1
|
Zhu K, Liu J, Zhao M, Fu L, Du Z, Meng F, Gu L, Liu P, Liu Y, Zhang C, Zhang X, Li J. An intrusion and environmental effects of man-made silver nanoparticles in cold seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168890. [PMID: 38016565 DOI: 10.1016/j.scitotenv.2023.168890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most widely used metal-based engineered nanomaterials in biomedicine and nanotechnology, and account for >50 % of global nanomaterial consumer products. The increasing use of AgNPs potentially causes marine ecosystem changes; however, the environmental impacts of man-made AgNPs are still poorly studied. This study reports for the first time that man-made AgNPs intruded into cold seeps, which are important marine ecosystems where hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Using a combination of electron microscopy, geochemical and metagenomic analyses, we found that in the cold seeps with high AgNPs concentrations, the relative abundance of genes associated with anaerobic oxidation of methane (AOM) was lower, while those related to the sulfide oxidizing and sulfate reducing were higher. This suggests that AgNPs can stimulate the proliferation of sulfate-reducing and sulfide-oxidizing bacteria, likely due to the effects of activating repair mechanisms of the cells against the toxicant. A reaction of AgNPs with hydrogen sulfide to form silver sulfide could also effectively reduce the amount of available sulfate in local ecosystems, which is generally used as the AOM oxidant. These novel findings indicate that man-made AgNPs may be involved in the biogeochemical cycles of sulfur and carbon in nature, and their potential effects on the releasing of methane from the marine methane seeps should not be ignored in both scientific and environmental aspects.
Collapse
Affiliation(s)
- Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lulu Fu
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zengfeng Du
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Kanao T. Tetrathionate hydrolase from the acidophilic microorganisms. Front Microbiol 2024; 15:1338669. [PMID: 38348185 PMCID: PMC10859504 DOI: 10.3389/fmicb.2024.1338669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Tetrathionate hydrolase (TTH) is a unique enzyme found in acidophilic sulfur-oxidizing microorganisms, such as bacteria and archaea. This enzyme catalyzes the hydrolysis of tetrathionate to thiosulfate, elemental sulfur, and sulfate. It is also involved in dissimilatory sulfur oxidation metabolism, the S4-intermediate pathway. TTHs have been purified and characterized from acidophilic autotrophic sulfur-oxidizing microorganisms. All purified TTHs show an optimum pH in the acidic range, suggesting that they are localized in the periplasmic space or outer membrane. In particular, the gene encoding TTH from Acidithiobacillus ferrooxidans (Af-tth) was identified and recombinantly expressed in Escherichia coli cells. TTH activity could be recovered from the recombinant inclusion bodies by acid refolding treatment for crystallization. The mechanism of tetrathionate hydrolysis was then elucidated by X-ray crystal structure analysis. Af-tth is highly expressed in tetrathionate-grown cells but not in iron-grown cells. These unique structural properties, reaction mechanisms, gene expression, and regulatory mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- Department of Agricultural and Biological Chemistry, Graduate School of Environment, Life, Natural Science, and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Khezerloo S, Nasirpour N, Pourhossein F, Mousavi SM. Bioleaching of indium from spent light-emitting diode monitors and selective recovery followed by solvent extraction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117520. [PMID: 36827804 DOI: 10.1016/j.jenvman.2023.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The spent light emitting diode (LED) monitors are one of the fastest-growing waste streams that could provide indium, an essential element for the industry. This study presents a comprehensive strategy for indium extraction from spent LED monitors, including bioleaching followed by solvent extraction, stripping, and precipitation. Effects of A. thiooxidans and A. ferrooxidans inoculum percentage in mixed culture, pulp density, and time on indium, aluminum, and strontium bioleaching were investigated. In this regard, at optimized inoculum percentages (1.5 and 0.5% (v/v) of A. ferrooxidans and A. thiooxidans, respectively) and pulp density (60 g/L) at initial pH of 2, approximately 100% indium recovery was obtained in 18 days. The solubilized indium in the bioleaching solution has been extracted by the organic solvent of 20% (v/v) D2EHPA in kerosene. Following extraction, the stripping step was carried out to recover indium rather than iron selectively. The effect of two-phase contact time and aqueous to organic phase volume ratio in the extraction step and the acid type and concentration in the stripping step on indium and iron recovery percentages have been evaluated. For indium extraction, the optimum ratio of aqueous to organic phase volume and time were determined as 1 and 30 min, respectively, recovering 91.5% of indium. Using 5 M sulfuric acid has also resulted in an efficient stripping process. Finally, sodium hydroxide performed indium precipitation and a final precipitate of 94% (w/w) indium was obtained.
