1
|
High production of acetoin from glycerol by Bacillus subtilis 35. Appl Microbiol Biotechnol 2022; 107:175-185. [DOI: 10.1007/s00253-022-12301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
|
2
|
Abstract
The growing need for industrial production of bio-based acetoin and 2,3-butanediol (2,3-BD) is due to both environmental concerns, and their widespread use in the food, pharmaceutical, and chemical industries. Acetoin is a common spice added to many foods, but also a valuable reagent in many chemical syntheses. Similarly, 2,3-BD is an indispensable chemical on the platform in the production of synthetic rubber, printing inks, perfumes, antifreeze, and fuel additives. This state-of-the-art review focuses on representatives of the genus Bacillus as prospective producers of acetoin and 2,3-BD. They have the following important advantages: non-pathogenic nature, unpretentiousness to growing conditions, and the ability to utilize a huge number of substrates (glucose, sucrose, starch, cellulose, and inulin hydrolysates), sugars from the composition of lignocellulose (cellobiose, mannose, galactose, xylose, and arabinose), as well as waste glycerol. In addition, these strains can be improved by genetic engineering, and are amenable to process optimization. Bacillus spp. are among the best acetoin producers. They also synthesize 2,3-BD in titer and yield comparable to those of the pathogenic producers. However, Bacillus spp. show relatively lower productivity, which can be increased in the course of challenging future research.
Collapse
|
3
|
Jia X, Peng X, Liu Y, Han Y. Conversion of cellulose and hemicellulose of biomass simultaneously to acetoin by thermophilic simultaneous saccharification and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:232. [PMID: 29046719 PMCID: PMC5635544 DOI: 10.1186/s13068-017-0924-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Acetoin (3-hydroxy-2-butanone), the precursor of biofuel 2,3-butanediol, is an important bio-based platform chemical with wide applications. Fermenting the low-cost and renewable plant biomass is undoubtedly a promising strategy for acetoin production. Isothermal simultaneous saccharification and fermentation (SSF) is regarded as an efficient method for bioconversion of lignocellulosic biomass, in which the temperature optima fitting for both lignocellulose-degrading enzymes and microbial strains. RESULTS A thermotolerant (up to 52 °C) acetoin producer Bacillus subtilis IPE5-4 which simultaneously consumed glucose and xylose was isolated and identified. By compound mutagenesis, the mutant IPE5-4-UD-4 with higher acetoin productivity was selected. When fermenting at 50 °C in a 5-L bioreactor using glucose as the feedstock by strain IPE5-4-UD-4, the acetoin concentration reached 28.83 ± 0.91 g L-1 with the acetoin yield and productivity of 0.34 g g-1 glucose and 0.60 g L-1 h-1, respectively. Furthermore, an optimized and thermophilic SSF process operating at 50 °C was conducted for acetoin production from alkali-pretreated corncob (APC). An acetoin concentration of 12.55 ± 0.28 g L-1 was achieved by strain IPE5-4-UD-4 in shake flask SSF, with the acetoin yield and productivity of 0.25 g g-1 APC and 0.17 g L-1 h-1. Meanwhile, the utilization of cellulose and hemicellulose in the SSF approach reached 96.34 and 93.29%, respectively. When further fermented at 50 °C in a 5-L bioreactor, the concentration of acetoin reached the maximum of 22.76 ± 1.16 g L-1, with the acetoin yield and productivity reaching, respectively, 0.46 g g-1 APC and 0.38 g L-1 h-1. This was by far the highest acetoin yield in SSF from lignocellulosic biomass. CONCLUSIONS This thermophilic SSF process provided an efficient and economical route for acetoin production from lignocellulosic biomass at ideal temperature for both enzymatic hydrolysis and microbial fermentation.
