1
|
Kopp J, Kolkmann AM, Veleenturf PG, Spadiut O, Herwig C, Slouka C. Boosting Recombinant Inclusion Body Production-From Classical Fed-Batch Approach to Continuous Cultivation. Front Bioeng Biotechnol 2019; 7:297. [PMID: 31737617 PMCID: PMC6834550 DOI: 10.3389/fbioe.2019.00297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022] Open
Abstract
State of the art microbial recombinant protein production is regularly performed in fed-batch based cultivations. However, these cultivations suffer from highly time-dependent changes in productivity and product quality, leading to high variations in the downstream process. Continuous biomanufacturing offers the possibility of a time independent process, boosting the time-space-yield of the recombinantly produced protein and further reducing costs for production, also as downstream gets more predictive. In the current work, the continuous production of a pharmaceutically relevant protein in form of an inclusion body in E. coli BL21(DE3) was investigated in single vessel cultivations by varying dilution rates using glycerol as carbon source, inducer (lactose or IPTG) and respective inducer concentrations. Attempts to increase low specific productivities observed in single vessel continuous cultivations, led to the establishment of a continuously operated cascade of two stirred tank reactors to spatially separate biomass formation from recombinant protein production. Process performance was substantially improved compared to a single vessel chemostat culture, as specific productivity and space-time yield were boosted using an optimized cascaded process by about a factor of 100. This study shows the potential of a two-stage continuous process as promising alternative to benchmark fed-batch processes achieving constant inclusion body production at a time-independent level.
Collapse
Affiliation(s)
- Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Anna-Maria Kolkmann
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Patrick Gwen Veleenturf
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Christoph Slouka
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
2
|
Abstract
Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.
Collapse
|
3
|
Osman A, Tzortzis G, Rastall RA, Charalampopoulos D. High yield production of a soluble bifidobacterial β-galactosidase (BbgIV) in E. coli DH5α with improved catalytic efficiency for the synthesis of prebiotic galactooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2213-2223. [PMID: 23383752 DOI: 10.1021/jf304792g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The bifidobacterial β-galactosidase (BbgIV) was produced in E. coli DH5α at 37 and 30 °C in a 5 L bioreactor under varied conditions of dissolved oxygen (dO2) and pH. The yield of soluble BbgIV was significantly (P < 0.05) increased once the dO2 dropped to 0-2% and remained at such low values during the exponential phase. Limited dO2 significantly (P < 0.05) increased the plasmid copy number and decreased the cells growth rate. Consequently, the BbgIV yield increased to its maximum (71-75 mg per g dry cell weight), which represented 20-25% of the total soluble proteins in the cells. In addition, the specific activity and catalytic efficiency of BbgIV were significantly (P < 0.05) enhanced under limited dO2 conditions. This was concomitant with a change in the enzyme secondary structure, suggesting a link between the enzyme structure and function. The knowledge generated from this work is very important for producing BbgIV as a biocatalyst for the development of a cost-effective process for the synthesis of prebiotic galactooligosaccharides from lactose.
Collapse
Affiliation(s)
- Ali Osman
- Department of Food and Nutritional Sciences, The University of Reading , PO Box 226, Whiteknights, Reading, Berkshire, RG6 6AP, United Kingdom
| | | | | | | |
Collapse
|
4
|
Abstract
Plasmid DNA (pDNA) is the base for promising DNA vaccines and gene therapies against many infectious, acquired, and genetic diseases, including HIV-AIDS, Ebola, Malaria, and different types of cancer, enteric pathogens, and influenza. Compared to conventional vaccines, DNA vaccines have many advantages such as high stability, not being infectious, focusing the immune response to only those antigens desired for immunization and long-term persistence of the vaccine protection. Especially in developing countries, where conventional effective vaccines are often unavailable or too expensive, there is a need for both new and improved vaccines. Therefore the demand of pDNA is expected to rise significantly in the near future. Since the injection of pDNA usually only leads to a weak immune response, several milligrams of DNA vaccine are necessary for immunization protection. Hence, there is a special interest to raise the product yield in order to reduce manufacturing costs. In this chapter, the different stages of plasmid DNA production are reviewed, from the vector design to downstream operation options. In particular, recent advances on cell engineering for improving plasmid DNA production are discussed.
Collapse
Affiliation(s)
- Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico.
| | | | | |
Collapse
|
5
|
Ramérez DM, Bentley WE. Enhancement of recombinant protein synthesis and stability via coordinated amino acid addition. Biotechnol Bioeng 2010; 41:557-65. [PMID: 18609587 DOI: 10.1002/bit.260410508] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, effective feeding schemes that would minimize stress responses to cloned-protein overexpression are investigated. The cloned-protein (chloramphenicolacetyl-transferase, CAT) contains a high aromatic amino acid content, most notably a high phenylalanine content. Experiments performed on Escherichia coli RR1 [pBR329] (constitutive promoter) and E. coli JM105 [pSH101] (inducible promoter) demonstrated that phenylalanine addition increases the rate of synthesis and yield of CAT. A previous study correlating inducer strength with CAT expression in E. coli JM105 [pSH101] indicated that the highest expression rate was accompanied by the highest apparent rate of protein degradation. In this work, the combined addition of isopropyl-beta-D-thiogalactopyranoside (IPTG) and phenylalanine at intermediate levels resulted in substantial increase of CAT synthesis and partial reduction of protein degradation. Furthermore, transmission electron micrographs verified the absence of inclusion bodies, which, along with proteases, were suspected to reduce protein activity. The research demonstrates that significant enhancement in production and stability of heterologous proteins is possible by designing feeding strategies that incorporate knowledge of the interaction between primary cellular metabolism and foreign protein expression.
