1
|
Yang Q, Lin W, Xu J, Guo N, Zhao J, Wang G, Wang Y, Chu J, Wang G. Changes in Oxygen Availability during Glucose-Limited Chemostat Cultivations of Penicillium chrysogenum Lead to Rapid Metabolite, Flux and Productivity Responses. Metabolites 2022; 12:metabo12010045. [PMID: 35050169 PMCID: PMC8780904 DOI: 10.3390/metabo12010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Bioreactor scale-up from the laboratory scale to the industrial scale has always been a pivotal step in bioprocess development. However, the transition of a bioeconomy from innovation to commercialization is often hampered by performance loss in titer, rate and yield. These are often ascribed to temporal variations of substrate and dissolved oxygen (for instance) in the environment, experienced by microorganisms at the industrial scale. Oscillations in dissolved oxygen (DO) concentration are not uncommon. Furthermore, these fluctuations can be exacerbated with poor mixing and mass transfer limitations, especially in fermentations with filamentous fungus as the microbial cell factory. In this work, the response of glucose-limited chemostat cultures of an industrial Penicillium chrysogenum strain to different dissolved oxygen levels was assessed under both DO shift-down (60% → 20%, 10% and 5%) and DO ramp-down (60% → 0% in 24 h) conditions. Collectively, the results revealed that the penicillin productivity decreased as the DO level dropped down below 20%, while the byproducts, e.g., 6-oxopiperidine-2-carboxylic acid (OPC) and 6-aminopenicillanic acid (6APA), accumulated. Following DO ramp-down, penicillin productivity under DO shift-up experiments returned to its maximum value in 60 h when the DO was reset to 60%. The result showed that a higher cytosolic redox status, indicated by NADH/NAD+, was observed in the presence of insufficient oxygen supply. Consistent with this, flux balance analysis indicated that the flux through the glyoxylate shunt was increased by a factor of 50 at a DO value of 5% compared to the reference control, favoring the maintenance of redox status. Interestingly, it was observed that, in comparison with the reference control, the penicillin productivity was reduced by 25% at a DO value of 5% under steady state conditions. Only a 14% reduction in penicillin productivity was observed as the DO level was ramped down to 0. Furthermore, intracellular levels of amino acids were less sensitive to DO levels at DO shift-down relative to DO ramp-down conditions; this difference could be caused by different timescales between turnover rates of amino acid pools (tens of seconds to minutes) and DO switches (hours to days at steady state and minutes to hours at ramp-down). In summary, this study showed that changes in oxygen availability can lead to rapid metabolite, flux and productivity responses, and dynamic DO perturbations could provide insight into understanding of metabolic responses in large-scale bioreactors.
Collapse
|
2
|
Elsayed EA, Danial EN, Wadaan MA, El-Enshasy HA. Production of β-galactosidase in shake-flask and stirred tank bioreactor cultivations by a newly isolated Bacillus licheniformis strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
|
4
|
Rioseras B, López-García MT, Yagüe P, Sánchez J, Manteca Á. Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production. BIORESOURCE TECHNOLOGY 2014; 151:191-8. [PMID: 24240146 PMCID: PMC3858829 DOI: 10.1016/j.biortech.2013.10.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 05/11/2023]
Abstract
Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or directed mutagenesis, analysis of biophysical parameters, etc. In this work the relationship between differentiation and antibiotic production in lab-scale bioreactors was defined. Streptomyces coelicolor was used as a model strain. Morphological differentiation was comparable to that occurring during pre-sporulation stages in solid cultures: an initial compartmentalized mycelium suffers a programmed cell death, and remaining viable segments then differentiate to a second multinucleated antibiotic-producing mycelium. Differentiation was demonstrated to be one of the keys to interpreting biophysical fermentation parameters and to rationalizing the optimization of secondary metabolite production in bioreactors.