Collapse
Affiliation(s)
- Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ying Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
4
|
2,3-Butanediol production using Klebsiella oxytoca ATCC 8724: Evaluation of biomass derived sugars and fed-batch fermentation process. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Guragain YN, Chitta D, Karanjikar M, Vadlani PV. Appropriate lignocellulosic biomass processing strategies for efficient 2,3-butanediol production from biomass-derived sugars using Bacillus licheniformis DSM 8785. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zhang J, Zhao X, Zhang J, Zhao C, Liu J, Tian Y, Yang L. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis. Prep Biochem Biotechnol 2017; 47:761-767. [DOI: 10.1080/10826068.2017.1320293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junjiao Zhang
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Jinan, PR China
| | - Xiangying Zhao
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Jinan, PR China
| | - Jiaxiang Zhang
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Jinan, PR China
| | - Chen Zhao
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Jinan, PR China
| | - Jianjun Liu
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Jinan, PR China
| | - Yanjun Tian
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Jinan, PR China
| | - Liping Yang
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Jinan, PR China
| |
Collapse
|
7
|
Javidnia K, Faghih-Mirzaei E, Miri R, Attarroshan M, Zomorodian K. Biotransformation of acetoin to 2,3-butanediol: Assessment of plant and microbial biocatalysts. Res Pharm Sci 2016; 11:349-54. [PMID: 27651816 PMCID: PMC5022384 DOI: 10.4103/1735-5362.189330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2,3-Butanediol (2,3-BD) is a valuable bulk chemical owing to its extensive application in chemical and pharmaceutical industry with diverse applications in drug, cosmetics and food products. In the present study, the biotransformation of acetoin to 2,3-BD by five plant species (Brassica oleracea, Brassica rapa, Daucuscarota, Pastinaca sativa, and Raphnussativus) and five microorganisms (Aspergillusfoetidus, Penicillumcitrinum, Saccharomyces carlbergensis, Pichiafermentans, and Rhodotrulaglutinis) was investigated as a method for the production of 2,3-BD, which can serve as an alternative to the common pentoses and hexoses fermentation by microorganisms. The produced 2,3-BD stereoisomers were characterized and their total conversion yields were determined. The results showed that the examined plants can be used as a green factory for the production of all 2,3-BD stereoisomers, except B. rapa. In microorganisms, P. fermentans and S. carlbergensis produced (–)-2R,3R and mesobutanediol, while P. citrinum produced (+)-2S,3S and mesobutanediol. R. glutinis and A. foetidus produced all three isomers. In conclusion, efficient whole-cell biocatalysts from plants and microorganisms were determined in the bioconversion of acetoin to 2,3-BD. The profile of produced stereoisomers demonstrated that microorganisms produce more specific stereoisomers.
Collapse
Affiliation(s)
- Katayoun Javidnia
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Ehsan Faghih-Mirzaei
- Department of Medicinal Chemistry, School of Pharmacy, Kerman University of Medical Sciences, Kerman, I.R. Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Kamiar Zomorodian
- Department of Mycology and Parasitology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| |
Collapse
|
8
|
Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H, Chen T, Zhao X. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:90. [PMID: 27099629 PMCID: PMC4837526 DOI: 10.1186/s13068-016-0502-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/01/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND 2,3-Butanediol (2,3-BD) with low toxicity to microbes, could be a promising alternative for biofuel production. However, most of the 2,3-BD producers are opportunistic pathogens that are not suitable for industrial-scale fermentation. In our previous study, wild-type Bacillus subtilis 168, as a class I microorganism, was first found to generate only d-(-)-2,3-BD (purity >99 %) under low oxygen conditions. RESULTS In this work, B. subtilis was engineered to produce chiral pure meso-2,3-BD. First, d-(-)-2,3-BD production was abolished by deleting d-(-)-2,3-BD dehydrogenase coding gene bdhA, and acoA gene was knocked out to prevent the degradation of acetoin (AC), the immediate precursor of 2,3-BD. Next, both pta and ldh gene were deleted to decrease the accumulation of the byproducts, acetate and l-lactate. We further introduced the meso-2,3-BD dehydrogenase coding gene budC from Klebsiella pneumoniae CICC10011, as well as overexpressed alsSD in the tetra-mutant (ΔacoAΔbdhAΔptaΔldh) to achieve the efficient production of chiral meso-2,3-BD. Finally, the pool of NADH availability was further increased to facilitate the conversion of meso-2,3-BD from AC by overexpressing udhA gene (coding a soluble transhydrogenase) and low dissolved oxygen control during the cultivation. Under microaerobic oxygen conditions, the best strain BSF9 produced 103.7 g/L meso-2,3-BD with a yield of 0.487 g/g glucose in the 5-L batch fermenter, and the titer of the main byproduct AC was no more than 1.1 g/L. CONCLUSION This work offered a novel strategy for the production of chiral pure meso-2,3-BD in B. subtilis. To our knowledge, this is the first report indicating that metabolic engineered B. subtilis could produce chiral meso-2,3-BD with high purity under limited oxygen conditions. These results further demonstrated that B. subtilis as a class I microorganism is a competitive industrial-level meso-2,3-BD producer.