Collapse
Affiliation(s)
- Samaneh Khezerloo
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Niloofar Nasirpour
- Chemical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Pourhossein
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Pourhossein F, Mousavi SM. Improvement of gold bioleaching extraction from waste telecommunication printed circuit boards using biogenic thiosulfate by Acidithiobacillus thiooxidans. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131073. [PMID: 36867908 DOI: 10.1016/j.jhazmat.2023.131073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Cyanide usage in gold processing techniques has become increasingly challenging due to its toxicity and environmental impact. It is possible to develop environmentally friendly technology using thiosulfate because of its nontoxic characteristics. Thiosulfate production requires high temperatures, resulting in high greenhouse gas emissions and energy consumption. The biogenesized thiosulfate is an unstable intermediate product of Acidithiobacillus thiooxidans sulfur oxidation pathway to sulfate. A novel eco-friendly method was presented in this study to treat spent printed circuit boards (STPCBs) using biogenesized thiosulfate (Bio-Thio) obtained from Acidithiobacillus thiooxidans cultured medium. To obtain a preferable concentration of thiosulfate among other metabolites by limiting thiosulfate oxidation, optimal concentrations of inhibitor (NaN3: 3.25 mg/L) and pH adjustments (pH= 6-7) were found to be effective. Selection of the optimal conditions has led to the highest bio-production of thiosulfate (500 mg/L). The impact of STPCBs content, ammonia, ethylenediaminetetraacetic acid (EDTA), and leaching time on Cu bio-dissolution and gold bio-extraction were investigated using enriched-thiosulfate spent medium. The suitable conditions were a pulp density of 5 g/L, an ammonia concentration of 1 M, and a leaching time of 36 h, which led to the highest selective extraction of gold (65 ± 0.78%).
Collapse
Affiliation(s)
- Fatemeh Pourhossein
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Vyas Y, Gupta S, Punjabi PB, Ameta C. Biogenesis of Quantum Dots: An Update. ChemistrySelect 2022. [DOI: 10.1002/slct.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yogeshwari Vyas
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Sharoni Gupta
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
- Department of Chemistry Aishwarya Post Graduate College affiliated to Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Pinki B. Punjabi
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Chetna Ameta
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| |
Collapse
|
6
|
Pang Y, Wang J. Inhibition of ferrous iron (Fe 2+) to sulfur-driven autotrophic denitrification: Insight into microbial community and functional genes. BIORESOURCE TECHNOLOGY 2021; 342:125960. [PMID: 34560437 DOI: 10.1016/j.biortech.2021.125960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The effect of Fe2+ on the performance of sulfur-driven autotrophic denitrification (SDAD) using S0 as electron donor was evaluated. The experimental results showed that as initial Fe2+ concentration increased, nitrate (NO3-) removal rate significantly decreased. Fe2+ ion (0.1 mM and 1 Mm) inhibited SDAD rate (approximately 10% and 50%) and resulted in an accumulation of nitrite (NO2-) and nitrous oxide (N2O). The relative abundance of Thiobacillus was positively correlated with NO3- removal rate, whereas negatively correlated with Fe2+ concentration, suggesting that Fe2+ inhibited the sulfur-oxidizing denitrifying bacteria. Moreover, the abundance of bacterial 16S rRNA, denitrifying genes (narG, nirS, nirK and nosZ) and sulfur-oxidizing genes (soxB and dsrA) decreased with the increase of Fe2+ concentration, among them nosZ and soxB were the most sensitive genes to Fe2+, and nosZ/narG, soxB/(bacterial 16S rRNA) and soxB/nirK had influence on NO3- removal rate, while nosZ/(bacterial 16S rRNA) affected N2O accumulation rate.
Collapse
Affiliation(s)
- Yunmeng Pang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
7
|
Wu B, Liu F, Fang W, Yang T, Chen GH, He Z, Wang S. Microbial sulfur metabolism and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146085. [PMID: 33714092 DOI: 10.1016/j.scitotenv.2021.146085] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Sulfur as a macroelement plays an important role in biochemistry in both natural environments and engineering biosystems, which can be further linked to other important element cycles, e.g. carbon, nitrogen and iron. Consequently, the sulfur cycling primarily mediated by sulfur compounds oxidizing microorganisms and sulfur compounds reducing microorganisms has enormous environmental implications, particularly in wastewater treatment and pollution bioremediation. In this review, to connect the knowledge in microbial sulfur metabolism to environmental applications, we first comprehensively review recent advances in understanding microbial sulfur metabolisms at molecular-, cellular- and ecosystem-levels, together with their energetics. We then discuss the environmental implications to fight against soil and water pollution, with four foci: (1) acid mine drainage, (2) water blackening and odorization in urban rivers, (3) SANI® and DS-EBPR processes for sewage treatment, and (4) bioremediation of persistent organic pollutants. In addition, major challenges and further developments toward elucidation of microbial sulfur metabolisms and their environmental applications are identified and discussed.
