1
|
Gray SG, Weinberg PD. Biomechanical determinants of endothelial permeability assessed in standard and modified hollow-fibre bioreactors. J R Soc Interface 2023; 20:20230222. [PMID: 37608710 PMCID: PMC10445023 DOI: 10.1098/rsif.2023.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Effects of mechanical stress on the permeability of vascular endothelium are important to normal physiology and in the development of atherosclerosis. Here we elucidate novel effects using commercially available and modified hollow-fibre bioreactors, in which endothelial cells form confluent monolayers lining plastic capillaries with porous walls, contained in a cartridge. The capillaries were perfused with a near-aortic waveform, and permeability was assessed by the movement of rhodamine-labelled albumin from the intracapillary to the extracapillary space. Permeability was increased by acute application of shear stress and decreased by chronic shear stress compared with a static control: this has previously been shown only for multidirectional flows. Increasing viscosity reduced permeability under both acute and chronic shear; since shear rate remained unchanged, these effects resulted from altered shear stress. Reducing pulsatility increased permeability, contrary to the widely held assumption that flow which is highly oscillatory causes endothelial dysfunction. Chronic convection across the monolayer increased effective permeability more than could be explained by the addition of advective transport, contrary to results from previous acute experiments. The off-the-shelf and modified bioreactors provide an excellent tool for investigating the biomechanics of endothelial permeability and have revealed novel effects of flow duration, viscosity, pulsatility and transmural flow.
Collapse
Affiliation(s)
- Stephen G. Gray
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Peter D. Weinberg
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
2
|
Velasco V, Soucy P, Keynton R, Williams SJ. A microfluidic impedance platform for real-time, in vitro characterization of endothelial cells undergoing fluid shear stress. LAB ON A CHIP 2022; 22:4705-4716. [PMID: 36349980 DOI: 10.1039/d2lc00555g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We introduce a microfluidic impedance platform to electrically monitor in real-time, endothelium monolayers undergoing fluid shear stress. Our platform incorporates sensing electrodes (SEs) that measure cell behavior and cell-free control electrodes that measure cell culture media resistance simultaneously but independently from SEs. We evaluated three different cellular subpopulations sizes through 50, 100, and 200 μm diameter SEs. We tested their utility in measuring the response of human umbilical vein endothelial cells (HUVECs) at static, constant (17.6 dyne per cm2), and stepped (23.7-35-58.1 dyne per cm2) shear stress conditions. For 14 hours, we collected the impedance spectra (100 Hz-1 MHz) of sheared cells. Using equivalent circuit models, we extracted monolayer permeability (RTER), cell membrane capacitance, and cell culture media resistance. Platform evaluation concluded that: (1) 50 μm SEs (∼2 cells) suffered interfacial capacitance and reduced cell measurement sensitivity, (2) 100 μm SEs (∼6 cells) was limited to measuring cell behavior only and cannot measure cell culture media resistance, and (3) 200 μm SEs (∼20 cells) detected cell behavior with accurate prediction of cell culture media resistance. Platform-based shear stress studies indicated a shear magnitude dependent increase in RTER at the onset of acute flow. Consecutive stepped shear conditions did not alter RTER in the same magnitude after shear has been applied. Finally, endpoint staining of VE-cadherin on the actual SEs and endpoint RTER measurements were greater for 23.7-35-58.1 dyne per cm2 than 17.6 dyne per cm2 shear conditions.