Collapse
Affiliation(s)
- Jing Fu
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Guangxin Huo
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Lili Feng
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Yufeng Mao
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhiwen Wang
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Hongwu Ma
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Tao Chen
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- />Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Xueming Zhao
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
9
|
Qiu Y, Zhang J, Li L, Wen Z, Nomura CT, Wu S, Chen S. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:117. [PMID: 27257436 PMCID: PMC4890260 DOI: 10.1186/s13068-016-0522-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/09/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND 2,3-Butanediol (2,3-BD) can be used as a liquid fuel additive to replace petroleum oil, and as an important platform chemical in the pharmaceutical and plastic industries. Microbial production of 2,3-BD by Bacillus licheniformis presents potential advantages due to its GRAS status, but previous attempts to use this microorganism as a chassis strain resulted in the production of a mix of D-2,3-BD and meso-2,3-BD isomers. RESULTS The aim of this work was to develop an engineered strain of B. licheniformis suited to produce the high titers of the pure meso-2,3-BD isomer. Glycerol dehydrogenase (Gdh) was identified as the catalyst for D-2,3-BD biosynthesis from its precursor acetoin in B. licheniformis. The gdh gene was, therefore, deleted from the wild-type strain WX-02 to inhibit the flux of acetoin to D-2,3-BD biosynthesis. The acoR gene involved in acetoin degradation through AoDH ES was also deleted to provide adequate flux from acetoin towards meso-2,3-BD. By re-directing the carbon flux distribution, the double-deletion mutant WX-02ΔgdhΔacoR produced 28.2 g/L of meso-2,3-BD isomer with >99 % purity. The titer was 50 % higher than that of the wide type. A bench-scale fermentation by the double-deletion mutant was developed to further improve meso-2,3-BD production. In a fed-batch fermentation, meso-2,3-BD titer reached 98.0 g/L with a purity of >99.0 % and a productivity of 0.94 g/L-h. CONCLUSIONS This work demonstrates the potential of producing meso-2,3-BD with high titer and purity through metabolic engineering of B. licheniformis.
Collapse
Affiliation(s)
- Yimin Qiu
- />Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
- />Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062 China
| | - Jinyan Zhang
- />State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Li
- />State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhiyou Wen
- />College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- />Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011 USA
| | - Christopher T. Nomura
- />Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
- />Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY ESF), Syracuse, NY 13210 USA
| | - Shuilin Wu
- />Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062 China
| | - Shouwen Chen
- />Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
10
|
Tian Y, Fan Y, Liu J, Zhao X, Chen W. Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2015.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Appl Microbiol Biotechnol 2015; 100:2663-76. [DOI: 10.1007/s00253-015-7164-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
|
12
|
Zhao H, Yun J. Isolation, identification and fermentation conditions of highly acetoin-producing acetic acid bacterium from Liangzhou fumigated vinegar in China. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1106-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Dai JJ, Cheng JS, Liang YQ, Jiang T, Yuan YJ. Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518. BIORESOURCE TECHNOLOGY 2014; 167:433-40. [PMID: 25006018 DOI: 10.1016/j.biortech.2014.06.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 05/23/2023]
Abstract
Cellular redox status and oxygen availability influence the product formation. Herein, decreasing agitation speed or adding vitamin C (Vc) achieved the 2,3-BDL yield of 0.40 g g(-1) or 0.39 g g(-1)glucose under batch fermentation, respectively. To our knowledge, this is the highest 2,3-BDL yield reported so far for Paenibacillus polymyxa without adding acetic acid. The NADH/NAD(+) ratio and 2,3-BDL titer could be increased significantly by reducing the agitation speed or adding Vc, indicating that the enhancement of 2,3-BDL is closely associated with the adjustment of NADH/NAD(+) ratio. Especially, Vc addition elevated the 2,3-BDL titer from 43.66 g L(-1) to 71.71 g L(-1) within 54 h under fed-batch fermentation. This is the highest titer of 2,3-BDL so far reported for P. polymyxa from glucose fermentation. This work provides a new strategy to improve 2,3-BDL production and helps us to understand the responses of P. polymyxa to extracellular oxidoreduction potential.
