1
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
3
|
Cardle II, Cheng EL, Jensen MC, Pun SH. Biomaterials in Chimeric Antigen Receptor T-Cell Process Development. Acc Chem Res 2020; 53:1724-1738. [PMID: 32786336 DOI: 10.1021/acs.accounts.0c00335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has transformed the cancer treatment landscape, utilizing ex vivo modified autologous T cells to treat relapsed or refractory B-cell leukemias and lymphomas. However, the therapy's broader impact has been limited, in part, by a complicated, lengthy, and expensive production process. Accordingly, as CAR T-cell therapies are further advanced to treat other cancers, continual innovation in cell manufacturing will be critical to their successful clinical implementation. In this Account, we describe our research efforts using biomaterials to improve the three fundamental steps in CAR T-cell manufacturing: (1) isolation, (2) activation, and (3) genetic modification.Recognizing that clinical T-cell isolation reagents have high cost and supply constraints, we developed a synthetic DNA aptamer and complementary reversal agent technology that isolates label-free CD8+ T cells with high purity and yield from peripheral blood mononuclear cells. Encouragingly, CAR T cells manufactured from both antibody- and aptamer-isolated T cells were comparable in therapeutic potency. Discovery and design of other T-cell specific aptamers and corresponding reversal reagents could fully realize the potential of this approach, enabling inexpensive isolation of multiple distinct T-cell populations in a single isolation step.Current ex vivo T-cell activation materials do not accurately mimic in situ T-cell activation by antigen presenting cells (APCs). They cause unequal CD4+ and CD8+ T-cell expansion, necessitating separate production of CD4+ and CD8+ CAR T cells for therapies that call for balanced infusion compositions. To address these shortcomings, we designed a panel of biodegradable cell-templated silica microparticles with supported lipid bilayers that display stimulatory ligands for T-cell activation. High membrane fluidity, elongated shape, and rough surface topography, all properties of endogenous APCs, were found to be favorable parameters for activation, promoting unbiased and efficient CD4/CD8 T-cell expansion while not terminally differentiating the cells.Viral and electroporation-based gene delivery systems have various drawbacks. Viral vectors are expensive and have limited cargo sizes, whereas electroporation is highly cytotoxic. Thus, low-cost nonviral platforms that transfect T cells with low cytotoxicity and high efficiency are needed for CAR gene delivery. Our group thus synthesized a panel of cationic polymers with different architectures and evaluated their T-cell transfection ability. We identified a comb-shaped polymer formulation that transfected primary T cells with low cytotoxicity, although transfection efficiency was low compared to conventional methods. Analysis of intracellular and extracellular barriers to transfection revealed low uptake of polyplexes and high endosomal pH in T cells, alluding to biological and polymer properties that could be further improved.These innovations represent just a few recent developments in the biomaterials field for addressing CAR T-cell production needs. Together, these technologies and their future advancement will pave the way for economical and straightforward CAR T-cell manufacturing.
Collapse
Affiliation(s)
- Ian I. Cardle
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
- Research and Development, Seattle Children’s Therapeutics, Seattle, Washington 98101, United States
| | - Emmeline L. Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Michael C. Jensen
- Research and Development, Seattle Children’s Therapeutics, Seattle, Washington 98101, United States
- Department of Pediatrics and Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
4
|
Liu GW, Johnson SL, Jain R, Peeler DJ, Shankland SJ, Pun SH. Optimized nonviral gene delivery for primary urinary renal progenitor cells to enhance cell migration. J Biomed Mater Res A 2019; 107:2718-2725. [PMID: 31404486 DOI: 10.1002/jbm.a.36775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Progressive loss of glomerular podocytes during kidney disease leads to irreversible kidney failure, and is exacerbated by the fact that podocytes are terminally differentiated epithelial cells and unable to proliferate. Regeneration of lost podocytes must therefore derive from nonpodocyte sources. Human urine-derived renal progenitor cells (uRPCs) are attractive podocyte progenitors for cell therapy applications due to their availability from patient urine and ability to migrate to injured glomeruli and differentiate into de novo podocytes after intravenous administration. Because gene delivery has emerged as an important strategy to augment the functionality and survival of cell therapies prior to injection, in this work we optimized nonviral gene delivery conditions (cell density, DNA dose, % FBS, and transfection material composition) to primary uRPCs. Using the cationic polymer-peptide conjugate VIPER for gene delivery and the Sleeping Beauty transposon/transposase constructs for gene integration, we optimized transfection parameters to achieve efficient transgene expression (up to 55% transfected cells) and stable transgene expression (>65% integration efficiency) lasting up to 10 days. With these methods, we transfected uRPCs to overexpress CXCR4, an important chemokine receptor that mediates uRPC migration to the kidneys after intravenous injection, and demonstrate that CXCR4-uRPCs exhibit enhanced migration compared to mock-transfected cells.