Collapse
Affiliation(s)
- Vanessa Velasco
- Stanford Genome Technology Center, Stanford University, 3165 Porter Drive, Palo Alto, CA 94304, USA
| | - Patricia Soucy
- Bioengineering Department, University of Louisville, 2301 S. Third St., Paul C. Lutz Hall, # 419, Louisville, KY 40292, USA
| | - Robert Keynton
- William States Lee College of Engineering, University of North Carolina, Charlotte, 28223, USA
| | - Stuart J Williams
- Mechanical Engineering Department, University of Louisville, 332 Eastern Pkwy, Sackett Hall, # 202A, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Fernandes A, Miéville A, Grob F, Yamashita T, Mehl J, Hosseini V, Emmert MY, Falk V, Vogel V. Endothelial-Smooth Muscle Cell Interactions in a Shear-Exposed Intimal Hyperplasia on-a-Dish Model to Evaluate Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202317. [PMID: 35971167 PMCID: PMC9534971 DOI: 10.1002/advs.202202317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 05/25/2023]
Abstract
Intimal hyperplasia (IH) represents a major challenge following cardiovascular interventions. While mechanisms are poorly understood, the inefficient preventive methods incentivize the search for novel therapies. A vessel-on-a-dish platform is presented, consisting of direct-contact cocultures with human primary endothelial cells (ECs) and smooth muscle cells (SMCs) exposed to both laminar pulsatile and disturbed flow on an orbital shaker. With contractile SMCs sitting below a confluent EC layer, a model that successfully replicates the architecture of a quiescent vessel wall is created. In the novel IH model, ECs are seeded on synthetic SMCs at low density, mimicking reendothelization after vascular injury. Over 3 days of coculture, ECs transition from a network conformation to confluent 2D islands, as promoted by pulsatile flow, resulting in a "defected" EC monolayer. In defected regions, SMCs incorporated plasma fibronectin into fibers, increased proliferation, and formed multilayers, similarly to IH in vivo. These phenomena are inhibited under confluent EC layers, supporting therapeutic approaches that focus on endothelial regeneration rather than inhibiting proliferation, as illustrated in a proof-of-concept experiment with Paclitaxel. Thus, this in vitro system offers a new tool to study EC-SMC communication in IH pathophysiology, while providing an easy-to-use translational disease model platform for low-cost and high-content therapeutic development.
Collapse
Affiliation(s)
- Andreia Fernandes
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Arnaud Miéville
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Franziska Grob
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Tadahiro Yamashita
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
- Present address:
Department of System Design EngineeringKeio University108‐8345YokohamaJapan
| | - Julia Mehl
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
- Present address:
Julius Wolff InstituteBerlin Institute of HealthCharité Universitätsmedizin Berlin10117BerlinGermany
| | - Vahid Hosseini
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Maximilian Y. Emmert
- Department of Cardiovascular SurgeryCharité Universitätsmedizin Berlin10117BerlinGermany
- Department of Cardiothoracic and Vascular SurgeryGerman Heart Center Berlin13353BerlinGermany
- Institute for Regenerative Medicine (IREM)University of Zurich8006ZurichSwitzerland
| | - Volkmar Falk
- Department of Cardiovascular SurgeryCharité Universitätsmedizin Berlin10117BerlinGermany
- Department of Cardiothoracic and Vascular SurgeryGerman Heart Center Berlin13353BerlinGermany
- Department of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Viola Vogel
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| |
Collapse
|
4
|
Hoyle H, Stenger C, Przyborski S. Design considerations of benchtop fluid flow bioreactors for bio-engineered tissue equivalents in vitro. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100063. [PMID: 36824373 PMCID: PMC9934498 DOI: 10.1016/j.bbiosy.2022.100063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
One of the major aims of bio-engineering tissue equivalents in vitro is to create physiologically relevant culture conditions to accurately recreate the cellular microenvironment. This often includes incorporation of factors such as the extracellular matrix, co-culture of multiple cell types and three-dimensional culture techniques. These advanced techniques can recapitulate some of the properties of tissue in vivo, however fluid flow is a key aspect that is often absent. Fluid flow can be introduced into cell and tissue culture using bioreactors, which are becoming increasingly common as we seek to produce increasingly accurate tissue models. Bespoke technology is continuously being developed to tailor systems for specific applications and to allow compatibility with a range of culture techniques. For effective perfusion of a tissue culture many parameters can be controlled, ranging from impacts of the fluid flow such as increased shear stress and mass transport, to potentially unwanted side effects such as temperature fluctuations. A thorough understanding of these properties and their implications on the culture model can aid with a more accurate interpretation of results. Improved and more complete characterisation of bioreactor properties will also lead to greater accuracy when reporting culture conditions in protocols, aiding experimental reproducibility, and allowing more precise comparison of results between different systems. In this review we provide an analysis of the different factors involved in the development of benchtop flow bioreactors and their potential biological impacts across a range of applications.