Collapse
Affiliation(s)
- Jun-Jun Dai
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Jing-Sheng Cheng
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.
| | - Ying-Quan Liang
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Tong Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|
14
|
Fu J, Wang Z, Chen T, Liu W, Shi T, Wang G, Tang YJ, Zhao X. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 2014; 111:2126-31. [PMID: 24788512 DOI: 10.1002/bit.25265] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
Compared with traditional pathogenic producers, Bacillus subtilis as a Class I microorganism offers many advantages for industrial-scale 2,3-butanediol production. Unlike previous reports in which two stereoisomers (with a ratio of 3:2) were produced, we first found that wild type B. subtilis 168 generates only D-(-)-2,3-butanediol (purity >99%) under low oxygen conditions. The total high yield of 2,3-butanediol and acetoin, and acetoin reductase enzyme assay indicate that it is the high level of NADH availability, instead of high acetoin reductase activity, contributes more to 2,3-butanediol production in B. subtilis. The strategy for increasing the pool of NADH availability, the key factor for 2,3-butanediol production, was designed through low dissolved oxygen control, adding reducing substrates and rationally metabolic engineering. A transhydrogenase encoded by udhA was introduced to provide more NADH from NADPH and allowed enhanced 2,3-butanediol production. Finally, BSF20 produced 49.29 g/L D(-)-2,3-butanediol. These results demonstrated that B. subtilis is a competitive producer for chiral 2,3-butanediol production.
Collapse
Affiliation(s)
- Jing Fu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xiao Z, Lu JR. Strategies for enhancing fermentative production of acetoin: A review. Biotechnol Adv 2014; 32:492-503. [DOI: 10.1016/j.biotechadv.2014.01.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023]
|
16
|
Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 2013; 97:6715-23. [DOI: 10.1007/s00253-013-4981-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
|
17
|
Sweere AP, Mesters JR, Janse L, Luyben KC, Kossen NW. Experimental simulation of oxygen profiles and their influence on baker's yeast production: I. One-fermentor system. Biotechnol Bioeng 2012; 31:567-78. [PMID: 18584647 DOI: 10.1002/bit.260310609] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In production-scale bioreactors microorganisms are exposed to a continually changing environment. This may cause loss of viability, reduction of the yield of biomass or desired metabolites, and an increase in the formation of by-products. In fed-batch production of baker's yeast, profiles may occur in substrate and oxygen concentrations and in pH. This article deals with the influence of a periodically changing oxygen concentration on the growth of baker's yeast in a continuous culture. Also, influences on the production of ethanol, glycerol, acetic acid, and on the composition of the cells were investigated. It was found that relatively fast fluctuations between oxygen-unlimited and oxygen-limited conditions with a frequency of 1 or 2 min had a distinct influence on the biomass and metabolite production. However, RNA, protein, and carbohydrate contents measured in cells exposed to fluctuations differed little from those in cells from an oxygen-unlimited or an oxygen-limited culture. The respiration and fermentation capacities of cells exposed to fluctuations can be larger than the capacities of cells grown under oxygen-unlimited conditions.
Collapse
Affiliation(s)
- A P Sweere
- Department of Biochemical Engineering, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Wang M, Fu J, Zhang X, Chen T. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnol Lett 2012; 34:1877-85. [DOI: 10.1007/s10529-012-0981-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/30/2012] [Indexed: 11/27/2022]
|
19
|
Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0587-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Korneli C, David F, Godard T, Franco-Lara E. Influence of fructose and oxygen gradients on fed-batch recombinant protein production using Bacillus megaterium. Eng Life Sci 2011. [DOI: 10.1002/elsc.201000161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
21
|
Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol 2011; 51:650-8. [DOI: 10.1002/jobm.201100033] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/11/2011] [Indexed: 11/09/2022]
|
22
|
Ji XJ, Huang H, Ouyang PK. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 2011; 29:351-64. [PMID: 21272631 DOI: 10.1016/j.biotechadv.2011.01.007] [Citation(s) in RCA: 430] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 01/07/2011] [Accepted: 01/19/2011] [Indexed: 12/01/2022]
Abstract
2,3-butanediol is a promising bulk chemical due to its extensive industry applications. The state-of-the-art nature of microbial 2,3-butanediol production is reviewed in this paper. Various strategies for efficient and economical microbial 2,3-butanediol production, including strain improvement, substrate alternation, and process development, are reviewed and compared with regard to their pros and cons. This review also summarizes value added derivatives of biologically produced 2,3-butanediol and different strategies for downstream processing. The future prospects of microbial 2,3-butanediol production are discussed in light of the current progress, challenges, and trends in this field. Guidelines for future studies are also proposed.