Collapse
Affiliation(s)
- Beatriz Rioseras
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - María Teresa López-García
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jesús Sánchez
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ángel Manteca
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
5
|
Spadiut O, Rittmann S, Dietzsch C, Herwig C. Dynamic process conditions in bioprocess development. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Oliver Spadiut
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| | - Simon Rittmann
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| | - Christian Dietzsch
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| | - Christoph Herwig
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| |
Collapse
|
6
|
Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS. Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 2012; 52:109-21. [PMID: 18629857 DOI: 10.1002/(sici)1097-0290(19961005)52:1<109::aid-bit11>3.0.co;2-j] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The classical method of metabolic engineering, identifying a rate-determining step in a pathway and alleviating the bottleneck by enzyme overexpression, has motivated much research but has enjoyed only limited practical success. Intervention of other limiting steps, of counterbalancing regulation, and of unknown coupled pathways often confounds this direct approach. Here the concept of inverse metabolic engineering is codified and its application is illustrated with several examples. Inverse metabolic engineering means the elucidation of a metabolic engineering strategy by: first, identifying, constructing, or calculating a desired phenotype; second, determining the genetic or the particular environmental factors conferring that phenotype; and third, endowing that phenotype on another strain or organism by directed genetic or environmental manipulation. This paradigm has been successfully applied in several contexts, including elimination of growth factor requirements in mammalian cell culture and increasing the energetic efficiency of microaerobic bacterial respiration. (c) 1996 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- J E Bailey
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Suphantharika M, Ison AP, Lilly MD, Buckland BC. The influence of dissolved oxygen tension on the synthesis of the antibiotic difficidin by bacillus subtilis. Biotechnol Bioeng 2012; 44:1007-12. [PMID: 18618920 DOI: 10.1002/bit.260440818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The antibiotic, difficidin, and its hydroxylated derivative oxydifficidin, were synthesized by cultures of Bacillus subtilis grown on a complex medium. Maximum titers of about 200 and 130 mg/L, respectively, were obtained. In fermentations where the dissolved oxygen tension (DOT) was controlled, the maximum specific growth rate was only reduced below 5% air saturation. DOT had little effect on the volumetric rateof synthesis of oxydifficidin but greatly influenced the rate for difficidin, which was reduced at DOT values below 40% air saturation. (c) 1994 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- M Suphantharika
- The Advanced Centre for Biochemical Engineering, Department of Chemical and Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | | | | | | |
Collapse
|
8
|
Olmos E, Mehmood N, Haj Husein L, Goergen JL, Fick M, Delaunay S. Effects of bioreactor hydrodynamics on the physiology of Streptomyces. Bioprocess Biosyst Eng 2012; 36:259-72. [PMID: 22923137 DOI: 10.1007/s00449-012-0794-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/19/2012] [Indexed: 02/02/2023]
Abstract
Streptomyces are filamentous bacteria which are widely used industrially for the production of therapeutic biomolecules, especially antibiotics. Bioreactor operating conditions may impact the physiological response of Streptomyces especially agitation and aeration as they influence hydromechanical stress, oxygen and nutrient transfer. The understanding of the coupling between physiological response and bioreactor hydrodynamics lies on a simultaneous description of the flow and transfers encountered by the bacteria and of the microbial response in terms of growth, consumption, morphology, production or intracellular signals. This article reviews the experimental and numerical works dedicated to the study of the coupling between bioreactor hydrodynamics and antibiotics producing Streptomyces. In a first part, the description of hydrodynamics used in these works is presented and then the main relations used. In a second part, the assumptions made in these works are discussed and put into emphasize. Lastly, the various Streptomyces physiological responses observed are detailed and compared.
Collapse
Affiliation(s)
- E Olmos
- CNRS, 54505, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | |
Collapse
|
9
|
Mehmood N, Olmos E, Goergen JL, Blanchard F, Ullisch D, Klöckner W, Büchs J, Delaunay S. Oxygen supply controls the onset of pristinamycins production by Streptomyces pristinaespiralis in shaking flasks. Biotechnol Bioeng 2011; 108:2151-61. [PMID: 21520016 DOI: 10.1002/bit.23177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/22/2011] [Accepted: 04/12/2011] [Indexed: 11/12/2022]
Abstract
Antibiotics are secondary metabolites, generally produced during stationary phase of growth under different nutritional and hydrodynamic stresses. However, the exact mechanisms of the induction of antibiotics production are still not clearly established. In a previous study, the induction of pristinamycins production by Streptomyces pristinaespiralis as well as product concentrations were correlated with power dissipation per unit of volume (P/V) in shaking flasks. In this study, detailed kinetics of growth, substrate consumption, oxygen transfer rate and pristinamycins production under varying P/V conditions have been obtained and analyzed. Our results showed that higher P/V resulted in a higher concentration of biomass and promoted an earlier nutrient limitation and ultimately an earlier induction of pristinamycins production. The maximal specific growth rate, specific oxygen consumption rate and specific consumption rate of glutamate increased with P/V while influence was less marked with specific consumption rate of glucose, arginine, ammonium ions and phosphate. When oxygen uptake rate (OUR) was limited by free-surface oxygen transfer, pristinamycins production was not detected despite the occurrence of nitrogen and/or phosphate sources limitation. The threshold value for OUR observed was around 25 mmol L(-1) h(-1). This suggested that a limitation in nitrogen and/or phosphate alone was not sufficient to induce pristinamycins production by S. pristinaespiralis pr11. To induce this production, the oxygen transfer had to be non-limiting.