Collapse
Key Words
- 3D, three-dimensional
- ABS, acrylonitrile butadiene styrene
- ALI, air-liquid interface
- Bioreactors
- CFD, computational fluid dynamics
- Cell culture
- ECM, extracellular matrix
- FDM, fused deposition modelling
- Fluid flow
- PC, polycarbonate
- PET, polyethylene terephthalate
- PLA, polylactic acid
- PTFE, polytetrafluoroethylene
- SLA, stereolithography
- Tissue engineering
- UL, unstirred layer
- UV, ultraviolet light
Collapse
Affiliation(s)
- H.W. Hoyle
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - C.M.L. Stenger
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - S.A. Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK,NETPark Incubator, Reprocell Europe Ltd., Thomas Wright Way, Sedgefield TS21 3FD, UK,Corresponding author at: Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
5
|
Meng F, Cheng H, Qian J, Dai X, Huang Y, Fan Y. In vitro fluidic systems: Applying shear stress on endothelial cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Fernandes A, Hosseini V, Vogel V, Lovchik RD. Engineering solutions for biological studies of flow-exposed endothelial cells on orbital shakers. PLoS One 2022; 17:e0262044. [PMID: 35061745 PMCID: PMC8782315 DOI: 10.1371/journal.pone.0262044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Shear stress is extremely important for endothelial cell (EC) function. The popularity of 6-well plates on orbital shakers to impose shear stress on ECs has increased among biologists due to their low cost and simplicity. One characteristic of such a platform is the heterogeneous flow profile within a well. While cells in the periphery are exposed to a laminar and high-velocity pulsatile flow that mimics physiological conditions, the flow in the center is disturbed and imposes low shear stress on the cells, which is characteristic of atheroprone regions. For studies where such heterogeneity is not desired, we present a simple cell-patterning technique to selectively prevent cell growth in the center of the well and facilitate the exclusive collection and analysis of cells in the periphery. This guarantees that cell phenotypes will not be influenced by secreted factors from cells exposed to other shear profiles nor that interesting results are obscured by mixing cells from different regions. We also present a multi-staining platform that compartmentalizes each well into 5 smaller independent regions: four at the periphery and one in the center. This is ideal for studies that aim to grow cells on the whole well surface, for comparison with previous work and minimal interference in the cell culture, but require screening of markers by immunostaining afterwards. It allows to compare different regions of the well, reduces antibody-related costs, and allows the exploration of multiple markers essential for high-content screening of cell response. By increasing the versatility of the 6-well plate on an orbital shaker system, we hope that these two solutions motivate biologists to pursue studies on EC mechanobiology and beyond.
Collapse
Affiliation(s)
- Andreia Fernandes
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Vahid Hosseini
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Viola Vogel
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | | |
Collapse
|
7
|
Arshad M, Rowland EM, Riemer K, Sherwin SJ, Weinberg PD. Improvement and validation of a computational model of flow in the swirling well cell culture model. Biotechnol Bioeng 2021; 119:72-88. [PMID: 34612513 DOI: 10.1002/bit.27951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023]
Abstract
Effects of fluid dynamics on cells are often studied by growing the cells on the base of cylindrical wells or dishes that are swirled on the horizontal platform of an orbital shaker. The swirling culture medium applies a shear stress to the cells that varies in magnitude and directionality from the center to the edge of the vessel. Computational fluid dynamics methods are used to simulate the flow and hence calculate shear stresses at the base of the well. The shear characteristics at each radial location are then compared with cell behavior at the same position. Previous simulations have generally ignored effects of surface tension and wetting, and results have only occasionally been experimentally validated. We investigated whether such idealized simulations are sufficiently accurate, examining a commonly-used swirling well configuration. The breaking wave predicted by earlier simulations was not seen, and the edge-to-center difference in shear magnitude (but not directionality) almost disappeared, when surface tension and wetting were included. Optical measurements of fluid height and velocity agreed well only with the computational model that incorporated surface tension and wetting. These results demonstrate the importance of including accurate fluid properties in computational models of the swirling well method.