Collapse
Affiliation(s)
- Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | | | | |
Collapse
|
23
|
Peng F, Ren JL, Xu F, Sun RC. Chemicals from Hemicelluloses: A Review. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1067.ch009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Feng Peng
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Li Ren
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Xu
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Run-Cang Sun
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
24
|
Dettwiler B, Dunn IJ, Heinzle E, Prenosil JE. A simulation model for the continuous production of acetoin and butanediol using Bacillus subtilis with integrated pervaporation separation. Biotechnol Bioeng 2010; 41:791-800. [PMID: 18609623 DOI: 10.1002/bit.260410805] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The potential for producing acetoin and butanediol with a Bacillus subtilis strain was investigated with continuous culture using molasses as carbon substrate. The steady-state results were influenced by both oxygen and undetermined limiting compounds. Employing the known metabolic pathways, four overall stoichiometry relations were used with an energetic assumption on the energy requirements for biomass formation to establish a linear relations were used with an energetic assumption on the energy requirements for biomass formation to establish a linear relation between the overall rates, whose parameters were determined by linear regression. This provided a relationship for the product formation rate. The chemostat culture data were described with a growth kinetics model, which included limitation by molasses and oxygen as well as diauxic effects and product inhibition. The biokinetics model was combined with an experimentally verified model for the membrane Pervaporation. From this combined model were determined the influence of the membrane characteristics (enrichment factors and membrane area) and the dilution rate on the performance of the integrated process. Simulations revealed that an increase of the enrichment factor, possible by membrane improvement, would have counteracting influences, owing to decreased product inhibition but with lower biomass concentration.
Collapse
Affiliation(s)
- B Dettwiler
- Biological Reaction Engineering Group, Chemical Engineering Department, ETH, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
25
|
Hopkins DJ, Betenbaugh MJ, Dhurjati P. Effects of dissolved oxygen shock on the stability of recombinant Escherichia coli containing plasmid pKN401. Biotechnol Bioeng 2009; 29:85-91. [PMID: 18561133 DOI: 10.1002/bit.260290113] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of dissolved oxygen shock on the stability of recombinant Escherichia coli cells containing plasmid pKN401 was investigated. The recombinant cells were stable in control batch experiments in media with and without ampicillin. However, these recombinant cells were highly unstable under conditions where a dissolved oxygen shock was induced. The results have implications for design of aerated reactors for recombinant cells.
Collapse
Affiliation(s)
- D J Hopkins
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
26
|
Fowler JD, Dunlop EH. Effects of reactant heterogeneity and mixing on catabolite repression in cultures of Saccharomyces cerevisiae. Biotechnol Bioeng 2009; 33:1039-46. [PMID: 18588018 DOI: 10.1002/bit.260330813] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An experimental study was conducted into the effect of reactant heterogeneity on glucose-fed continuous cultures of S. cerevisiae, The heterogeneity was altered by varying mixing intensity in the nutrient entry region within a static mixing device. Experimental results confirm simulation predictions based upon a simple growth model, showing that mixing in the entry region can govern macroscopic culture behavior. Specifically, at high dilution rates, the biomass concentration was reduced by mixing patterns that increased the size of regions where glucose exceeded the threshold for catabolite repression. Because the size of such repressive regions is not uniquely determined by reactant segregation, the authors argue that in biological systems (and others involving a threshold response) an alternative measure of mixing quality should be used. Conclusions are drawn concerning the simulation of biological reactors for design purposes, and the importance of nutrient delivery systems to reactor performance.
Collapse
Affiliation(s)
- J D Fowler
- Department of Chemical Engineering, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
27
|
Zhu BF, Xu Y, Fan WL. High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach. J Ind Microbiol Biotechnol 2009; 37:179-86. [DOI: 10.1007/s10295-009-0661-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 10/23/2009] [Indexed: 11/30/2022]
|
28
|
Celińska E, Grajek W. Biotechnological production of 2,3-butanediol--current state and prospects. Biotechnol Adv 2009; 27:715-725. [PMID: 19442714 DOI: 10.1016/j.biotechadv.2009.05.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/30/2009] [Accepted: 05/02/2009] [Indexed: 11/19/2022]
Abstract
Biotechnological production of 2,3-butanediol (hereafter referred to as 2,3-BD) from wastes and excessive biomass is a promising and attractive alternative for traditional chemical synthesis. In the face of scarcity of fossil fuel supplies the bio-based process is receiving a significant interest, since 2,3-BD may have multiple practical applications (e.g. production of synthetic rubber, plasticizers, fumigants, as an antifreeze agent, fuel additive, octane booster, and many others). Although the 2,3-BD pathway is well known, microorganisms able to ferment biomass to 2,3-BD have been isolated and described, and attempts of pilot scale production of this compound were made, still much has to be done in order to achieve desired profitability. This review summarizes hitherto gained knowledge and experience in biotechnological production of 2,3-BD, sources of biomass used, employed microorganisms both wild type and genetically improved strains, as well as operating conditions applied.