Collapse
Affiliation(s)
- Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Willard DJ, Kelly RM. Intersection of Biotic and Abiotic Sulfur Chemistry Supporting Extreme Microbial Life in Hot Acid. J Phys Chem B 2021; 125:5243-5257. [PMID: 33979170 PMCID: PMC10562994 DOI: 10.1021/acs.jpcb.1c02102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial life on Earth exists within wide ranges of temperature, pressure, pH, salinity, radiation, and water activity. Extreme thermoacidophiles, in particular, are microbes found in hot, acidic biotopes laden with heavy metals and reduced inorganic sulfur species. As chemolithoautotrophs, they thrive in the absence of organic carbon, instead using sulfur and metal oxidation to fuel their bioenergetic needs, while incorporating CO2 as a carbon source. Metal oxidation by these microbes takes place extracellularly, mediated by membrane-associated oxidase complexes. In contrast, sulfur oxidation involves extracellular, membrane-associated, and cytoplasmic biotransformations, which intersect with abiotic sulfur chemistry. This novel lifestyle has been examined in the context of early aerobic life on this planet, but it is also interesting when considering the prospects of life, now or previously, on other solar bodies. Here, extreme thermoacidophily (growth at pH below 4.0, temperature above 55 °C), a characteristic of species in the archaeal order Sulfolobales, is considered from the perspective of sulfur chemistry, both biotic and abiotic, as it relates to microbial bioenergetics. Current understanding of the mechanisms involved are reviewed which are further expanded through recent experimental results focused on imparting sulfur oxidation capacity on a natively nonsulfur oxidizing extremely thermoacidophilic archaeon, Sulfolobus acidocaldarius, through metabolic engineering.
Collapse
Affiliation(s)
- Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
9
|
Camacho D, Frazao R, Fouillen A, Nanci A, Lang BF, Apte SC, Baron C, Warren LA. New Insights Into Acidithiobacillus thiooxidans Sulfur Metabolism Through Coupled Gene Expression, Solution Chemistry, Microscopy, and Spectroscopy Analyses. Front Microbiol 2020; 11:411. [PMID: 32231653 PMCID: PMC7082400 DOI: 10.3389/fmicb.2020.00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/27/2020] [Indexed: 01/23/2023] Open
Abstract
Here, we experimentally expand understanding of the reactions and enzymes involved in Acidithiobacillus thiooxidans ATCC 19377 S0 andS 2 O 3 2 - metabolism by developing models that integrate gene expression analyzed by RNA-Seq, solution sulfur speciation, electron microscopy and spectroscopy. The A. thiooxidansS 2 O 3 2 - metabolism model involves the conversion ofS 2 O 3 2 - to SO 4 2 - , S0 andS 4 O 6 2 - , mediated by the sulfur oxidase complex (Sox), tetrathionate hydrolase (TetH), sulfide quinone reductase (Sqr), and heterodisulfate reductase (Hdr) proteins. These same proteins, with the addition of rhodanese (Rhd), were identified to convert S0 to SO 3 2 - ,S 2 O 3 2 - and polythionates in the A. thiooxidans S0 metabolism model. Our combined results shed light onto the important role specifically of TetH inS 2 O 3 2 - metabolism. Also, we show that activity of Hdr proteins rather than Sdo are likely associated with S0 oxidation. Finally, our data suggest that formation of intracellularS 2 O 3 2 - is a critical step in S0 metabolism, and that recycling of internally generated SO 3 2 - occurs, through comproportionating reactions that result inS 2 O 3 2 - . Electron microscopy and spectroscopy confirmed intracellular production and storage of S0 during growth on both S0 andS 2 O 3 2 - substrates.