Collapse
Affiliation(s)
- N Mehmood
- Laboratoire Réactions et Génie des Procédés-UPR CNRS 3349, Nancy-Université, ENSAIA-INPL, 2 Avenue de la Forêt de Haye B.P. 172 F-54505 Vandœuvre lès Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Frey AD, Shepherd M, Jokipii-Lukkari S, Häggman H, Kallio PT. The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Adv Microb Physiol 2011; 58:81-139. [PMID: 21722792 DOI: 10.1016/b978-0-12-381043-4.00003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive studies have revealed that large-scale, high-cell density bioreactor cultivations have significant impact on metabolic networks of oxygen-requiring production organisms. Oxygen transfer problems associated with fluid dynamics and inefficient mixing efficiencies result in oxygen gradients, which lead to reduced performance of the bioprocess, decreased product yields, and increased production costs. These problems can be partially alleviated by improving bioreactor configuration and setting, but significant improvements have been achieved by metabolic engineering methods, especially by heterologously expressing Vitreoscilla hemoglobin (VHb). Vast numbers of studies have been accumulating during the past 20 years showing the applicability of VHb to improve growth and product yields in a variety of industrially significant prokaryotic and eukaryotic hosts. The global view on the metabolism of globin-expressing Escherichia coli cells depicts increased energy generation, higher oxygen uptake rates, and a decrease in fermentative by-product excretion. Transcriptome and metabolic flux analysis clearly demonstrate the multidimensional influence of heterologous VHb on the expression of stationary phase-specific genes and on the regulation of cellular metabolic networks. The exact biochemical mechanisms by which VHb is able to improve the oxygen-limited growth remain poorly understood. The suggested mechanisms propose either the delivery of oxygen to the respiratory chain or the detoxification of reactive nitrogen species for the protection of cytochrome activity. The expression of VHb in E. coli bioreactor cultures is likely to assist bacterial growth through providing an increase in available intracellular oxygen, although to fully understand the exact role of VHb in vivo, further analysis will be required.
Collapse
|
11
|
Namdev PK, Irwin N, Thompson BG, Gray MR. Effect of oxygen fluctuations on recombinant Escherichia coli fermentation. Biotechnol Bioeng 2010; 41:666-70. [PMID: 18609603 DOI: 10.1002/bit.260410610] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Escherichia coli DH5alpha, carrying the pUC19 plasmid for the lacZ fragment of beta-galactosidase and ampicillin resistance, was grown in a batch fermentor under conditions of fluctuating oxygen supply. A Monte Carlo method was used to control the on/off supply of air to simulate circulation of cells in a large fermentor. Rapid changes in oxygen supply reduced the rates of oxygen uptake the carbon dioxide release and prolonged the active second growth phase in batch culture, compared to growth with continuous aeration. Amplification of the plasmid was observed during the stationary phase when air supplied continuously, but not during the Monte Carlo experiments.
Collapse
Affiliation(s)
- P K Namdev
- Department of Chemical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
12
|
Scale-up fermentation of echinocandin type antibiotic FR901379. J Biosci Bioeng 2010; 109:138-44. [DOI: 10.1016/j.jbiosc.2009.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/15/2009] [Accepted: 07/30/2009] [Indexed: 11/18/2022]
|
13
|
Lara AR, Galindo E, Ramírez OT, Palomares LA. Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol Biotechnol 2007; 34:355-81. [PMID: 17284782 DOI: 10.1385/mb:34:3:355] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/14/2023]
Abstract
The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogeneities, are surveyed.
