1
|
Lembo A, Molinaro A, De Castro C, Berti F, Biagini M. Impact of glycosylation on viral vaccines. Carbohydr Polym 2024; 342:122402. [PMID: 39048237 DOI: 10.1016/j.carbpol.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Glycosylation is the most prominent modification important for vaccines and its specific pattern depends on several factors that need to be considered when developing a new biopharmaceutical. Tailor-made glycosylation can be exploited to develop more effective and safer vaccines; for this reason, a deep understanding of both glycoengineering strategies and glycans structures and functions is required. In this review we discuss the recent advances concerning glycoprotein expression systems and the explanation of glycans immunomodulation mechanisms. Furthermore, we highlight how glycans tune the immunological properties among different vaccines platforms (whole virus, recombinant protein, nucleic acid), also comparing commercially available formulations and describing the state-of-the-art analytical technologies for glycosylation analysis. The whole review stresses the aspect of glycoprotein glycans as a potential tool to overcome nowadays medical needs in vaccine field.
Collapse
Affiliation(s)
- Antonio Lembo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; GSK, Siena, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
2
|
Bardwell B, Bay J, Colburn Z. The clinical applications of immunosequencing. Curr Res Transl Med 2024; 72:103439. [PMID: 38447267 DOI: 10.1016/j.retram.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Technological advances in high-throughput sequencing have opened the door for the interrogation of adaptive immune responses at unprecedented scale. It is now possible to determine the sequences of antibodies or T-cell receptors produced by individual B and T cells in a sample. This capability, termed immunosequencing, has transformed the study of both infectious and non-infectious diseases by allowing the tracking of dynamic changes in B and T cell clonal populations over time. This has improved our understanding of the pathology of cancers, autoimmune diseases, and infectious diseases. However, to date there has been only limited clinical adoption of the technology. Advances over the last decade and on the horizon that reduce costs and improve interpretability could enable widespread clinical use. Many clinical applications have been proposed and, while most are still undergoing research and development, some methods relying on immunosequencing data have been implemented, the most widespread of which is the detection of measurable residual disease. Here, we review the diagnostic, prognostic, and therapeutic applications of immunosequencing for both infectious and non-infectious diseases.
Collapse
Affiliation(s)
- B Bardwell
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - J Bay
- Department of Medicine, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - Z Colburn
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA.
| |
Collapse
|
3
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Durocher Y. CHO cells for virus-like particle and subunit vaccine manufacturing. Vaccine 2024; 42:2530-2542. [PMID: 38503664 DOI: 10.1016/j.vaccine.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| |
Collapse
|
4
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
5
|
The Human Cytomegalovirus Protein UL116 Interacts with the Viral Endoplasmic-Reticulum-Resident Glycoprotein UL148 and Promotes the Incorporation of gH/gL Complexes into Virions. J Virol 2021; 95:e0220720. [PMID: 34011552 DOI: 10.1128/jvi.02207-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), the glycoprotein UL116 assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions. UL116-null mutants show a 10-fold defect in production of infectious cell-free virions from infected fibroblasts and epithelial cells. This defect is accompanied by reduced expression of two disulfide-linked gH/gL complexes that play crucial roles in viral entry: the heterotrimer of gH/gL with glycoprotein O (gO) and the pentameric complex of gH/gL with UL128, UL130, and UL131. Kifunensine, a mannosidase inhibitor that interferes with endoplasmic reticulum (ER)-associated degradation (ERAD) of terminally misfolded glycoproteins, restored levels of gH, gL, and gO in UL116-null-infected cells, indicating that constituents of HCMV gH complexes are unstable in the absence of UL116. Further, we find that gH/UL116 complexes are abundant in virions, since a major gH species not covalently linked to other glycoproteins, which has long been observed in the literature, is detected from wild-type but not UL116-null virions. Interestingly, UL116 coimmunoprecipitates with UL148, a viral ER-resident glycoprotein that attenuates ERAD of gO, and we observe elevated levels of UL116 in UL148-null virions. Collectively, our findings argue that UL116 is a chaperone for gH that supports the assembly, maturation, and incorporation of gH/gL complexes into virions. IMPORTANCE HCMV is a betaherpesvirus that causes dangerous opportunistic infections in immunocompromised patients as well as in the immune-naive fetus and preterm infants. The potential of the virus to enter new host cells is governed in large part by two alternative viral glycoprotein H (gH)/glycoprotein L (gL) complexes that play important roles in entry: gH/gL/gO and gH/gL/UL128-131. A recently identified virion gH complex, comprised of gH bound to UL116, adds a new layer of complexity to the mechanisms that contribute to HCMV infectivity. Here, we show that UL116 promotes the expression of gH/gL complexes and that UL116 interacts with the viral ER-resident glycoprotein UL148, a factor that supports the expression of gH/gL/gO. Overall, our results suggest that UL116 is a chaperone for gH. These findings have important implications for understanding HCMV cell tropism as well as for the development of vaccines against the virus.