Collapse
Affiliation(s)
- David Camacho
- School of Geography and Earth Science, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Rodolfo Frazao
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Aurélien Fouillen
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Antonio Nanci
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - B. Franz Lang
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Simon C. Apte
- CSIRO, Land and Water, Lucas Heights, NSW, Australia
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Lesley A. Warren
- School of Geography and Earth Science, Faculty of Science, McMaster University, Hamilton, ON, Canada
- Department of Civil and Mineral Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Cortés MP, Acuña V, Travisany D, Siegel A, Maass A, Latorre M. Integration of Biological Networks for Acidithiobacillus thiooxidans Describes a Modular Gene Regulatory Organization of Bioleaching Pathways. Front Mol Biosci 2020; 6:155. [PMID: 31998751 PMCID: PMC6966769 DOI: 10.3389/fmolb.2019.00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
Acidithiobacillus thiooxidans is one of the most studied biomining species, highlighting its ability to oxidize reduced inorganic sulfur compounds, coupled with its elevated capacity to live under an elevated concentration of heavy metals. In this work, using an in silico semi-automatic genome scale approach, two biological networks for A. thiooxidans Licanantay were generated: (i) An affinity transcriptional regulatory network composed of 42 regulatory family genes and 1,501 operons (57% genome coverage) linked through 2,646 putative DNA binding sites (arcs), (ii) A metabolic network reconstruction made of 523 genes and 1,203 reactions (22 pathways related to biomining processes). Through the identification of confident connections between both networks (V-shapes), it was possible to identify a sub-network of transcriptional factor (34 regulators) regulating genes (61 operons) encoding for proteins involved in biomining-related pathways. Network analysis suggested that transcriptional regulation of biomining genes is organized into different modules. The topological parameters showed a high hierarchical organization by levels inside this network (14 layers), highlighting transcription factors CysB, LysR, and IHF as complex modules with high degree and number of controlled pathways. In addition, it was possible to identify transcription factor modules named primary regulators (not controlled by other regulators in the sub-network). Inside this group, CysB was the main module involved in gene regulation of several bioleaching processes. In particular, metabolic processes related to energy metabolism (such as sulfur metabolism) showed a complex integrated regulation, where different primary regulators controlled several genes. In contrast, pathways involved in iron homeostasis and oxidative stress damage are mainly regulated by unique primary regulators, conferring Licanantay an efficient, and specific metal resistance response. This work shows new evidence in terms of transcriptional regulation at a systems level and broadens the study of bioleaching in A. thiooxidans species.
Collapse
Affiliation(s)
- María Paz Cortés
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Vicente Acuña
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile
| | - Dante Travisany
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Anne Siegel
- IRISA, UMR 6074, CNRS, Rennes, France.,INRIA, Dyliss Team, Centre Rennes-Bretagne-Atlantique, Rennes, France
| | - Alejandro Maass
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile.,Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile.,Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
11
|
Yang L, Zhao D, Yang J, Wang W, Chen P, Zhang S, Yan L. Acidithiobacillus thiooxidans and its potential application. Appl Microbiol Biotechnol 2019; 103:7819-7833. [PMID: 31463545 DOI: 10.1007/s00253-019-10098-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 11/26/2022]
Abstract
Acidithiobacillus thiooxidans (A. thiooxidans) is a widespread, mesophilic, obligately aerobic, extremely acidophilic, rod-shaped, and chemolithoautotrophic gram-negative gammaproteobacterium. It can obtain energy and electrons from the oxidation of reducible sulfur, and it can fix carbon dioxide and assimilate nitrate, nitrite, and ammonium to satisfy carbon and nitrogen requirement. This bacterium exists as different genomovars and its genome size range from 3.02 to 3.97 Mb. Here, we highlight the recent advances in the understanding of the general biological features of A. thiooxidans, as well as the genetic diversity and the sulfur oxidation pathway system. Additionally, the potential applications of A. thiooxidans were summarized including the recycling of metals from metal-bearing ores, electric wastes, and sludge, the improvement of alkali-salinity soils, and the removal of sulfur from sulfur-containing solids and gases.