Collapse
Affiliation(s)
- Alvaro R Lara
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología Universidad Nacional Autónoma de México (UNAM), Apdo. Postal. 510-3. Cuernavaca, Morelos, CP. 62250, México
| | | | | | | |
Collapse
|
14
|
Influence of agitation and aeration on growth and antibiotic production by Xenorhabdus nematophila. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9217-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Bhargava S, Wenger KS, Rane K, Rising V, Marten MR. Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source. Biotechnol Bioeng 2005; 89:524-9. [PMID: 15643626 DOI: 10.1002/bit.20355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors.
Collapse
Affiliation(s)
- Swapnil Bhargava
- University of Maryland, Baltimore County, Department of Chemical and Biochemical Engineering, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | | | |
Collapse
|
16
|
Sandoval-Basurto EA, Gosset G, Bolívar F, Ramírez OT. Culture ofEscherichia coliunder dissolved oxygen gradients simulated in a two-compartment scale-down system: Metabolic response and production of recombinant protein. Biotechnol Bioeng 2004; 89:453-63. [PMID: 15609273 DOI: 10.1002/bit.20383] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A significant problem of large-scale cultures, but scarcely studied for recombinant E. coli, is the presence of gradients in dissolved oxygen tension (DOT). In this study, the effect of DOT gradients on the metabolic response of E. coli and production of recombinant pre-proinsulin, accumulated as inclusion bodies, was determined. DOT gradients were simulated in a two-compartment scale-down system consisting of two interconnected stirred-tank bioreactors, one maintained at anoxic conditions and the other at a DOT of at least 6%. Cells were continuously circulated between both vessels to simulate circulation times (tc) of 20, 50, 90, and 180 sec. A complete kinetic and stoichiometric characterization was performed in the scale-down system as well as in control cultures maintained at constant DOT in the range of 0-20%. The performance of E. coli cultured under oscillating DOT was significantly affected, even at a tc of 20 sec corresponding to transient exposures of only 13.3 sec to anaerobic conditions. Specific growth rate decreased linearly with tc to a maximum reduction of 30% at the highest tc tested. The negative effect of DOT gradients was even more pronounced for the overall biomass yield on glucose and the maximum concentration and yield of pre-proinsulin. In these cases, the losses were 9%, 27%, and 20%, respectively, at tc of 20 sec and 65%, 94%, and 87%, respectively, at tc of 180 sec. Acetic, lactic, formic, and succinic acids accumulated during oscillatory DOT cultures, indicating that deviation of carbon flow to anaerobic metabolism was responsible for the observed losses. The results of this study indicate that even very short exposures to anaerobic conditions, typical of large-scale operations, can substantially reduce recombinant protein productivity. The information presented here is useful for establishing improved rational scale-up strategies and understanding the behavior of recombinant E. coli exposed to DOT gradients.
Collapse
Affiliation(s)
- Edgar A Sandoval-Basurto
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Apdo. Post. 510-3, Cuernavaca, Mor. 62250, Mexico
| | | | | | | |
Collapse
|
17
|
Rosa JC, Baptista Neto A, Hokka CO, Badino AC. Influence of dissolved oxygen and shear conditions on clavulanic acid production by Streptomyces clavuligerus. Bioprocess Biosyst Eng 2004; 27:99-104. [PMID: 15592878 DOI: 10.1007/s00449-004-0386-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/08/2004] [Indexed: 11/25/2022]
Abstract
Clavulanic acid (CA), a potent beta-lactamase inhibitor, is produced by a filamentous bacterium. Here, the effect of DO and shear, expressed as impeller tip velocity, on CA production was examined. Cultivations were performed in a 4 L fermentor with speeds of 600, 800 and 1,000 rpm and a fixed air flow rate (0.5 vvm). Also, cultivation with automatic control of dissolved oxygen, at 50% air saturation, by varying stirrer speed and using a mixture of air and O(2) (10% v/v) in the inlet gas, and a cultivation with fixed stirrer speed of 800 rpm and air flow rate of 0.5 vvm, enriched with 10% v/v O(2), were performed. Significant variations in CA titer, CA production rate and O(2) uptake-rate were observed. It was also found that the DO level has no remarkable effect on CA production once a critical level is surpassed. The most significant improvement in CA production was related to high stirrer speeds.