Collapse
|
6
|
MVA-Vectored Pentameric Complex (PC) and gB Vaccines Improve Pregnancy Outcome after Guinea Pig CMV Challenge, but Only gB Vaccine Reduces Vertical Transmission. Vaccines (Basel) 2019; 7:vaccines7040182. [PMID: 31739399 PMCID: PMC6963609 DOI: 10.3390/vaccines7040182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/04/2023] Open
Abstract
(1) Background: A congenital cytomegalovirus (cCMV) vaccine is a major research priority, but the essential glycoprotein target(s) remain unclear. We compared CMV gB (gpgB), gH/gL (gp75/gL), and pentameric complex (gpPC, composed of gH/gL/GP129/GP131/GP133) vaccines in a guinea pig CMV (GPCMV) congenital infection model. (2) Methods: Modified vaccinia virus Ankara (MVA) vaccines expressing GPCMV glycoproteins were used to immunize GPCMV-seronegative, female Hartley guinea pigs (three-dose series, 3 × 107 pfu/dose). After pregnancy was established, the dams underwent an early third-trimester challenge with salivary gland (SG)-adapted GPCMV. (3) Results: All vaccines elicited GPCMV-specific binding and neutralizing antibodies. Preconception immunization resulted in 19.5-, 4.9-, and 698-fold reductions in maternal DNAemia in MVA-gp75/gL, MVA-gpPC and MVA-gpgB groups, respectively, at day 14, post-SG challenge. Vaccination improved pups’ birth weight and reduced mortality and congenital CMV transmission. In controls, cCMV infection was observed in 100% of pups (mean viral load in all visceral organs, 2.4 × 104 genomes/mg), versus 50% in the gB group (visceral viral load, 9.4 × 102 genomes/mg; p < 0.05). No significant reductions in congenital transmission were noted in the MVA-gp75/gL and MVA-gpPC groups. (4) Conclusions: MVA-vectored gB, gH/gL, and PC vaccines were immunogenic, and protected against maternal DNAemia and pup mortality. These results support the inclusion of multiple glycoprotein complexes in a cCMV vaccine.
Collapse
|
7
|
Li X, Zhang Y, Jing L, Fu Z, Ma O, Ganguly J, Vaidya N, Sisson R, Naginskaya J, Chinthala A, Cui M, Yamagata R, Wilson M, Sanders M, Wang Z, Lo Surdo P, Bugno M. Integration of high-throughput analytics and cell imaging enables direct early productivity and product quality assessment during Chinese Hamster ovary cell line development for a complex multi-subunit vaccine antigen. Biotechnol Prog 2019; 36:e2914. [PMID: 31568688 DOI: 10.1002/btpr.2914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Mammalian cell line generation typically includes stable pool generation, single cell cloning and several rounds of clone selection based on cell growth, productivity and product quality criteria. Individual clone expansion and phenotype-based ranking is performed initially for hundreds or thousands of mini-scale cultures, representing the major operational challenge during cell line development. Automated cell culture and analytics systems have been developed to enable high complexity clone selection workflows; while ensuring traceability, safety, and quality of cell lines intended for biopharmaceutical applications. Here we show that comprehensive and quantitative assessment of cell growth, productivity, and product quality attributes are feasible at the 200-1,200 cell colony stage, within 14 days of the single cell cloning in static 96-well plate culture. The early cell line characterization performed prior to the clone expansion in suspension culture can be used for a single-step, direct selection of high quality clones. Such clones were comparable, both in terms of productivity and critical quality attributes (CQAs), to the top-ranked clones identified using an established iterative clone screening approach. Using a complex, multi-subunit antigen as a model protein, we observed stable CQA profiles independently of the cell culture format during the clonal expansion as well as in the batch and fed-batch processes. In conclusion, we propose an accelerated clone selection approach that can be readily incorporated into various cell line development workstreams, leading to significant reduction of the project timelines and resource requirements.
Collapse
Affiliation(s)
- Xiangming Li
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Yujian Zhang
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Li Jing
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Zongming Fu
- GSK, US Technical R&D, Analytical Research and Development, Rockville, Maryland
| | - Ou Ma
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Jishna Ganguly
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Nilesh Vaidya
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Richard Sisson
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | | | | | - Minggang Cui
- GSK, US Technical R&D, CMC Statistical Sciences, Rockville, Maryland
| | - Ryan Yamagata
- GSK, US Technical R&D, CMC Statistical Sciences, Rockville, Maryland
| | - Mark Wilson
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | | | - Zihao Wang
- GSK, US Technical R&D, Analytical Research and Development, Rockville, Maryland
| | - Paola Lo Surdo
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| | - Marcin Bugno
- GSK, US Technical R&D, Drug Substance, Rockville, Maryland
| |
Collapse
|
8
|
Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine 2019; 37:6857-6867. [DOI: 10.1016/j.vaccine.2019.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
|
9
|
Andreano E, Seubert A, Rappuoli R. Human monoclonal antibodies for discovery, therapy, and vaccine acceleration. Curr Opin Immunol 2019; 59:130-134. [PMID: 31450054 DOI: 10.1016/j.coi.2019.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 07/18/2019] [Indexed: 01/24/2023]
Abstract
Screening of single B cells from convalescent or vaccinated people allows the discovery of novel targets for infectious diseases and rapid production of engineered human monoclonal antibodies (mAbs) that can prevent or control infections by passive immunization. Here we propose that the development of human mAbs can also significantly accelerate vaccine development by anticipating some of the key biological and regulatory questions.