Collapse
Affiliation(s)
- Lei Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Jian Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
12
|
Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL, Gao XY, Lin CM, Li YQ, Li Y, Lin JQ, Chen LX. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp. Front Microbiol 2019; 9:3290. [PMID: 30687275 PMCID: PMC6335251 DOI: 10.3389/fmicb.2018.03290] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Sulfur oxidation is an essential component of the earth's sulfur cycle. Acidithiobacillus spp. can oxidize various reduced inorganic sulfur compounds (RISCs) with high efficiency to obtain electrons for their autotrophic growth. Strains in this genus have been widely applied in bioleaching and biological desulfurization. Diverse sulfur-metabolic pathways and corresponding regulatory systems have been discovered in these acidophilic sulfur-oxidizing bacteria. The sulfur-metabolic enzymes in Acidithiobacillus spp. can be categorized as elemental sulfur oxidation enzymes (sulfur dioxygenase, sulfur oxygenase reductase, and Hdr-like complex), enzymes in thiosulfate oxidation pathways (tetrathionate intermediate thiosulfate oxidation (S4I) pathway, the sulfur oxidizing enzyme (Sox) system and thiosulfate dehydrogenase), sulfide oxidation enzymes (sulfide:quinone oxidoreductase) and sulfite oxidation pathways/enzymes. The two-component systems (TCSs) are the typical regulation elements for periplasmic thiosulfate metabolism in these autotrophic sulfur-oxidizing bacteria. Examples are RsrS/RsrR responsible for S4I pathway regulation and TspS/TspR for Sox system regulation. The proposal of sulfur metabolic and regulatory models provide new insights and overall understanding of the sulfur-metabolic processes in Acidithiobacillus spp. The future research directions and existing barriers in the bacterial sulfur metabolism are also emphasized here and the breakthroughs in these areas will accelerate the research on the sulfur oxidation in Acidithiobacillus spp. and other sulfur oxidizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Fan W, Peng Y, Meng Y, Zhang W, Zhu N, Wang J, Guo C, Li J, Du H, Dang Z. Transcriptomic Analysis Reveals Reduced Inorganic Sulfur Compound Oxidation Mechanism in Acidithiobacillus ferriphilus. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Zhang X, Liu Z, Wei G, Yang F, Liu X. In Silico Genome-Wide Analysis Reveals the Potential Links Between Core Genome of Acidithiobacillus thiooxidans and Its Autotrophic Lifestyle. Front Microbiol 2018; 9:1255. [PMID: 29937764 PMCID: PMC6002666 DOI: 10.3389/fmicb.2018.01255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/24/2018] [Indexed: 12/27/2022] Open
Abstract
The coinage “pan-genome” was first introduced dating back to 2005, and was used to elaborate the entire gene repertoire of any given species. Core genome consists of genes shared by all bacterial strains studied and is considered to encode essential functions associated with species’ basic biology and phenotypes, yet its relatedness with bacterial lifestyle of the species remains elusive. We performed the pan-genome analysis of sulfur-oxidizing acidophile Acidithiobacillus thiooxidans as a case study to highlight species’ core genome and its relevance with autotrophic lifestyle of bacterial species. The mathematical modeling based on bacterial genomes of A. thiooxidans species, including a novel strain ZBY isolated from Zambian copper mine plus eight other recognized strains, was attempted to extrapolate the expansion of its pan-genome, suggesting that A. thiooxidans pan-genome is closed. Further investigation revealed a common set of genes, many of which were assigned to metabolic profiles, notably with respect to energy metabolism, amino acid metabolism, and carbohydrate metabolism. The predicted metabolic profiles of A. thiooxidans were characterized by the fixation of inorganic carbon, assimilation of nitrogen compounds, and aerobic oxidation of various sulfur species. Notably, several hydrogenase (H2ase)-like genes dispersed in core genome might represent the novel classes due to the potential functional disparities, despite being closely related homologous genes that code for H2ase. Overall, the findings shed light on the distinguishing features of A. thiooxidans genomes on a global scale, and extend the understanding of its conserved core genome pertaining to autotrophic lifestyle.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guanyun Wei
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
15
|
Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes (Basel) 2018; 9:E116. [PMID: 29466321 PMCID: PMC5852612 DOI: 10.3390/genes9020116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Biomining with acidophilic microorganisms has been used at commercial scale for the extraction of metals from various sulfide ores. With metal demand and energy prices on the rise and the concurrent decline in quality and availability of mineral resources, there is an increasing interest in applying biomining technology, in particular for leaching metals from low grade minerals and wastes. However, bioprocessing is often hampered by the presence of inhibitory compounds that originate from complex ores. Synthetic biology could provide tools to improve the tolerance of biomining microbes to various stress factors that are present in biomining environments, which would ultimately increase bioleaching efficiency. This paper reviews the state-of-the-art tools to genetically modify acidophilic biomining microorganisms and the limitations of these tools. The first part of this review discusses resilience pathways that can be engineered in acidophiles to enhance their robustness and tolerance in harsh environments that prevail in bioleaching. The second part of the paper reviews the efforts that have been carried out towards engineering robust microorganisms and developing metabolic modelling tools. Novel synthetic biology tools have the potential to transform the biomining industry and facilitate the extraction of value from ores and wastes that cannot be processed with existing biomining microorganisms.