Collapse
Affiliation(s)
- J C Rosa
- Department of Chemical Engineering, Universidade Federal de São Carlos, Cx. Postal 676, CEP 13565-905, São Carlos SP, Brazil
| | | | | | | |
Collapse
|
18
|
Mathematical model of direct ethanol production from starch in immobilized recombinant yeast culture. Biochem Eng J 2004. [DOI: 10.1016/j.bej.2004.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Neubauer P, Häggström L, Enfors SO. Influence of substrate oscillations on acetate formation and growth yield inEscherichia coliglucose limited fed-batch cultivations. Biotechnol Bioeng 2004; 47:139-46. [DOI: 10.1002/bit.260470204] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Bhargava S, Wenger KS, Marten MR. Pulsed addition of limiting-carbon during Aspergillus oryzae fermentation leads to improved productivity of a recombinant enzyme. Biotechnol Bioeng 2003; 82:111-7. [PMID: 12569630 DOI: 10.1002/bit.10548] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fungal morphology in many filamentous fungal fermentations leads to high broth viscosity which limits oxygen mass transfer, and often results in reduced productivity. The objective in this study was to determine if a simple, fed-batch, process strategy-pulsed addition of limiting-carbon source-could be used to reduce fungal broth viscosity, and increase productivity of an industrially relevant recombinant enzyme (glucoamylase). As a control, three Aspergillus oryzae fed-batch fermentations were carried out with continuous addition of limiting-carbon. To determine the effect of pulse-feeding, three additional fermentations were carried out with limiting-carbon added in 90-second pulses, during repeated five-minute cycles. In both cases, overall carbon feed-rate was used to control dissolved oxygen concentration, such that increased oxygen availability led to increased addition of limiting-carbon. Pulse-fed fermentations were found to have smaller fungal mycelia, lower broth viscosity, and improved oxygen mass transfer. As a result, more carbon was added to pulse-fed fermentations that led to increased enzyme productivity by as much as 75%. This finding has significant implications for the bioprocessing industry, as a simple process modification which is likely to cost very little to implement in most production facilities, has the potential to substantially increase productivity.
Collapse
Affiliation(s)
- Swapnil Bhargava
- Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | |
Collapse
|
21
|
Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 2002; 79:568-79. [PMID: 12209828 DOI: 10.1002/bit.10441] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The classical method of metabolic engineering, identifying a rate-determining step in a pathway and alleviating the bottleneck by enzyme overexpression, has motivated much research but has enjoyed only limited practical success. Intervention of other limiting steps, of counter-balancing regulation, and of unknown coupled pathways often confounds this direct approach. Here the concept of inverse metabolic engineering is codified and its application is illustrated with several examples. Inverse metabolic engineering means the elucidation of a metabolic engineering strategy by: first, identifying, constructing, or calculating a desired phenotype; second, determining the genetic or the particular environmental factors conferring that phenotype; and third, endowing that phenotype on another strain or organism by directed genetic or environmental manipulation. This paradigm has been successfully applied in several contexts, including elimination of growth factor requirements in mammalian cell culture and increasing the energetic efficiency of microaerobic bacterial respiration.