Collapse
Affiliation(s)
| | | | - Rino Rappuoli
- vAMRes Lab, Toscana Life Sciences, Siena, Italy; GSK, Siena, Italy; Imperial College, London, United Kingdom.
| |
Collapse
|
10
|
Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA Vaccines for Infectious Diseases. Front Immunol 2019; 10:594. [PMID: 30972078 PMCID: PMC6446947 DOI: 10.3389/fimmu.2019.00594] [Citation(s) in RCA: 404] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
During the last two decades, there has been broad interest in RNA-based technologies for the development of prophylactic and therapeutic vaccines. Preclinical and clinical trials have shown that mRNA vaccines provide a safe and long-lasting immune response in animal models and humans. In this review, we summarize current research progress on mRNA vaccines, which have the potential to be quick-manufactured and to become powerful tools against infectious disease and we highlight the bright future of their design and applications.
Collapse
Affiliation(s)
- Cuiling Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Junwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Diamond DJ, LaRosa C, Chiuppesi F, Contreras H, Dadwal S, Wussow F, Bautista S, Nakamura R, Zaia JA. A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection. Expert Rev Vaccines 2018; 17:889-911. [PMID: 30246580 PMCID: PMC6343505 DOI: 10.1080/14760584.2018.1526085] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION It has been almost fifty years since the Towne strain was used by Plotkin and collaborators as the first vaccine candidate for cytomegalovirus (CMV). While that approach showed partial efficacy, there have been a multitude of challenges to improve on the promise of a CMV vaccine. Efforts have been dichotomized into a therapeutic vaccine for patients with CMV-infected allografts, either stem cells or solid organ, and a prophylactic vaccine for congenital infection. AREAS COVERED This review will evaluate research prospects for a therapeutic vaccine for transplant recipients that recognizes CMV utilizing primarily T cell responses. Similarly, we will provide an extensive discussion on attempts to develop a vaccine to prevent the manifestations of congenital infection, based on eliciting a humoral anti-CMV protective response. The review will also describe newer developments that have upended the efforts toward such a vaccine through the discovery of a second pathway of CMV infection that utilizes an alternative receptor for entry using a series of antigens that have been determined to be important for prevention of infection. EXPERT COMMENTARY There is a concerted effort to unify separate therapeutic and prophylactic vaccine strategies into a single delivery agent that would be effective for both transplant-related and congenital infection.
Collapse
Affiliation(s)
- Don J. Diamond
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Corinna LaRosa
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Flavia Chiuppesi
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Heidi Contreras
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Sanjeet Dadwal
- Department of Medical Specialties, City of Hope National
Medical Center, Duarte, CA
| | - Felix Wussow
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Supriya Bautista
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoetic Cell
Transplantation, City of Hope National Medical Center, Duarte, CA
| | - John A. Zaia
- Center for Gene Therapy, Hematological Malignancy and Stem
Cell Transplantation Institute, City of Hope, Duarte, CA
| |
Collapse
|
12
|
Multiantigenic Modified Vaccinia Virus Ankara Vaccine Vectors To Elicit Potent Humoral and Cellular Immune Reponses against Human Cytomegalovirus in Mice. J Virol 2018; 92:JVI.01012-18. [PMID: 30045984 DOI: 10.1128/jvi.01012-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
As human cytomegalovirus (HCMV) is a common cause of disease in newborns and transplant recipients, developing an HCMV vaccine is considered a major public health priority. Yet an HCMV vaccine candidate remains elusive. Although the precise HCMV immune correlates of protection are unclear, both humoral and cellular immune responses have been implicated in protection against HCMV infection and disease. Here we describe a vaccine approach based on the well-characterized modified vaccinia virus Ankara (MVA) vector to stimulate robust HCMV humoral and cellular immune responses by an antigen combination composed of the envelope pentamer complex (PC), glycoprotein B (gB), and phosphoprotein 65 (pp65). We show that in mice, multiantigenic MVA vaccine vectors simultaneously expressing all five PC subunits, gB, and pp65 elicit potent complement-independent and complement-dependent HCMV neutralizing antibodies as well as mouse and human MHC-restricted, polyfunctional T cell responses by the individual antigens. In addition, we demonstrate that the PC/gB antigen combination of these multiantigenic MVA vectors can enhance the stimulation of humoral immune responses that mediate in vitro neutralization of different HCMV strains and antibody-dependent cellular cytotoxicity. These results support the use of MVA to develop a multiantigenic vaccine candidate for controlling HCMV infection and disease in different target populations, such as pregnant women and transplant recipients.IMPORTANCE The development of a human cytomegalovirus (HCMV) vaccine to prevent congenital disease and transplantation-related complications is an unmet medical need. While many HCMV vaccine candidates have been developed, partial success in preventing or controlling HCMV infection in women of childbearing age and transplant recipients has been observed with an approach based on envelope glycoprotein B (gB). We introduce a novel vaccine strategy based on the clinically deployable modified vaccinia virus Ankara (MVA) vaccine vector to elicit potent humoral and cellular immune responses by multiple immunodominant HCMV antigens, including gB, phosphoprotein 65, and all five subunits of the pentamer complex. These findings could contribute to development of a multiantigenic vaccine strategy that may afford more protection against HCMV infection and disease than a vaccine approach employing solely gB.