Collapse
Affiliation(s)
- Yosephine Gumulya
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Naomi J Boxall
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Himel N Khaleque
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Ville Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology (TUT), Tampere, 33101, Finland.
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University (MSU), Bozeman, MT 59717, USA.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
16
|
Razmilic V, Castro JF, Marchant F, Asenjo JA, Andrews B. Metabolic modelling and flux analysis of microorganisms from the Atacama Desert used in biotechnological processes. Antonie van Leeuwenhoek 2018; 111:1479-1491. [DOI: 10.1007/s10482-018-1031-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 01/16/2023]
|
17
|
Balci N, Brunner B, Turchyn AV. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage. Front Microbiol 2017; 8:1564. [PMID: 28861071 PMCID: PMC5562728 DOI: 10.3389/fmicb.2017.01564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62-) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4-S4O6) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4-S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2). During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between -1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4-S0 of -0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4-H2O) of -4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4), acid production, and mixed valence state sulfur species generated by the oxidation of the two different substrates suggests a metabolic flexibility in response to sulfur substrate availability. Our results demonstrate that microbial processing of mixed-valence-state sulfur species generates a significant sulfur isotope fractionation in acidic environments and oxidation of mixed-valence state sulfur species may produce sulfate with characteristic sulfur and oxygen isotope signatures. Elemental sulfur and tetrathionate are not only intermediate-valence state sulfur compounds that play a central role in sulfur oxidation pathways, but also key factors in shaping these isotope patterns.
Collapse
Affiliation(s)
- Nurgul Balci
- Geomicrobiolog-Biogeochemistry Lab, Department of Geological Engineering, Istanbul Technical UniversityIstanbul, Turkey
| | - Benjamin Brunner
- Department of Biogeochemistry, Max Planck Institute for Marine MicrobiologyBremen, Germany
- Department of Geological Sciences, University of Texas at El PasoEl Paso, TX, United States
| | | |
Collapse
|
18
|
Tu X, Guo J, Yang Y, Feng R, Sun G, Li J. Biofilms formed within the acidic and the neutral biotrickling filters for treating H2S-containing waste gases. RSC Adv 2017. [DOI: 10.1039/c7ra04053a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial cell in the innermost biofilm have higher viability, and produce polysaccharide as the main component of EPS in acidic environment.
Collapse
Affiliation(s)
- Xiang Tu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- PR China
- Guangdong Institute of Microbiology
| | - Jun Guo
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- PR China
- Guangdong Institute of Microbiology
| | - Yonggang Yang
- Guangdong Institute of Microbiology
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangzhou
- PR China
| | - Rongfang Feng
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- PR China
- Guangdong Institute of Microbiology
| | - Guoping Sun
- Guangdong Institute of Microbiology
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangzhou
- PR China
| | - Jianjun Li
- Guangdong Institute of Microbiology
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangzhou
- PR China
| |
Collapse
|
19
|
Latorre M, Cortés MP, Travisany D, Di Genova A, Budinich M, Reyes-Jara A, Hödar C, González M, Parada P, Bobadilla-Fazzini RA, Cambiazo V, Maass A. The bioleaching potential of a bacterial consortium. BIORESOURCE TECHNOLOGY 2016; 218:659-666. [PMID: 27416516 DOI: 10.1016/j.biortech.2016.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores.
Collapse
Affiliation(s)
- Mauricio Latorre
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Alex Di Genova
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Marko Budinich
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Christian Hödar
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Mauricio González
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Pilar Parada
- BioSigma S.A., Loteo Los Libertadores, Lote 106, Colina, Chile
| | | | - Verónica Cambiazo
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Department of Mathematical Engineering, Universidad de Chile, Beauchef 851, 5th Floor, Santiago, Chile.
