. The first gene product of the operon, YdaJ, appears to modify the overproduction effects, but is not essential for cell clumping or altered colony morphology, while the presence of the c-di-GMP receptor YdaK is required, suggesting an involvement of second messenger c-di-GMP. YdaM, YdaN and YdaK colocalize to clusters predominantly at the cell poles and are statically positioned at this subcellular site, similar to other exopolysaccharide machinery components in other bacteria. Their analysis reveals that B. subtilis contains a static subcellular assembly of an EPS machinery that affects cell aggregation and biofilm formation.
Collapse
Affiliation(s)
- Patricia Bedrunka
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse, Marburg, 35043, Germany
| | - Peter L Graumann
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse, Marburg, 35043, Germany
| |
Collapse
|
45
|
A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02. Sci Rep 2017; 7:43404. [PMID: 28230096 PMCID: PMC5322528 DOI: 10.1038/srep43404] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/24/2017] [Indexed: 01/15/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important biochemical product with a variety of applications. This work reports a novel approach to improve γ-PGA through over expression of key enzymes in cofactor NADPH generating process for NADPH pool. Six genes encoding the key enzymes in NADPH generation were over-expressed in the γ-PGA producing strain B. licheniformis WX-02. Among various recombinants, the strain over-expressing zwf gene (coding for glucose-6-phosphate dehydrogenase), WX-zwf, produced the highest γ-PGA concentration (9.13 g/L), 35% improvement compared to the control strain WX-pHY300. However, the growth rates and glucose uptake rates of the mutant WX-zwf were decreased. The transcriptional levels of the genes pgsB and pgsC responsible for γ-PGA biosynthesis were increased by 8.21- and 5.26-fold, respectively. The Zwf activity of the zwf over expression strain increased by 9.28-fold, which led to the improvement of the NADPH generation, and decrease of accumulation of by-products acetoin and 2,3-butanediol. Collectively, these results demonstrated that NADPH generation via over-expression of Zwf is as an effective strategy to improve the γ-PGA production in B. licheniformis.
Collapse
|
46
|
Cai XC, Xi H, Liang L, Liu JD, Liu CH, Xue YR, Yu XY. Rifampicin-Resistance Mutations in the rpoB Gene in Bacillus velezensis CC09 have Pleiotropic Effects. Front Microbiol 2017; 8:178. [PMID: 28243227 PMCID: PMC5303731 DOI: 10.3389/fmicb.2017.00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Rifampicin resistance (Rifr) mutations in the RNA polymerase β subunit (rpoB) gene exhibit pleiotropic phenotypes as a result of their effects on the transcription machinery in prokaryotes. However, the differences in the effects of the mutations on the physiology and metabolism of the bacteria remain unknown. In this study, we isolated seven Rifr mutations in rpoB, including six single point mutations (H485Y, H485C, H485D, H485R, Q472R, and S490L) and one double point mutation (S490L/S617F) from vegetative cells of an endophytic strain, Bacillus velezensis CC09. Compared to the wild-type (WT) strain (CC09), the H485R and H485D mutants exhibited a higher degree of inhibition of Aspergillus niger spore germination, while the H485Y, S490L, Q472R, and S490L/S617F mutants exhibited a lower degree of inhibition due to their lower production of the antibiotic iturin A. These mutants all exhibited defective phenotypes in terms of pellicle formation, sporulation, and swarming motility. A hierarchical clustering analysis of the observed phenotypes indicated that the four mutations involving amino acid substitutions at H485 in RpoB belonged to the same cluster. In contrast, the S490L and Q472R mutations, as well as the WT strain, were in another cluster, indicating a functional connection between the mutations in B. velezensis and phenotypic changes. Our data suggest that Rifr mutations cannot only be used to study transcriptional regulation mechanisms, but can also serve as a tool to increase the production of bioactive metabolites in B. velezensis.
Collapse
Affiliation(s)
- Xun-Chao Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing, China
| | - Huan Xi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing, China
| | - Li Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing, China
| | - Jia-Dong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing, China
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing, China
| | - Ya-Rong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing, China
| | - Xiang-Yang Yu
- Institute of Food Safety and Inspection - Jiangsu Academy of Agricultural Sciences Nanjing, China
| |
Collapse
|
47
|
Liu T, Yamashita K, Fukumoto Y, Tachibana T, Azuma M. Flocculation of Real Sewage Sludge Using Poly-γ-glutamic Acid Produced by Bacillus sp. Isolated from Soil. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.16we158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Liu
- Department of Applied Chemistry and Bioengineering, Osaka City University
| | - Kyouhei Yamashita
- Department of Applied Chemistry and Bioengineering, Osaka City University
| | | | - Taro Tachibana
- Department of Applied Chemistry and Bioengineering, Osaka City University
| | - Masayuki Azuma
- Department of Applied Chemistry and Bioengineering, Osaka City University
| |
Collapse
|
48
|
Liu Y, Li J, Du G, Chen J, Liu L. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions. Biotechnol Adv 2017; 35:20-30. [DOI: 10.1016/j.biotechadv.2016.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
|
49
|
Mitsunaga H, Meissner L, Büchs J, Fukusaki E. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation. J Biosci Bioeng 2016; 122:400-5. [DOI: 10.1016/j.jbiosc.2016.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/21/2022]
|
50
|
Puppi D, Migone C, Morelli A, Bartoli C, Gazzarri M, Pasini D, Chiellini F. Microstructured chitosan/poly(γ-glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516631355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of additive manufacturing principles to hydrogel processing represents a powerful route to develop porous three-dimensional constructs with a variety of potential biomedical applications, such as scaffolds for tissue engineering and three-dimensional in vitro tissue models. The aim of this study was to develop novel porous hydrogels based on a microstructured polyelectrolyte complex between chitosan and poly(γ-glutamic acid) by applying a computer-aided wet-spinning technique. The developed fabrication process was used to build up three-dimensional porous hydrogels by collecting microstructured layers made of chitosan/poly(γ-glutamic acid) on top of the other. Microstructured polyelectrolyte complex hydrogels were characterized and compared to chitosan/poly(γ-glutamic acid) porous hydrogels with similar composition prepared by conventional freeze-drying technique. Fourier transform infrared analysis confirmed the formation of an electrostatic interaction between the two processed polymers in all the developed chitosan/poly(γ-glutamic acid) hydrogels. The composition of the porous constructs as well as the employed processing techniques had a significant influence on the resulting swelling, thermal, and mechanical properties. In particular, the combination of the ionic interaction between chitosan/poly(γ-glutamic acid) and the defined internal microarchitecture of microstructured polyelectrolyte complex hydrogels provided a significant improvement of the compressive mechanical properties. Preliminary in vitro biological investigations revealed that microstructured polyelectrolyte complex hydrogels were suitable for the adhesion and proliferation of Balb/3T3 clone A31 mouse embryo fibroblasts. The encouraging results in terms of cytocompatibility and stability of the microstructure in aqueous solutions due to the ionic crosslinking suggest the investigation of the developed microstructured polyelectrolyte complex hydrogels as suitable scaffolds for three-dimensional cells’ culture.
Collapse
Affiliation(s)
- Dario Puppi
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Chiara Migone
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Andrea Morelli
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Cristina Bartoli
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Matteo Gazzarri
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| | - Federica Chiellini
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|