Collapse
|
13
|
Schampera MS, Arellano-Galindo J, Kagan KO, Adler SP, Jahn G, Hamprecht K. Role of pentamer complex-specific and IgG subclass 3 antibodies in HCMV hyperimmunoglobulin and standard intravenous IgG preparations. Med Microbiol Immunol 2018; 208:69-80. [PMID: 30203132 DOI: 10.1007/s00430-018-0558-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND HCMV hyperimmunoglobulin-preparations (HIG) contain high concentrations of HCMV-specific IgG. The reduced maternofetal-HCMV-transmission rate of IgG may be due to HCMV-specific neutralizing antibodies against the HCMV pentameric complex (PC). In contrast to HIG, standard intravenous immunoglobulin (IVIG) may have more neutralization (NT) capacity than HIG due to higher IgG subclass 3 levels (Planitzer et al., 2011). METHODS We investigated the HCMV-specific NT-capacity of HIG Cytotect®, using a recombinant pentameric complex (gHgLUL128-131A) for specific antibody-depletion. We used a modified UL130-peptide (TANQNPSPPWSKLTYSKPH) based on original-sequence of Saccoccio et al. (Vaccine 29(15):2705-2711, 2011) (SWSTLTANQNPSPPWSKLTY) as neutralization target. Both UL130-peptides and the PC were bound via sixfold HisTag and anti-HisTag mAbs to magnetic beads to deplete HCMV-specific IgGs from HIG (Cytotect®). Modifying this depletion strategy, we analyzed the role of IgG subclass 3 in both HIG and IVIG. RESULTS After CMV IgG-normalization of HIG and IVIG, we found a significant trend towards a decrease (16%) of neutralization-capacity for the UL130 TAN-peptide, but not for the original UL130 SWS-peptide. However, highly significant loss of NT-capacity could be only observed by PC depletion (42%). The IgG subclass 3 depletion revealed no significant reduction of NT-capacity in both HIG and IVIG. CONCLUSION Via specific antibody depletion, we could demonstrate that pentameric complex-specific antibodies are present in HIG and bind to the recombinant PC resulting in a highly significant reduction of NT-capacity compared to the UL130 TAN-and SWS-peptides. We could not confirm the functional role of IgG subclass 3 neutralizing antibodies in IgG-preparations.
Collapse
Affiliation(s)
- Matthias Stefan Schampera
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Jose Arellano-Galindo
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.,Infectious Diseases Laboratory (Virology), Children's Hospital Federico Gómez, México City, Mexico
| | - Karl Oliver Kagan
- Department of Obstetrics and Gynaecology, University Hospital of Tuebingen, Tübingen, Germany
| | | | - Gerhard Jahn
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Klaus Hamprecht
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
14
|
From recognition to execution-the HCMV Pentamer from receptor binding to fusion triggering. Curr Opin Virol 2018; 31:43-51. [PMID: 29866439 DOI: 10.1016/j.coviro.2018.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 01/17/2023]
Abstract
The β-herpesvirus human cytomegalovirus (HCMV) is the leading viral cause of neonatal developmental disabilities. In HCMV, the conserved herpesvirus glycoprotein B (gB) mediates membrane fusion between the viral and host cell membranes, whereas the trimeric gH/gL/gO or the pentameric gH/gL/UL128/UL130/UL31A complexes (Pentamer) bind to cell-specific receptors and provide the triggering signal to gB. Recent structural and functional studies have provided new insights into Pentamer structure, conformational flexibility, location of epitopes for neutralizing antibodies and potential binding sites for cell surface receptors. Together, these data suggest a model where receptor binding triggers a conformational change in Pentamer, allowing it to interact with gB and initiate the membrane fusion process.