| |
Collapse
|
20
|
"Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH". Enzyme Microb Technol 2016; 95:217-224. [PMID: 27866618 DOI: 10.1016/j.enzmictec.2016.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 11/21/2022]
Abstract
The use of bacterial cells to produce fluorescent semiconductor nanoparticles (quantum dots, QDs) represents a green alternative with promising economic potential. In the present work, we report for the first time the biosynthesis of CdS QDs by acidophilic bacteria of the Acidithiobacillus genus. CdS QDs were obtained by exposing A. ferrooxidans, A. thiooxidans and A. caldus cells to sublethal Cd2+ concentrations in the presence of cysteine and glutathione. The fluorescence of cadmium-exposed cells moves from green to red with incubation time, a characteristic property of QDs associated with nanocrystals growth. Biosynthesized nanoparticles (NPs) display an absorption peak at 360nm and a broad emission spectra between 450 and 650nm when excited at 370nm, both characteristic of CdS QDs. Average sizes of 6 and 10nm were determined for green and red NPs, respectively. The importance of cysteine and glutathione on QDs biosynthesis in Acidithiobacillus was related with the generation of H2S. Interestingly, QDs produced by acidophilic bacteria display high tolerance to acidic pH. Absorbance and fluorescence properties of QDs was not affected at pH 2.0, a condition that totally inhibits the fluorescence of QDs produced chemically or biosynthesized by mesophilic bacteria (stable until pH 4.5-5.0). Results presented here constitute the first report of the generation of QDs with improved properties by using extremophile microorganisms.
Collapse
|
21
|
Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation. Int J Mol Sci 2016; 17:ijms17081355. [PMID: 27548157 PMCID: PMC5000751 DOI: 10.3390/ijms17081355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022] Open
Abstract
Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans) species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer) in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains.
Collapse
|
22
|
Martinez P, Vera M, Bobadilla-Fazzini RA. Omics on bioleaching: current and future impacts. Appl Microbiol Biotechnol 2015; 99:8337-50. [PMID: 26278538 PMCID: PMC4768214 DOI: 10.1007/s00253-015-6903-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Bioleaching corresponds to the microbial-catalyzed process of conversion of insoluble metals into soluble forms. As an applied biotechnology globally used, it represents an extremely interesting field of research where omics techniques can be applied in terms of knowledge development, but moreover in terms of process design, control, and optimization. In this mini-review, the current state of genomics, proteomics, and metabolomics of bioleaching and the major impacts of these analytical methods at industrial scale are highlighted. In summary, genomics has been essential in the determination of the biodiversity of leaching processes and for development of conceptual and functional metabolic models. Proteomic impacts are mostly related to microbe-mineral interaction analysis, including copper resistance and biofilm formation. Early steps of metabolomics in the field of bioleaching have shown a significant potential for the use of metabolites as industrial biomarkers. Development directions are given in order to enhance the future impacts of the omics in biohydrometallurgy.
Collapse
Affiliation(s)
- Patricio Martinez
- BioSigma 'S.A.', Parque Industrial Los Libertadores, Lote 106, Colina, Chile
| | - Mario Vera
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Universitätstraße 5, 45141, Essen, Germany
| | | |
Collapse
|
23
|
Sharmin S, Yoshino E, Kanao T, Kamimura K. Characterization of a novel thiosulfate dehydrogenase from a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Biosci Biotechnol Biochem 2015; 80:273-8. [PMID: 26393925 DOI: 10.1080/09168451.2015.1088377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH, was isolated to develop a bioleaching process for NaCl-containing sulfide minerals. Because the sulfur moiety of sulfide minerals is metabolized to sulfate via thiosulfate as an intermediate, we purified and characterized the thiosulfate dehydrogenase (TSD) from strain SH. The enzyme had an apparent molecular mass of 44 kDa and was purified 71-fold from the solubilized membrane fraction. Tetrathionate was the product of the TSD-oxidized thiosulfate and ferricyanide or ubiquinone was the electron acceptor. Maximum enzyme activity was observed at pH 4.0, 40 °C, and 200 mM NaCl. To our knowledge, this is the first report of NaCl-stimulated TSD activity. TSD was structurally different from the previously reported thiosulfate-oxidizing enzymes. In addition, TSD activity was strongly inhibited by 2-heptyl-4-hydroxy-quinoline N-oxide, suggesting that the TSD is a novel thiosulfate:quinone reductase.
Collapse
Affiliation(s)
- Sultana Sharmin
- a Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| | - Eriko Yoshino
- a Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| | - Tadayoshi Kanao
- a Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| | - Kazuo Kamimura
- a Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| |
Collapse
|
24
|
Travisany D, Cortés MP, Latorre M, Di Genova A, Budinich M, Bobadilla-Fazzini RA, Parada P, González M, Maass A. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Res Microbiol 2014; 165:743-52. [PMID: 25148779 DOI: 10.1016/j.resmic.2014.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/25/2022]
Abstract
Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments.