Collapse
Affiliation(s)
- E Celińska
- Poznan University of Life Sciences, Department of Biotechnology and Food Microbiology, Wojska Polskiego 48, 60-627 Poznań, Poland.
| | - W Grajek
- Poznan University of Life Sciences, Department of Biotechnology and Food Microbiology, Wojska Polskiego 48, 60-627 Poznań, Poland
| |
Collapse
|
29
|
Lara AR, Galindo E, Ramírez OT, Palomares LA. Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol Biotechnol 2007; 34:355-81. [PMID: 17284782 DOI: 10.1385/mb:34:3:355] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/14/2023]
Abstract
The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogeneities, are surveyed.
Collapse
Affiliation(s)
- Alvaro R Lara
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología Universidad Nacional Autónoma de México (UNAM), Apdo. Postal. 510-3. Cuernavaca, Morelos, CP. 62250, México
| | | | | | | |
Collapse
|
30
|
Xiao ZJ, Liu PH, Qin JY, Xu P. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol 2007; 74:61-8. [PMID: 17043817 DOI: 10.1007/s00253-006-0646-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/18/2006] [Accepted: 08/22/2006] [Indexed: 11/27/2022]
Abstract
The nutritional requirements for acetoin production by Bacillus subtilis CICC 10025 were optimized statistically in shake flask experiments using indigenous agroindustrial by-products. The medium components considered for initial screening in a Plackett-Burman design comprised a-molasses (molasses submitted to acidification pretreatment), soybean meal hydrolysate (SMH), KH(2)PO(4).3H(2)O, sodium acetate, MgSO(4).7H(2)O, FeCl(2), and MnCl(2), in which the first two were identified as significantly (at the 99% significant level) influencing acetoin production. Response surface methodology was applied to determine the mutual interactions between these two components and optimal levels for acetoin production. In flask fermentations, 37.9 g l(-1) acetoin was repeatedly achieved using the optimized concentrations of a-molasses and SMH [22.0% (v/v) and 27.8% (v/v), respectively]. a-Molasses and SMH were demonstrated to be more productive than pure sucrose and yeast extract plus peptone, respectively, in acetoin fermentation. In a 5-l fermenter, 35.4 g l(-1) of acetoin could be obtained after 56.4 h of cultivation. To our knowledge, these results, i.e., acetoin yields in flask or fermenter fermentations, were new records on acetoin fermentation by B. subtilis.
Collapse
Affiliation(s)
- Z J Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Schmalzriedt S, Jenne M, Mauch K, Reuss M. Integration of physiology and fluid dynamics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 80:19-68. [PMID: 12747541 DOI: 10.1007/3-540-36782-9_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of strategies for the integration of fluid dynamics and physiology is the development of more reliable simulation tools to accelerate the process of scale-up. The rigorous mathematical modeling of the richly interactive relationship between the dynamic response of biosystems and the physical environment changing in time and space must rest on the link between coupled momentum, energy and mass balances and structured modeling of the biophase. With the exponential increase in massive computer capabilities hard- and software tools became available for simulation strategies based on such holistic integration approaches. The review discusses fundamental aspects of application of computational fluid dynamics (CFD) to three-dimensional two-phase turbulence flow in stirred tank bioreactors. Examples of coupling momentum and material balance equations with simple unstructured kinetic models for the behavior of the biophase are used to illustrate the application of these strategies to the selection of suitable impeller configurations. The examples reviewed in this paper include distribution of carbon and energy source in fed batch cultures as well as dissolved oxygen fields during aerobic fermentations. A more precise forecasting of the impact of the multitude of interactions must, however, rest upon a rigorous understanding of the response of the cell factory to the complex dynamic stimulation due to space- and time-dependent concentration fields. The paper also introduces some ideas for fast and very fast experimental observations of intracellular pool concentrations based on stimulus response methods. These observations finally lead to a more complex integration approach based on the coupling of CFD and structured metabolic models.