Collapse
|
15
|
John S, Yuzhakov O, Woods A, Deterling J, Hassett K, Shaw CA, Ciaramella G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 2018; 36:1689-1699. [PMID: 29456015 DOI: 10.1016/j.vaccine.2018.01.029] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/13/2022]
Abstract
A cytomegalovirus (CMV) vaccine that is effective at preventing congenital infection and reducing CMV disease in transplant patients remains a high priority as no approved vaccines exist. While the precise correlates of protection are unknown, neutralizing antibodies and antigen-specific T cells have been implicated in controlling infection. We demonstrate that the immunization of mice and nonhuman primates (NHPs) with lipid nanoparticles (LNP) encapsulating modified mRNA encoding CMV glycoproteins gB and pentameric complex (PC) elicit potent and durable neutralizing antibody titers. Since the protective correlates in pregnant women and transplant recipients may differ, we developed an additional mRNA vaccine expressing the immunodominant CMV T cell antigen pp65. Administration of pp65 vaccine with PC and gB elicited robust multi-antigenic T cell responses in mice. Our data demonstrate that mRNA/LNP is a versatile platform that enables the development of vaccination strategies that could prevent CMV infection and consequent disease in different target populations.
Collapse
Affiliation(s)
- Shinu John
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Olga Yuzhakov
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Angela Woods
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Jessica Deterling
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Kimberly Hassett
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Christine A Shaw
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA
| | - Giuseppe Ciaramella
- Infectious Disease Therapeutic Area, Moderna, 500 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Schleiss MR, Permar SR, Plotkin SA. Progress toward Development of a Vaccine against Congenital Cytomegalovirus Infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00268-17. [PMID: 29046308 PMCID: PMC5717185 DOI: 10.1128/cvi.00268-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A vaccine against congenital human cytomegalovirus (CMV) infection is a major public health priority. Congenital CMV causes substantial long-term morbidity, particularly sensorineural hearing loss (SNHL), in newborns, and the public health impact of this infection on maternal and child health is underrecognized. Although progress toward development of a vaccine has been limited by an incomplete understanding of the correlates of protective immunity for the fetus, knowledge about some of the key components of the maternal immune response necessary for preventing transplacental transmission is accumulating. Moreover, although there have been concerns raised about observations indicating that maternal seropositivity does not fully prevent recurrent maternal CMV infections during pregnancy, it is becoming increasing clear that preconception immunity does confer some measure of protection against both CMV transmission and CMV disease (if transmission occurs) in the newborn infant. Although the immunity to CMV conferred by both infection and vaccination is imperfect, there are encouraging data emerging from clinical trials demonstrating the immunogenicity and potential efficacy of candidate CMV vaccines. In the face of the knowledge that between 20,000 and 30,000 infants are born with congenital CMV in the United States every year, there is an urgent and compelling need to accelerate the pace of vaccine trials. In this minireview, we summarize the status of CMV vaccines in clinical trials and provide a perspective on what would be required for a CMV immunization program to become incorporated into clinical practice.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Minneapolis, Minnesota, USA
| | - Sallie R Permar
- Duke University Medical School, Human Vaccine Institute, Department of Pediatrics, Durham, North Carolina, USA
| | - Stanley A Plotkin
- University of Pennsylvania, Vaxconsult, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Burton DR. What Are the Most Powerful Immunogen Design Vaccine Strategies? Reverse Vaccinology 2.0 Shows Great Promise. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a030262. [PMID: 28159875 DOI: 10.1101/cshperspect.a030262] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Functional antibodies, i.e., those with antipathogen activity in in vitro assays, are generally the best correlate of vaccine protection. Mimics of natural infection, including live attenuated and killed pathogens, which induce such antibodies in vivo, have generated highly successful vaccines. However, pathogens that induce functional antibodies at lower levels or more sporadically have been more refractory to vaccine design. Such pathogens are being tackled by more systematic approaches involving identifying functional antibodies, templating immunogens from the antibodies, and then evaluating the immunogens iteratively. I believe this is a powerful new approach to vaccine design as discussed below.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Design, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037; and Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02129
| |
Collapse
|
18
|
Wussow F, Chiuppesi F, Contreras H, Diamond DJ. Neutralization of Human Cytomegalovirus Entry into Fibroblasts and Epithelial Cells. Vaccines (Basel) 2017; 5:E39. [PMID: 29088098 PMCID: PMC5748606 DOI: 10.3390/vaccines5040039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a leading cause of permanent birth defects, highlighting the need to develop an HCMV vaccine candidate. However, HCMV vaccine development is complicated by the varying capacity of neutralizing antibodies (NAb) to interfere in vitro with the HCMV entry routes mediating infection of fibroblast (FB) and epithelial cells (EC). While HCMV infection of FB and EC requires glycoprotein complexes composed of gB and gH/gL/gO, EC infection depends additionally on the envelope pentamer complex (PC) composed of gH, gL, UL128, UL130 and UL131A. Unlike NAb to gB or gH epitopes that can interfere with both FB and EC infection, NAb targeting predominantly conformational epitopes of the UL128/130/131A subunits are unable to prevent FB entry, though they are highly potent in blocking EC infection. Despite the selective requirement of the PC for EC entry, the PC is exceptionally immunogenic as vaccine antigen to stimulate both EC- and FB-specific NAb responses due to its capacity to elicit NAb that target epitopes of the UL128/130/131A subunits and gH. These findings suggest that the PC could be sufficient in a subunit vaccine formulation to induce robust FB- and EC-specific NAb responses. In this short review, we discuss NAb responses induced through natural infection and vaccination that interfere in vitro with HCMV infection of FB and EC.