Collapse
Affiliation(s)
- Gary W Liu
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington
| | - Soren L Johnson
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington
| | - Ritika Jain
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington
| | - David J Peeler
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington
| | - Stuart J Shankland
- Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Seattle, Washington
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Kolacsek O, Orbán TI. Transcription activity of transposon sequence limits Sleeping Beauty transposition. Gene 2018; 676:184-188. [DOI: 10.1016/j.gene.2018.07.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
6
|
Zhuo SM, Li SC, Lin YQ, Yu HB, Li N. The effects of anti-Fas ribozyme on T lymphocyte apoptosis in mice model with chronic obstructive pulmonary disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1102-1108. [PMID: 29147485 PMCID: PMC5673694 DOI: 10.22038/ijbms.2017.9367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/10/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVES In this study, we aimed to investigate the effects of anti-Fas ribozyme on the apoptosis of T lymphocytes (T cells) in mice model with chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS Male 6-week-old C57BL/6 mice were used to establish the COPD model by exposure to cigarette smoke. The COPD mice were sacrificed for spleen dissection and T cell isolation. T cells were randomly divided into four groups (n=10 per group). Group A was used as the control. B, C, and D groups were transfected with empty lentivirus, anti-Fas ribozyme, and an anti-Fas ribozyme mutant, respectively. The expression of Fas mRNA and protein in the T cells were evaluated using qPCR and Western blot, respectively. Flow cytometry was used to evaluate the apoptosis of CD4+ T cells and calculate the ratio of CD4+ to CD8+ T cells (CD4+/CD8+). RESULTS Anti-Fas ribozyme significantly inhibited the expression of Fas in the T cells of COPD mice. In addition, the number of apoptotic CD4+ T cells and CD4+/CD8+ of the C and D groups were significantly lower and higher than those of group A, respectively (P<0.05). The apoptotic CD4+ T cells and CD4+ CD8+ of the C group were significantly lower and higher than those of group D, respectively (P<0.05). CONCLUSION Anti-Fas ribozyme significantly inhibited the expression of Fas, increased CD4+/CD8+, and inhibited the apoptosis of T cells in COPD mice.
Collapse
Affiliation(s)
- Song-Ming Zhuo
- Department of Respiratory Medicine, the Affiliated Shenzhen Longgang Center Hospital, Zunyi Medical University, Shenzhen City, Guangdong Province, China
| | - Si-Cong Li
- Zhuhai Campus of Zunyi Medical University, Zhuhai City, Guangdong Province, China
| | - Yong-Qun Lin
- Department of Respiratory Medicine, the Affiliated Shenzhen Longgang Center Hospital, Zunyi Medical University, Shenzhen City, Guangdong Province, China
| | - Hai-Bin Yu
- Department of Respiratory Medicine, the Affiliated Shenzhen Longgang Center Hospital, Zunyi Medical University, Shenzhen City, Guangdong Province, China
| | - Na Li
- Department of Respiratory Medicine, the Affiliated Shenzhen Longgang Center Hospital, Zunyi Medical University, Shenzhen City, Guangdong Province, China
| |
Collapse
|
7
|
Vargas JE, Chicaybam L, Stein RT, Tanuri A, Delgado-Cañedo A, Bonamino MH. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J Transl Med 2016; 14:288. [PMID: 27729044 PMCID: PMC5059932 DOI: 10.1186/s12967-016-1047-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
Gene therapy protocols require robust and long-term gene expression. For two decades, retrovirus family vectors have offered several attractive properties as stable gene-delivery vehicles. These vectors represent a technology with widespread use in basic biology and translational studies that require persistent gene expression for treatment of several monogenic diseases. Immunogenicity and insertional mutagenesis represent the main obstacles to a wider clinical use of these vectors. Efficient and safe non-viral vectors are emerging as a promising alternative and facilitate clinical gene therapy studies. Here, we present an updated review for beginners and expert readers on retro and lentiviruses and the latest generation of transposon vectors (sleeping beauty and piggyBac) used in stable gene transfer and gene therapy clinical trials. We discuss the potential advantages and disadvantages of these systems such as cellular responses (immunogenicity or genome modification of the target cell) following exogenous DNA integration. Additionally, we discuss potential implications of these genome modification tools in gene therapy and other basic and applied science contexts.