Collapse
Affiliation(s)
- Sven Schmalzriedt
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
32
|
Amanullah A, McFarlane CM, Emery AN, Nienow AW. Scale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol Bioeng 2001; 73:390-9. [PMID: 11320509 DOI: 10.1002/bit.1072] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For the first time a laboratory-scale two-compartment system was used to investigate the effects of pH fluctuations consequent to large scales of operation on microorganisms. pH fluctuations can develop in production-scale fermenters as a consequence of the combined effects of poor mixing and adding concentrated reagents at the liquid surface for control of the bulk pH. Bacillus subtilis was used as a model culture since in addition to its sensitivity to dissolved oxygen levels, the production of the metabolites, acetoin and 2,3-butanediol, is sensitive to pH values between 6.5 and 7.2. The scale-down model consisted of a stirred tank reactor (STR) and a recycle loop containing a plug flow reactor (PFR), with the pH in the stirred tank being maintained at 6.5 by addition of alkali in the loop. Different residence times in the loop simulated the exposure time of fluid elements to high values of pH in the vicinity of the addition point in large bioreactors and tracer experiments were performed to characterise the residence time distribution in it. Since the culture was sensitive to dissolved oxygen, for each experiment with pH control by adding base into the PFR, equivalent experiments were conducted with pH control by addition of base into the STR, thus ensuring that any dissolved oxygen effects were common to both types of experiments. The present study indicates that although biomass concentration remained unaffected by pH variations, product formation was influenced by residence times in the PFR of 60 sec or longer. These changes in metabolism are thought to be linked to both the sensitivity of the acetoin and 2,3-butanediol-forming enzymes to pH and to the inducing effects of dissociated acetate on the acetolactate synthase enzyme.
Collapse
Affiliation(s)
- A Amanullah
- Centre for Bioprocess Engineering, School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
33
|
Schügerl K. Development of bioreaction engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 70:41-76. [PMID: 11092128 DOI: 10.1007/3-540-44965-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In addition to summarizing the early investigations in bioreaction engineering, the present short review covers the development of the field in the last 50 years. A brief overview of the progress of the fundamentals is presented in the first part of this article and the key issues of bioreaction engineering are advanced in its second part.
Collapse
Affiliation(s)
- K Schügerl
- Institute for Technical Chemistry, University of Hannover, Germany.
| |
Collapse
|
34
|
Abstract
The aerobic fed-batch production of recombinant human growth hormone (rhGH) by Escherichia coli was studied. The goal was to determine the production and protein degradation pattern of this product during fed-batch cultivation and to what extent scale differences depend on the presence of a fed-batch glucose feed zone. Results of laboratory bench-scale, scale-down (SDR), and industrial pilot-scale (3-m(3)) reactor production were compared. In addition to the parameters of product yield and quality, also cell yield, respiration, overflow, mixed acid fermentation, glucose concentration, and cell lysis were studied and compared. The results show that oxygen limitation following glucose overflow was the critical parameter and not the glucose overflow itself. This was verified by the pattern of byproduct formation where formate was the dominating factor and not acetic acid. A correlation between the accumulation of formate, the degree of heterogeneity, and cell lysis was also visualized when recombinant protein was expressed. The production pattern could be mimicked in the SDR reactor for all parameters, except for product quantity and quality, where 30% fewer rhGH-degraded forms were present and where about 80% higher total yield was achieved, resulting in 10% greater accumulation of properly formed rhGH monomer.
Collapse
Affiliation(s)
- F Bylund
- Centre for Bioprocess Technology, Department of Biotechnology, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
35
|
Sonnleitner B. Instrumentation of biotechnological processes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 66:1-64. [PMID: 10592525 DOI: 10.1007/3-540-48773-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Modern bioprocesses are monitored by on-line sensing devices mounted either in situ or externally. In addition to sensor probes, more and more analytical subsystems are being exploited to monitor the state of a bioprocess on-line and in real time. Some of these subsystems deliver signals that are useful for documentation only, other, less delayed systems generate signals useful for closed loop process control. Various conventional and non-conventional monitoring instruments are evaluated; their usefulness, benefits and associated pitfalls are discussed.