Collapse
Affiliation(s)
- Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Mauricio Latorre
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alex Di Genova
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Marko Budinich
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | | | - Pilar Parada
- BioSigma S.A., Loteo Los Libertadores, Lote 106, Colina, Chile
| | - Mauricio González
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Department of Mathematical Engineering, Universidad de Chile, Beauchef 851, 5th Floor, Santiago, Chile.
| |
Collapse
|
25
|
Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, Hu Q, Xiao Y, Cong J, Ma L, Niu J, Liu X. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiol 2014; 14:179. [PMID: 24993543 PMCID: PMC4109375 DOI: 10.1186/1471-2180-14-179] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/19/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. RESULTS The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. CONCLUSION Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.
Collapse
Affiliation(s)
- Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xiaoqi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhili He
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xue Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Qi Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jing Cong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Liyuan Ma
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
26
|
Assar R, Montecino MA, Maass A, Sherman DJ. Modeling acclimatization by hybrid systems: condition changes alter biological system behavior models. Biosystems 2014; 121:43-53. [PMID: 24892552 DOI: 10.1016/j.biosystems.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 03/06/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
Abstract
In order to describe the dynamic behavior of a complex biological system, it is useful to combine models integrating processes at different levels and with temporal dependencies. Such combinations are necessary for modeling acclimatization, a phenomenon where changes in environmental conditions can induce drastic changes in the behavior of a biological system. In this article we formalize the use of hybrid systems as a tool to model this kind of biological behavior. A modeling scheme called strong switches is proposed. It allows one to take into account both minor adjustments to the coefficients of a continuous model, and, more interestingly, large-scale changes to the structure of the model. We illustrate the proposed methodology with two applications: acclimatization in wine fermentation kinetics, and acclimatization of osteo-adipo differentiation system linking stimulus signals to bone mass.
Collapse
Affiliation(s)
- Rodrigo Assar
- ICBM Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.
| | - Martín A Montecino
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile; FONDAP 15090007 Center for Genome Regulation, Santiago, Chile.
| | - Alejandro Maass
- Departamento de Ingeniería Matemática y Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile; FONDAP 15090007 Center for Genome Regulation, Santiago, Chile.
| | - David J Sherman
- INRIA Bordeaux Sud-Ouest, Project-team (EPC) MAGNOME common to INRIA, CNRS, and U. Bordeaux 1, Talence, France.
| |
Collapse
|
27
|
Pakostova E, Mandl M, Tuovinen OH. Cellular ATP and biomass of attached and planktonic sulfur-oxidizing Acidithiobacillus ferrooxidans. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Liu Y, Guo S, Yu R, Zou K, Qiu G. A new cytoplasmic monoheme cytochrome c from Acidithiobacillus ferrooxidans involved in sulfur oxidation. Curr Microbiol 2013; 68:285-92. [PMID: 24129838 DOI: 10.1007/s00284-013-0473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/31/2013] [Indexed: 11/24/2022]
Abstract
Acidithiobacillus ferrooxidans can obtain energy from the oxidation of various reduced inorganic sulfur compounds (RISCs, e.g., sulfur) and ferrous iron in bioleaching so has multiple branched respiratory pathways with a diverse range of electron transporters, especially cytochrome c proteins. A cytochrome c family gene, afe1130, which has never been reported before, was found by screening the whole genome of A. ferrooxidans. Here we report the differential gene transcription, bioinformatics analysis, and molecular modeling of the protein encoded by the afe1130 gene (AFE1130). The differential transcription of the target afe1130 gene versus the reference rrs gene in the A. ferrooxidans, respectively, on the culture conditions of sulfur and ferrous energy sources was performed through quantitative reverse transcription polymerase chain reaction (qRT-PCR) with a SYBR green-based assay according to the standard curves method. The qRT-PCR results showed that the afe1130 gene in sulfur culture condition was obviously more transcribed than that in ferrous culture condition. Bioinformatics analysis indicated that the AFE1130 was affiliated to the subclass ID of class I of cytochrome c and located in cytoplasm. Molecular modeling results exhibited that the AFE1130 protein consisted of 5 alpha-helices harboring one heme c group covalently bonded by Cys13 and Cys16 and ligated by His17 and Met62 and owned a big raised hydrophobic surface responsible for attaching to inner cytomembrane. So the AFE1130 in A. ferrooxidans plays a role in the RISCs oxidation in bioleaching in cytoplasm bound to inner membrane.
Collapse
Affiliation(s)
- Yuandong Liu
- Key Lab of Biometallurgy of the Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China,
| | | | | | | | | |
Collapse
|