Collapse
Affiliation(s)
- Mehwish Arshad
- Department of Bioengineering, Imperial College London, London, UK.,Department of Aeronautics, Imperial College London, London, UK
| | - Ethan M Rowland
- Department of Bioengineering, Imperial College London, London, UK
| | - Kai Riemer
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Peter D Weinberg
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
8
|
Urschel K, Tauchi M, Achenbach S, Dietel B. Investigation of Wall Shear Stress in Cardiovascular Research and in Clinical Practice-From Bench to Bedside. Int J Mol Sci 2021; 22:5635. [PMID: 34073212 PMCID: PMC8198948 DOI: 10.3390/ijms22115635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022] Open
Abstract
In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as "wall shear stress (WSS)", and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.
Collapse
Affiliation(s)
| | | | | | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum, 91054 Erlangen, Germany; (K.U.); (M.T.); (S.A.)
| |
Collapse
|
9
|
Abstract
Cancer drug resistance mechanisms such as tumor heterogeneity and adaptable feedback loops are prevalent issues facing cancer therapy development. Drug resistance can be unique to a cancer type and, most importantly, to each individual cancer patient. Consequently, testing different dosages and therapeutics directly on each individual patient sample (i.e., tumor and cancer cells) has compelling advantages compared to large scale in vitro drug testing and is a step toward personalized drug selection and effective treatment development. Recently, microfluidic-based chemo-sensitivity assays on patient biopsies have been proposed. Despite their novelty, these platforms usually rely on optical labels, optical equipment, or complex microfabricated channel geometries and structures. In this work, we proposed a novel lab on a chip platform capable of real-time and continuous screening of drug efficacy on (cancer) cell subpopulations without the need of labels or bulky readout optical equipment. In this platform, several label-free and rapid techniques have been implemented for the precise capturing of cells of interest in parallel with the real-time measurement and characterization of the effectiveness of candidate therapeutic agents. To demonstrate the utility of the platform, the effect of an apoptotic inducer, topoisomerase I inhibitor, 7-ethyl-10-hydrocamptothecin (SN38) on human colorectal carcinoma cancer cells (HCT 116) was used as a study model. Additionally, electrical results were optically verified to examine the continuous measurements of the biological mechanisms, specifically, apoptosis and necrosis, during therapeutic agent characterizations. The proposed device is a versatile platform which can also be easily redesigned for the automated and arrayed analysis of cell-drug interaction down to the single cell level. Our platform is another step toward enabling the personalized screening of drug efficacy on individual patients' samples that potentially leads to a better understanding of drug resistance and the optimization of patients' treatments.