Collapse
Affiliation(s)
- B Sonnleitner
- University of Applied Sciences, Winterthur, Switzerland.
| |
Collapse
|
36
|
Schilling BM, Pfefferle W, Bachmann B, Leuchtenberger W, Deckwer W. A special reactor design for investigations of mixing time effects in a scaled-down industrial L-lysine fed-batch fermentation process. Biotechnol Bioeng 1999; 64:599-606. [PMID: 10404240 DOI: 10.1002/(sici)1097-0290(19990905)64:5<599::aid-bit10>3.0.co;2-c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A specially designed model reactor based on a 42-L laboratory fermentor was equipped with six stirrers (Rushton turbines) and five cylindrical disks. In this model reactor, the mixing time, Theta(90), turned out to be 13 times longer compared with the 42-L standard laboratory fermentor fitted with two Rushton turbines and four wall-fixed longitudinal baffles. To prove the suitability of the model reactor for scaledown studies of mixing-time-dependent processes, parallel exponential fed-batch cultivations were carried out with the leucine-auxotrophic strain, Corynebacterium glutamicum DSM 5715, serving as a microbial test system. L&HYPHEN;Leucine, the process-limiting substrate, was fed onto the liquid surface of both reactors. Cultivations were conducted using the same inoculum material and equal oxygen supply. The model reactor showed reduced sugar consumption (-14%), reduced ammonium consumption (-19%), and reduced biomass formation (-7%), which resulted in a decrease in L-lysine formation (-12%). These findings were reflected in less specific enzyme activity, which was determined for citrate synthase (CS), phosphoenolpyruvate carboxylase (PEP-C), and aspartate kinase (AK). The reduced specific activity of CS correlated with lower CO(2) evolution (-36%) during cultivation. The model reactor represents a valuable tool to simulate the conditions of poor mixing and inhomogeneous substrate distribution in bioreactors of industrial scale. Copyright 1999 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- BM Schilling
- GBF-National Research Institute for Biotechnology, Biochemical Engineering Division, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Lloyd D, Thomas K, Price D, O'Neil B, Oliver K, Williams T. A membrane-inlet mass spectrometer miniprobe for the direct simultaneous measurement of multiple gas species with spatial resolution of 1 mm. J Microbiol Methods 1996. [DOI: 10.1016/0167-7012(96)00011-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Abstract
Bioprocesses are generally ill controlled. This is due to the fact that the measurement of relevant variables is difficult. Therefore, fundamental knowledge of metabolic interrelations is, at least in vivo, limited. In this article, some of the most important measurement techniques are reviewed in order to provide an evaluation of their current state. Emphasis is given to the underlying principles and on-line capability which allow to judge their importance and potential for exploitation resulting in well (maybe entirely) controlled bioprocesses in the future.
Collapse
Affiliation(s)
- G Locher
- Institute of Biotechnology, ETH Zürich Hönggerberg, Switzerland
| | | | | |
Collapse
|
40
|
Oeggerli A, Heinzle E. On-line Analysis of Volatiles in Fermenter Exhaust Gas using Mass Spectrometry. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s1474-6670(17)50375-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Kwong SCW, Rao G. Utility of culture redox potential for identifying metabolic state changes in Amino acid fermentation. Biotechnol Bioeng 1991; 38:1034-40. [DOI: 10.1002/bit.260380912] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
LI YONGFEN, HUANG YUE, YE LINFA, SUI PENG, WEN QINGQING. Production of Glutamic Acid by Immobilized Cells. Ann N Y Acad Sci 1990. [DOI: 10.1111/j.1749-6632.1990.tb18282.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Characterization of a biological test system for studies on insufficient mixing in bioreactors: H2 evolution from E. coli. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/bf00589149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Tanaka H, Ishikawa H, Osuga K, Takagi Y. Fermentative ability of Zymomonas mobilis under various oxygen supply conditions in batch culture. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0922-338x(90)90219-m] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Utilization of unhydrolyzed cheese whey for the production of extracellular polysaccharide by Xanthomonas cucurbitae PCSIR B-52. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0922-338x(90)90241-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Galindo E, Herrera R. Effects of different impeller combinations and agitation speeds on the culture of a highly oxygen-sensitive bacteria. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0300-9467(89)80013-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Griot M, Dettwiler B, Heinzle E, Mayer F, Dunn I. Simple and rapid gas-chromatographic determination of volatile metabolites in fermentation broths. Anal Chim Acta 1988. [DOI: 10.1016/s0003-2670(00)81335-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
|
49
|
|
50
|
|