Collapse
|
22
|
Osman JJ, Birch J, Varley J. The response of GS-NS0 myeloma cells to single and multiple pH perturbations. Biotechnol Bioeng 2002; 79:398-407. [PMID: 12115403 DOI: 10.1002/bit.10198] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Animal cells are cultured in several types of vessels at laboratory and industrial scale the most common being the stirred tank and the air-lift. Economically, it is preferable to culture animal cells at the largest possible scale but the perceived sensitivity of animal cells to hydrodynamic shear has, until now, limited the aeration and agitation rates used. This has been reported to cause inhomogeneities in operational parameters such as dissolved oxygen concentration, temperature and pH. pH is of special interest during the latter stages of many animal cell fermentation because alkali additions, used for pH control, can cause large local pH perturbations of varying size and duration. The effect of single and multiple pH perturbations on the cell growth of a widely used GS-NS0 mouse myeloma cell line grown in batch culture was investigated. The effect of perturbation amplitude and duration was investigated using a single stirred tank reactor (STR). In the single STR system cells were subjected to one pH 8.0 or 9.0 perturbation ranging in duration from 0-90 minutes. No measurable decrease in viable cell number was seen for pH 8.0 perturbations of any duration whereas pH 9.0 perturbations lasting for 10 minutes caused a 15% decrease in viable cell number. The proportion of viable cells decreased with increasing perturbation time and a 90-minute exposure killed all of the cells. The effect of multiple pH perturbations on GS-NS0 cells was investigated using two connected STR's. More specifically the number of perturbations and the perturbation frequency were investigated. Cells were subjected to between 0 and 100 perturbations at pH 8.0; the time between each perturbation (frequency) was 6 minutes and each perturbation lasted for 200 seconds. Viable cell number decreased with increasing perturbation number, with 100 perturbations causing death of 27.5% of cells. Cells were also exposed to 10 perturbations at pH 9.0, each of 200 second duration at frequencies of either 6, 18 or 60 minutes. Approximately 8 times more cells were killed with perturbations at a 6-minute frequency (28.3% cell death) than at a 60-minute frequency (3.4% cell death).
Collapse
Affiliation(s)
- Jason J Osman
- Biotechnology and Biochemical Engineering Group, Department of Food Science and Technology, The University of Reading, Whiteknights, UK
| | | | | |
Collapse
|
23
|
Pollard DJ, Kirschner TF, Hernandez D, Hunt G, Olewinski R, Salmon PM. Pilot-scale process sensitivity studies for the scaleup of a fungal fermentation for the production of pneumocandins. Biotechnol Bioeng 2002; 78:270-9. [PMID: 11920443 DOI: 10.1002/bit.10204] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The filamentous fungus Glarea lozoyensis produces a novel, pharmaceutically important pneumocandin (B(0)) that is used to synthesize a lipopeptide which demonstrates cidal activity against clinically relevant pathogens. A range of unwanted pneumocandin analogs are also produced by the organism. To maintain the unwanted impurities to acceptable levels upon scaleup, a good understanding of the impact of chemical and physical environment on the cell physiology is required, which benefits downstream processing. Pilot-scale studies were performed to determine the impact of dissolved oxygen, temperature, pH, and carbon dioxide on the process. Experiments included multiple fermenters (up to seven) at 0.07 and 0.8 m(3) scale using single source medium sterilization and inoculum. Gas blending was used to separate effects of dissolved oxygen from agitation. The process was significantly influenced by dissolved oxygen level. The critical dissolved oxygen tension (C(crit)) for growth was below 2% air saturation. The C(crit) for production of pneumocandin B(0) was 20% air saturation, with a significant reduction of the specific production rate below this value. In contrast, low dissolved oxygen levels produced a substantial increase of pneumocandins B(1), B(5), and E(0), while high dissolved oxygen levels produced a disproportionate increase of D(5). This sensivity to dissolved oxygen was independent of agitation within a power range of 2-15 kW/m(3). Broth viscosity was impacted below 10% dissolved oxygen, suggesting an effect on morphology. The process was shown to be sensitive to temperature but relatively insensitive to pH and carbon dioxide (in the exhaust gas) within the ranges studied. This scaledown analysis explained phenomena seen at pilot scale and helped define operating boundary conditions for successful scale up to 19 m(3).