Collapse
Affiliation(s)
- José Eduardo Vargas
- Centro Infantil-Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, Brazil
| | - Leonardo Chicaybam
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37/6º andar, Centro, Rio de Janeiro, 20231-050, Brazil.,Vice-presidência de Pesquisa e Laboratórios de Referência, Fundação Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Renato Tetelbom Stein
- Centro Infantil-Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, Brazil
| | - Amilcar Tanuri
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Martin H Bonamino
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37/6º andar, Centro, Rio de Janeiro, 20231-050, Brazil. .,Vice-presidência de Pesquisa e Laboratórios de Referência, Fundação Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med 2016; 22:26-36. [PMID: 26735408 PMCID: PMC6295670 DOI: 10.1038/nm.4015] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/20/2015] [Indexed: 02/08/2023]
Abstract
Adoptive transfer of receptor-engineered T cells has produced impressive results in treating patients with B cell leukemias and lymphomas. This success has captured public imagination and driven academic and industrial researchers to develop similar 'off-the-shelf' receptors targeting shared antigens on epithelial cancers, the leading cause of cancer-related deaths. However, the successful treatment of large numbers of people with solid cancers using this strategy is unlikely to be straightforward. Receptor-engineered T cells have the potential to cause lethal toxicity from on-target recognition of normal tissues, and there is a paucity of truly tumor-specific antigens shared across tumor types. Here we offer our perspective on how expanding the use of genetically redirected T cells to treat the majority of patients with solid cancers will require major technical, manufacturing and regulatory innovations centered around the development of autologous gene therapies targeting private somatic mutations.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Rushworth D, Alpert A, Santana-Carrero R, Olivares S, Spencer D, Cooper LJN. Antithymidylate resistance enables transgene selection and cell survival for T cells in the presence of 5-fluorouracil and antifolates. Gene Ther 2015; 23:119-28. [PMID: 26273805 DOI: 10.1038/gt.2015.88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/11/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022]
Abstract
Antithymidylates (AThy) constitute a class of drugs used in the treatment of cancers such as lung, colon, breast and pancreas. These drugs inhibit DNA synthesis by targeting the enzymes dihydrofolate reductase (DHFR) and/or thymidylate synthase (TYMS). AThys effectively inhibit cancer cells, and also inhibit T cells, preventing anticancer immunity, which might otherwise develop from AThy-induced cancer destruction. We establish that T cells expressing mutant DHFR--DHFR L22F, F31S (DHFR(FS))--and/or mutant TYMS--TYMS T51S, G52S (TYMS(SS))-effectively survive in toxic concentrations of AThys methotrexate, pemetrexed and 5-fluorouracil. Furthermore, we show that DHFR(FS) permitted rapid selection of an inducible suicide transgene in T cells. These findings demonstrate that AThy resistances prevent AThy cytotoxicity to T cells while permitting selection of important transgenes. This technological development could enhance in vitro and in vivo survival and selection of T-cell therapeutics being designed for a broad range of cancers.
Collapse
Affiliation(s)
- D Rushworth
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Unit 907, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - A Alpert
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - R Santana-Carrero
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States Minor Outlying Islands
| | - S Olivares
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Unit 907, Houston, TX, USA
| | - D Spencer
- Bellicum Pharmaceuticals, Houston, TX, USA
| | - L J N Cooper
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Unit 907, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
10
|
Rushworth D, Mathews A, Alpert A, Cooper LJN. Dihydrofolate Reductase and Thymidylate Synthase Transgenes Resistant to Methotrexate Interact to Permit Novel Transgene Regulation. J Biol Chem 2015; 290:22970-6. [PMID: 26242737 DOI: 10.1074/jbc.c115.671123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 02/01/2023] Open
Abstract
Methotrexate (MTX) is an anti-folate that inhibits de novo purine and thymidine nucleotide synthesis. MTX induces death in rapidly replicating cells and is used in the treatment of multiple cancers. MTX inhibits thymidine synthesis by targeting dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS). The use of MTX to treat cancer also causes bone marrow suppression and inhibits the immune system. This has led to the development of an MTX-resistant DHFR, DHFR L22F, F31S (DHFR(FS)), to rescue healthy cells. 5-Fluorouracil-resistant TYMS T51S, G52S (TYMS(SS)) is resistant to MTX and improves MTX resistance of DHFR(FS) in primary T cells. Here we find that a known mechanism of MTX-induced increase in DHFR expression persists with DHFR(FS) and cis-expressed transgenes. We also find that TYMS(SS) expression of cis-expressed transgenes is similarly decreased in an MTX-inducible manner. MTX-inducible changes in DHFR(FS) and TYMS(SS) expression changes are lost when both genes are expressed together. In fact, expression of the DHFR(FS) and TYMS(SS) cis-expressed transgenes becomes correlated. These findings provide the basis for an unrecognized post-transcriptional mechanism that functionally links expression of DHFR and TYMS. These findings were made in genetically modified primary human T cells and have a clear potential for use in clinical applications where gene expression needs to be regulated by drug or maintained at a specific expression level. We demonstrate a potential application of this system in the controlled expression of systemically toxic cytokine IL-12.
Collapse
Affiliation(s)
- David Rushworth
- From the Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas 77030 and the The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Amber Mathews
- the The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Amir Alpert
- the The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Laurence J N Cooper
- From the Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas 77030 and the The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| |
Collapse
|