Collapse
Affiliation(s)
- Vanessa Velasco
- Biochemistry Department , Stanford University , Palo Alto , California 94305 , United States
| | - Kushal Joshi
- Department of Biomedical Engineering , University of California Irvine , Irvine , California 92617 , United States
| | - Jiamin Chen
- Department of Medicine, Division of Oncology , Stanford University School of Medicine , Palo Alto , California 94305 , United States
| | - Rahim Esfandyarpour
- Department of Electrical Engineering , University of California Irvine , Irvine , California 92617 , United States.,Department of Biomedical Engineering , University of California Irvine , Irvine , California 92617 , United States.,Henry Samueli School of Engineering , University of California Irvine , Irvine , California 92617 , United States
| |
Collapse
|
10
|
Rashed MZ, Belott CJ, Janis BR, Menze MA, Williams SJ. New insights into anhydrobiosis using cellular dielectrophoresis-based characterization. BIOMICROFLUIDICS 2019; 13:064113. [PMID: 31768199 PMCID: PMC6858285 DOI: 10.1063/1.5126810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/04/2019] [Indexed: 05/04/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are found in desiccation-tolerant species from all domains of life. Despite several decades of investigation, the molecular mechanisms by which LEA proteins confer desiccation tolerance are still unclear. In this study, dielectrophoresis (DEP) was used to determine the electrical properties of Drosophila melanogaster (Kc167) cells ectopically expressing LEA proteins from the anhydrobiotic brine shrimp, Artemia franciscana. Dielectrophoresis-based characterization data demonstrate that the expression of two different LEA proteins, AfrLEA3m and AfrLEA6, increases cytoplasmic conductivity of Kc167 cells to a similar extent above control values. The impact on cytoplasmic conductivity was surprising, given that the concentration of cytoplasmic ions is much higher than the concentrations of ectopically expressed proteins. The DEP data also supported previously reported data suggesting that AfrLEA3m can interact directly with membranes during water stress. This hypothesis was strengthened using scanning electron microscopy, where cells expressing AfrLEA3m were found to retain more circular morphology during desiccation, while control cells exhibited a larger variety of shapes in the desiccated state. These data demonstrate that DEP can be a powerful tool to investigate the role of LEA proteins in desiccation tolerance and may allow to characterize protein-membrane interactions in vivo, when direct observations are challenging.
Collapse
Affiliation(s)
- Mohamed Z Rashed
- Department of Mechanical Engineering, University of Louisville, 200 Sackett Hall, Louisville, Kentucky 40208, USA
| | - Clinton J Belott
- Department of Biology, University of Louisville, Life Sciences Building, Louisville, Kentucky 40292, USA
| | - Brett R Janis
- Department of Biology, University of Louisville, Life Sciences Building, Louisville, Kentucky 40292, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Life Sciences Building, Louisville, Kentucky 40292, USA
| | - Stuart J Williams
- Department of Mechanical Engineering, University of Louisville, 200 Sackett Hall, Louisville, Kentucky 40208, USA
| |
Collapse
|
11
|
Warboys CM, Ghim M, Weinberg PD. Understanding mechanobiology in cultured endothelium: A review of the orbital shaker method. Atherosclerosis 2019; 285:170-177. [PMID: 31096159 PMCID: PMC6570700 DOI: 10.1016/j.atherosclerosis.2019.04.210] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/04/2022]
Abstract
A striking feature of atherosclerosis is its highly non-uniform distribution within the arterial tree. This has been attributed to variation in the haemodynamic wall shear stress (WSS) experienced by endothelial cells, but the WSS characteristics that are important and the mechanisms by which they lead to disease remain subjects of intensive investigation despite decades of research. In vivo evidence suggests that multidirectional WSS is highly atherogenic. This possibility is increasingly being studied by culturing endothelial cells in wells that are swirled on an orbital shaker. The method is simple and cost effective, has high throughput and permits chronic exposure, but interpretation of the results can be difficult because the fluid mechanics are complex; hitherto, their description has largely been restricted to the engineering literature. Here we review the findings of such studies, which indicate that putatively atherogenic flow characteristics occur at the centre of the well whilst atheroprotective ones occur towards the edge, and we describe simple mathematical methods for choosing experimental variables that avoid resonance, wave breaking and uncovering of the cells. We additionally summarise a large number of studies showing that endothelium cultured at the centre of the well expresses more pro-inflammatory and fewer homeostatic genes, has higher permeability, proliferation, apoptosis and senescence, and shows more endothelial-to-mesenchymal transition than endothelium at the edge. This simple method, when correctly interpreted, has the potential to greatly increase our understanding of the homeostatic and pathogenic mechanobiology of endothelial cells and may help identify new therapeutic targets in vascular disease.