Collapse
Affiliation(s)
- D J Pollard
- Biocatalysis and Fermentation Development, Bioprocess R&D Laboratories, Merck & Co., PO Box 2000, Rahway, NJ 97065, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Amanullah A, McFarlane CM, Emery AN, Nienow AW. Scale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol Bioeng 2001; 73:390-9. [PMID: 11320509 DOI: 10.1002/bit.1072] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For the first time a laboratory-scale two-compartment system was used to investigate the effects of pH fluctuations consequent to large scales of operation on microorganisms. pH fluctuations can develop in production-scale fermenters as a consequence of the combined effects of poor mixing and adding concentrated reagents at the liquid surface for control of the bulk pH. Bacillus subtilis was used as a model culture since in addition to its sensitivity to dissolved oxygen levels, the production of the metabolites, acetoin and 2,3-butanediol, is sensitive to pH values between 6.5 and 7.2. The scale-down model consisted of a stirred tank reactor (STR) and a recycle loop containing a plug flow reactor (PFR), with the pH in the stirred tank being maintained at 6.5 by addition of alkali in the loop. Different residence times in the loop simulated the exposure time of fluid elements to high values of pH in the vicinity of the addition point in large bioreactors and tracer experiments were performed to characterise the residence time distribution in it. Since the culture was sensitive to dissolved oxygen, for each experiment with pH control by adding base into the PFR, equivalent experiments were conducted with pH control by addition of base into the STR, thus ensuring that any dissolved oxygen effects were common to both types of experiments. The present study indicates that although biomass concentration remained unaffected by pH variations, product formation was influenced by residence times in the PFR of 60 sec or longer. These changes in metabolism are thought to be linked to both the sensitivity of the acetoin and 2,3-butanediol-forming enzymes to pH and to the inducing effects of dissociated acetate on the acetolactate synthase enzyme.
Collapse
Affiliation(s)
- A Amanullah
- Centre for Bioprocess Engineering, School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
25
|
Baptista-Neto A, Gouveia E, Badino-Jr A, Hokka C. Phenomenological model of the clavulanic acid production process utilizing Streptomyces clavuligerus. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2000. [DOI: 10.1590/s0104-66322000000400043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - C.O. Hokka
- Universidade Federal de São Carlos, Brazil
| |
Collapse
|
26
|
Gomes J, Menawat AS. Precise control of dissolved oxygen in bioreactors – a model-based geometric algorithm. Chem Eng Sci 2000. [DOI: 10.1016/s0009-2509(99)00305-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Pollard DJ, Ison AP, Shamlou PA, Lilly MD. Reactor heterogeneity with saccharopolyspora erythraea airlift fermentations. Biotechnol Bioeng 1998; 58:453-63. [PMID: 10099281 DOI: 10.1002/(sici)1097-0290(19980605)58:5<453::aid-bit1>3.0.co;2-c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bioreactor heterogeneity has been studied in a multiconfigurable pilot-scale airlift reactor (0.25 m3) which created different degrees of heterogeneity. The impact of the two sparger configurations, i.e. in the draft tube or the annulus, in conjunction with a marine propeller fitted at the base of the downcomer, on the physiology of Saccharopolyspora erythraea was studied. Cellular growth, morphology, and productivity were compared between airlift and stirred tank reactors. Dissolved oxygen tension heterogeneity caused by differences in dissolved oxygen tension around the vessel did not affect growth, but the reduction of heterogeneity improved the specific erythromycin production rate and final specific production. Erythromycin production was shown to be proportional to the energy dissipation rate. The enhancement of bubble coalescence with increasing apparent viscosity led to the reduction of the sectional gas holdups and the improvement of liquid mixing. The extent of the changes with increasing apparent viscosity was dependent on the broth morphology, reactor configurations, and operating conditions. Copyright 1998 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- DJ Pollard
- The Advanced Centre for Biochemical Engineering, Department of Chemical and Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | | | | | | |
Collapse
|
28
|
Diaz C, Dieu P, Feuillerat C, Lelong P, Salomé M. Simultaneous adaptive predictive control of the partial pressures of dissolved oxygen (pO2) and dissolved carbon dioxide (pCO2) in a laboratory-scale bioreactor. J Biotechnol 1996. [DOI: 10.1016/s0168-1656(96)01637-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Milner J, Martin D, Smith A. Oxygen transfer conditions in the production of alpha-amylase by Bacillus amyloliquefaciens. Enzyme Microb Technol 1996. [DOI: 10.1016/0141-0229(95)00155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Suphantharika M, Ison AP, Lilly MD. The effect of cycling dissolved oxygen tension on the synthesis of the antibiotic difficidin by bacillus subtilis. Bioprocess Biosyst Eng 1995. [DOI: 10.1007/bf01767464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Nakamura Y, Origasa H, Sawada T. Mathematical modeling for diauxic growth in immobilized cell culture. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0922-338x(94)90281-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|