Collapse
Affiliation(s)
- Felix Wussow
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Flavia Chiuppesi
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Heidi Contreras
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Don J Diamond
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
19
|
Steff AM, Monroe J, Friedrich K, Chandramouli S, Nguyen TLA, Tian S, Vandepaer S, Toussaint JF, Carfi A. Pre-fusion RSV F strongly boosts pre-fusion specific neutralizing responses in cattle pre-exposed to bovine RSV. Nat Commun 2017; 8:1085. [PMID: 29057917 PMCID: PMC5651886 DOI: 10.1038/s41467-017-01092-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is responsible for serious lower respiratory tract disease in infants and in older adults, and remains an important vaccine need. RSV fusion (F) glycoprotein is a key target for neutralizing antibodies. RSV F stabilized in its pre-fusion conformation (DS-Cav1 F) induces high neutralizing antibody titers in naïve animals, but it remains unknown to what extent pre-fusion F can boost pre-existing neutralizing responses in RSV seropositive adults. We here assess DS-Cav1 F immunogenicity in seropositive cattle pre-exposed to bovine RSV, a virus closely related to hRSV. A single immunization with non-adjuvanted DS-Cav1 F strongly boosts RSV neutralizing responses, directed towards pre-fusion F-specific epitopes, whereas a post-fusion F is unable to do so. Vaccination with pre-fusion F thus represents a promising strategy for maternal immunization and for other RSV vaccine target populations such as older adults.
Collapse
Affiliation(s)
- Ann-Muriel Steff
- GSK Vaccines, 14200 Shady Grove Road, Rockville, MD, 20850, USA.
| | - James Monroe
- GSK Vaccines, 14200 Shady Grove Road, Rockville, MD, 20850, USA
- Takeda Vaccines, 75 Sidney Street, Cambridge, MA, 02139, USA
| | | | | | | | - Sai Tian
- GSK Vaccines, 14200 Shady Grove Road, Rockville, MD, 20850, USA
| | - Sarah Vandepaer
- Keyrus Biopharma, Chaussée de Louvain 88, Lasne, B-1380, Belgium
| | | | - Andrea Carfi
- GSK Vaccines, 14200 Shady Grove Road, Rockville, MD, 20850, USA.
- Valera LLC, 500 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
20
|
Shen CC, Sung LY, Lin SY, Lin MW, Hu YC. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. ACS Synth Biol 2017; 6:1509-1519. [PMID: 28418635 DOI: 10.1021/acssynbio.7b00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are an important host for biopharmaceutical production. Generation of stable CHO cells typically requires cointegration of dhfr and a foreign gene into chromosomes and subsequent methotrexate (MTX) selection for coamplification of dhfr and foreign gene. CRISPR interference (CRISPRi) is an emerging system that effectively suppresses gene transcription through the coordination of dCas9 protein and guide RNA (gRNA). However, CRISPRi has yet to be exploited in CHO cells. Here we constructed vectors expressing the functional CRISPRi system and proved effective CRISPRi-mediated suppression of dhfr transcription in CHO cells. We next generated stable CHO cell clones coexpressing DHFR, the model protein (EGFP), dCas9 and gRNA targeting dhfr. Combined with MTX selection, CRISPRi-mediated repression of dhfr imparted extra selective pressure to force CHO cells to coamplify more copies of dhfr and egfp genes. Compared with the traditional method relying on MTX selection (up to 250 nM), the CRISPRi approach increased the dhfr copy number ∼3-fold, egfp copy number ∼3.6-fold and enhanced the EGFP expression ∼3.8-fold, without impeding the cell growth. Furthermore, we exploited the CRISPRi approach to enhance the productivity of granulocyte colony stimulating factor (G-CSF) ∼2.3-fold. Our data demonstrate, for the first time, the application of CRISPRi in CHO cells to enhance recombinant protein production and may pave a new avenue to CHO cell engineering.