Collapse
Affiliation(s)
| | - Mean Ghim
- Department of Bioengineering, Imperial College London, UK
| | | |
Collapse
|
12
|
Avari H, Rogers KA, Savory E. Quantification of Morphological Modulation, F-Actin Remodeling and PECAM-1 (CD-31) Re-distribution in Endothelial Cells in Response to Fluid-Induced Shear Stress under Various Flow Conditions. J Biomech Eng 2019; 141:2723101. [PMID: 30673068 DOI: 10.1115/1.4042601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the number one cause of death globally. Arterial endothelial cell (EC) dysfunction plays a key role in many of these CVDs, such as atherosclerosis. Blood flow-induced wall shear stress (WSS), among many other pathophysiological factors, is known to significantly contribute to EC dysfunction. The present study reports an in vitro investigation of the effect of quantified WSS on ECs, analyzing the EC morphometric parameters as well as cytoskeletal remodeling. The effects of four different flow cases (low steady laminar (LSL), medium steady laminar (MSL), non-zero-mean sinusoidal laminar (NZMSL) and laminar carotid (LCRD) waveforms) on EC area, perimeter, shape index (SI), angle of orientation, F-actin bundle remodeling and PECAM-1 localization were studied. For the first time, a flow facility was fully quantified for the uniformity of flow over ECs as well as for WSS determination (as opposed to relying on analytical equations). The SI and angle of orientation were found to be the most flow-sensitive morphometric parameters. A 2D Fast Fourier Transform based image processing technique was applied to analyze the F-actin directionality and an alignment index (AI) was defined accordingly. Also, a significant peripheral loss of PECAM-1 in ECs subjected to atheroprone cases (LSL and NZMSL) with high cell surface/cytoplasm stain of this protein is reported, which may shed light on of the mechanosensory role of PECAM-1 in mechanotransduction.
Collapse
Affiliation(s)
- Hamed Avari
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| | - Kem A Rogers
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| | - Eric Savory
- Advanced Fluid Mechanics Research Group, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada, N6A 3K7
| |
Collapse
|
13
|
Park DY, Kim TH, Lee JM, Ahrberg CD, Chung BG. Circular-shaped microfluidic device to study the effect of shear stress on cellular orientation. Electrophoresis 2018; 39:1816-1820. [PMID: 29659029 DOI: 10.1002/elps.201800109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Abstract
Understanding the effects of shear stress on mammalian cells is a crucial factor for understanding a number of biological processes and diseases. Here, we show the development of a circular-shaped microfluidic device for the facile generation of shear stress gradients. With this microfluidic device, the effect of shear stress on orientation of human umbilical vein endothelial cells was studied. This microfluidic device, which enables to control the alignment of human umbilical vein endothelial cells within a microchannel, can be a valuable tool to mimic blood vessels.
Collapse
Affiliation(s)
- Da Yeon Park
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| |
Collapse
|
14
|
Detection of frequency-dependent endothelial response to oscillatory shear stress using a microfluidic transcellular monitor. Sci Rep 2017; 7:10019. [PMID: 28855638 PMCID: PMC5577378 DOI: 10.1038/s41598-017-10636-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
The endothelial microenvironment is critical in maintaining the health and function of the intimal layer in vasculature. In the context of cardiovascular disease (CVD), the vascular endothelium is the layer of initiation for the progression of atherosclerosis. While laminar blood flows are known to maintain endothelial homeostasis, disturbed flow conditions including those the endothelium experiences in the carotid artery are responsible for determining the fate of CVD progression. We present a microfluidic device designed to monitor the endothelium on two fronts: the real-time monitoring of the endothelial permeability using integrated electrodes and the end-point characterization of the endothelium through immunostaining. Our key findings demonstrate endothelial monolayer permeability and adhesion protein expression change in response to oscillatory shear stress frequency. These changes were found to be significant at certain frequencies, suggesting that a frequency threshold is needed to elicit an endothelial response. Our device made possible the real-time monitoring of changes in the endothelial monolayer and its end-point inspection through a design previously absent from the literature. This system may serve as a reliable research platform to investigate the mechanisms of various inflammatory complications of endothelial disorders and screen their possible therapeutics in a mechanistic and high-throughput manner.
Collapse
|