Collapse
Affiliation(s)
- Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Yeh Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
21
|
Chiuppesi F, Wussow F, Scharf L, Contreras H, Gao H, Meng Z, Nguyen J, Barry PA, Bjorkman PJ, Diamond DJ. Comparison of homologous and heterologous prime-boost vaccine approaches using Modified Vaccinia Ankara and soluble protein to induce neutralizing antibodies by the human cytomegalovirus pentamer complex in mice. PLoS One 2017; 12:e0183377. [PMID: 28813507 PMCID: PMC5558987 DOI: 10.1371/journal.pone.0183377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/02/2017] [Indexed: 01/15/2023] Open
Abstract
Since neutralizing antibodies (NAb) targeting the human cytomegalovirus (HCMV) pentamer complex (PC) potently block HCMV host cell entry, anti-PC NAb induction is thought to be important for a vaccine formulation to prevent HCMV infection. By developing a vaccine strategy based on soluble PC protein and using a previously generated Modified Vaccinia Ankara vector co-expressing all five PC subunits (MVA-PC), we compared HCMV NAb induction by homologous immunization using prime-boost vaccine regimen employing only PC protein or MVA-PC and heterologous immunization using prime-boost combinations of PC protein and MVA-PC. Utilizing a recently isolated anti-PC NAb, we produced highly pure soluble PC protein that displayed conformational and linear neutralizing epitopes, interfered with HCMV entry, and was recognized by antibodies induced by HCMV during natural infection. Mice vaccinated by different immunization routes with the purified PC protein in combination with a clinically approved adjuvant formulation elicited high-titer and durable HCMV NAb. While MVA-PC and soluble PC protein either alone or in combination elicited robust HCMV NAb, significantly different potencies of these vaccine approaches were observed in dependence on immunization schedule. Using only two immunizations, vaccination with MVA-PC alone or prime-boost combinations of MVA-PC and PC protein was significantly more effective in stimulating HCMV NAb than immunization with PC protein alone. In contrast, with three immunizations, NAb induced by soluble PC protein either alone or combined with two boosts of MVA-PC increased to levels that exceeded NAb titer stimulated by MVA-PC alone. These results provide insights into the potency of soluble protein and MVA to elicit NAb by the HCMV PC via homologous and heterologous prime-boost immunization, which may contribute to develop clinically deployable vaccine strategies to prevent HCMV infection.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, United States of America
| | - Felix Wussow
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, United States of America
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Heidi Contreras
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, United States of America
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Zhuo Meng
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, United States of America
| | - Jenny Nguyen
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine, California National Primate Research Center, Department of Pathology and Laboratory Medicine, University of California Davis, Davis, CA, United States of America
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Don J. Diamond
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Chandramouli S, Malito E, Nguyen T, Luisi K, Donnarumma D, Xing Y, Norais N, Yu D, Carfi A. Structural basis for potent antibody-mediated neutralization of human cytomegalovirus. Sci Immunol 2017; 2:2/12/eaan1457. [DOI: 10.1126/sciimmunol.aan1457] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/19/2017] [Indexed: 11/02/2022]
|
23
|
Luisi K, Sharma M, Yu D. Development of a vaccine against cytomegalovirus infection and disease. Curr Opin Virol 2017; 23:23-29. [DOI: 10.1016/j.coviro.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
|
24
|
Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2016; 13:947-961. [PMID: 27905833 DOI: 10.1080/21645515.2016.1260795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids.
Collapse
Affiliation(s)
| | - Sophie Buffin
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | - Isabelle Peubez
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | | | - Régis Sodoyer
- b Technology Research Institute Bioaster , Lyon , France
| | - Bettina Werle
- b Technology Research Institute Bioaster , Lyon , France
| |
Collapse
|
25
|
Prospects of a vaccine for the prevention of congenital cytomegalovirus disease. Med Microbiol Immunol 2016; 205:537-547. [PMID: 27519596 DOI: 10.1007/s00430-016-0472-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
Abstract
Congenital human cytomegalovirus (HCMV) infection is one leading cause of childhood disabilities. Prevention of congenital HCMV disease by vaccination has consequently been identified as a priority public healthcare goal. Several vaccine candidates have been introduced in the past that aimed at the prevention of primary HCMV infection in pregnancy. None of these has provided complete protection, and no licensed vaccine is thus far available. An additional level of complexity has been reached by recent studies indicating that the burden of HCMV transmission and disease following non-primary infections in pregnancy may be higher than previously anticipated. Substantial progress in our understanding of the immunobiology of HCMV infection in pregnancy has fostered studies to test revised or novel vaccine strategies. Preventing HCMV transmission has been identified a surrogate endpoint, rendering the conduction of vaccine studies feasible with reasonable effort. Identification of the glycoprotein complex gH/gL/UL128-131 as a mediator of HCMV host cell tropism and evaluation of that complex as a major target of the neutralizing antibody response made manufacturers consider vaccine candidates that include these proteins. Detailed structural analyses of the neutralizing determinants on HCMV glycoprotein B (gB) have revived interest in using this protein in its pre-fusion conformation for vaccine purposes. Studies in pregnant women and in animal models have provided evidence that addressing the T lymphocyte response by vaccination may be crucial to prevent HCMV transmission to the offspring. CD4 T lymphocytes may be of particular importance in this respect. A simultaneous targeting of both the humoral and cellular immune response against HCMV by vaccination thus appears warranted in order to prevent congenital HCMV infection. There is, however, still need for further research to be able to define an immunological correlate of protection against HCMV transmission during pregnancy. This brief review will highlight recent developments in our understanding of the natural history and immunobiology of HCMV infection in pregnancy and their possible impact on the strategies for the development of an HCMV vaccine.
Collapse
|
26
|
Lanzavecchia A, Frühwirth A, Perez L, Corti D. Antibody-guided vaccine design: identification of protective epitopes. Curr Opin Immunol 2016; 41:62-67. [PMID: 27343848 DOI: 10.1016/j.coi.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
Abstract
In the last decade, progress in the analysis of the human immune response and in the isolation of human monoclonal antibodies have provided an innovative approach to the identification of protective antigens which are the basis for the design of vaccines capable of eliciting effective B-cell immunity. In this review we illustrate, with relevant examples, the power of this approach that can rapidly lead to the identification of protective antigens in complex pathogens, such as human cytomegalovirus and Plasmodium falciparum, and of conserved sites in highly variable antigens, such as influenza hemagglutinin and HIV-1 Env. We will also discuss how the genealogical analysis of antigen-stimulated B cell clones provides the basis to delineate the best suitable prime-boost vaccination strategy for the induction of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Antonio Lanzavecchia
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
| | - Alexander Frühwirth
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Laurent Perez
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Davide Corti
- Humabs BioMed, Via Mirasole 1, 6500 Bellinzona, Switzerland
| |
Collapse
|
27
|
Söderberg-Nauclér C, Fornara O, Rahbar A. Cytomegalovirus driven immunosenescence-An immune phenotype with or without clinical impact? Mech Ageing Dev 2016; 158:3-13. [PMID: 27318107 DOI: 10.1016/j.mad.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
The continuous emerging increase in life span has led to vulnerability to a number of different diseases in the elderly. Some of these risks may be attributed to specific changes in the immune system referred to as immunoscenescence. This term aims to describe decreased immune functions among elderly individuals, and is characterized to be harmful age-associated changes in the immune system that lead to its gradual immune dysfunction. An impaired function of the immune system may increase susceptibility to various diseases in the elderly population such as infections, cardiovascular diseases and cancer. Although it is unclear how this immune phenotype develops, emerging evidence suggest that it may reflect an exhaustion of the immune system, possibly caused by one or several chronic infections. The main candidate is human cytomegalovirus (CMV), which can induce immune dysfunctions observed in immunoscenescence. Although the immune system is currently considered to be exhausted in CMV positive elderly individuals, it is not known whether such dysfunction of the immune system is a main reason for increased susceptibility to other diseases, or if direct effects of the virus in disease pathogenesis reflect the increased vulnerability to them. These aspects will be discussed in this review.
Collapse
Affiliation(s)
- Cecilia Söderberg-Nauclér
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden.
| | - Olesja Fornara
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
28
|
Gardner TJ, Hernandez RE, Noriega VM, Tortorella D. Human cytomegalovirus gH stability and trafficking are regulated by ER-associated degradation and transmembrane architecture. Sci Rep 2016; 6:23692. [PMID: 27026399 PMCID: PMC4812245 DOI: 10.1038/srep23692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 11/29/2022] Open
Abstract
The prototypic betaherpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. While benign in healthy individuals, CMV poses a significant threat to the immune compromised, including transplant recipients and neonates. The CMV glycoprotein complex gH/gL/gO mediates infection of fibroblasts, and together with the gH/gL/UL128/130/131 a pentameric complex permits infection of epithelial, endothethial, and myeloid cells. Given the central role of the gH/gL complex during infection, we were interested in studying cellular trafficking of the gH/gL complex through generation of human cells that stably express gH and gL. When expressed alone, CMV gH and gL were degraded through the ER-associated degradation (ERAD) pathway. However, co-expression of these proteins stabilized the polypeptides and enhanced their cell-surface expression. To further define regulatory factors involved in gH/gL trafficking, a CMV gH chimera in which the gH transmembrane and cytoplasmic tail were replaced with that of human CD4 protein permitted cell surface gH expression in absence of gL. We thus demonstrate the ability of distinct cellular processes to regulate the trafficking of viral glycoproteins. Collectively, the data provide insight into the processing and trafficking requirements of CMV envelope protein complexes and provide an example of the co-opting of cellular processes by CMV.
Collapse
Affiliation(s)
- Thomas J Gardner
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Rosmel E Hernandez
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Vanessa M Noriega
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Domenico Tortorella
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| |
Collapse
|
29
|
Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines. Biotechnol Bioeng 2016; 113:1094-101. [DOI: 10.1002/bit.25877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/11/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022]
|