Collapse
Affiliation(s)
- D M Ramérez
- Center for Agricultural Biotechnology and Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
6
|
Chou CH, Bennett GN, San KY. Genetic manipulation of stationary-phase genes to enhance recombinant protein production in Escherichia coli. Biotechnol Bioeng 2009; 50:636-42. [PMID: 18627072 DOI: 10.1002/(sici)1097-0290(19960620)50:6<636::aid-bit4>3.0.co;2-l] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genetic manipulation of the host strain, by which cell physiology could be modulated, was exploited to enhance recombinant protein production in Escherichia coli. The effects of an inactivated stationary-phase gene (rmf or katF) on recombinant protein production in strains with two different expression systems (the pH-inducible and the lac promoters) were investigated. An improvement of recombinant protein production in the katF mutant at low growth rates was observed for both expression systems. A fourfold and a 30% increase in the volumetric recombinant protein activity were observed for the pH-inducible and the lac promoter system, respectively. The effect of the rmf mutation, on the other hand, depends on the expression system. A twofold increase in the volumetric recombinant protein activity was found for the pH-inducible promoter system, but there was no improvement for the lac promoter system. Improvement in culture performance for slow-growing cultures may have an impact on the design strategy of the host/vector system used in fed-batch cultures, where the specific growth rate is usually slow. The information may also be useful for developing optimal host/vector gene expression systems for recombinant protein production.
Collapse
Affiliation(s)
- C H Chou
- Department of Chemical Engineering, Institute of Biosciences and Bioengineering, Rice University, PO Box 1892, Houston, Texas 77251-1892, USA
| | | | | |
Collapse
|
7
|
Robas N, Zouheiry H, Branlant G, Branlant C. Improved penicillin amidase production using a genetically engineered mutant of Escherichia coli ATCC 11105. Biotechnol Bioeng 2009; 41:14-24. [PMID: 18601241 DOI: 10.1002/bit.260410104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene.
Collapse
Affiliation(s)
- N Robas
- Laboratoire d'Enzymologie et de Génie Génétique, Université de Nancy I, URA CNRS 457, Bld des Aiguillettes, BP 239-54506 Vandoeuvre-Les-Nancy, Cedex, France
| | | | | | | |
Collapse
|
8
|
Yau SY, Keshavarz-Moore E, Ward J. Host strain influences on supercoiled plasmid DNA production inEscherichia coli: Implications for efficient design of large-scale processes. Biotechnol Bioeng 2008; 101:529-44. [DOI: 10.1002/bit.21915] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Brandes L, Wu X, Bode J, Rhee JII, Schügerl K. Fed-batch cultivation of recombinantescherichia coliJM103 and production of the fusion protein SPA::EcoRI in a 60-L working volume airlift tower loop reactor. Biotechnol Bioeng 2004; 42:205-14. [DOI: 10.1002/bit.260420208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Singh A, Singh S, Waheed SM, Khandelwal P, Bhatnagar R. Expression of anthrax lethal factor gene by osmolyte induction. FEMS Microbiol Lett 2002; 209:301-5. [PMID: 12007822 DOI: 10.1111/j.1574-6968.2002.tb11148.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The anthrax toxin consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA mediates the entry of LF and EF to the cytosol where they exert their effects. Although PA is the major component of the vaccines against anthrax, LF has also been found to play an important role in enhancing protective immunity. We have developed an osmolyte-inducible LF expression system. The protein expression system contributed no additional amino acids to the recombinant LF making it suitable for the human vaccine trials.
Collapse
Affiliation(s)
- Aparna Singh
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
11
|
Gschaedler A, Robas N, Boudrant J, Branlant C. Effects of pulse addition of carbon sources on continuous cultivation of Escherichia coli containing a recombinant E. coli gapA gene. Biotechnol Bioeng 1999; 63:712-20. [PMID: 10397828 DOI: 10.1002/(sici)1097-0290(19990620)63:6<712::aid-bit9>3.0.co;2-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
At high glucose concentrations, Escherichia coli produces acetate (Crabtree effect). To look for the influence of glucose and/or acetate in the medium on the expression of a recombinant gene in E. coli, the effect of a pulse addition of glucose, on transcription of a cloned E. coli gapA gene and the resulting glyceraldehyde-3P-dehydrogenase activity (GAPDH), was tested during continuous cultivation of E. coli HB101 transformed with the plasmid pBR::EcogapA. Stable continuous cultures were established in a semi-synthetic medium supplemented with 5 g/L of glucose. After the addition of 7 g of glucose within a few seconds, gapA gene expression was strongly and very rapidly induced. As shown by primer-extension analysis, promoter P1, one of the four transcriptional promoters of the gapA gene, was strongly activated, and GAPDH activity increased. However, after rapid glucose consumption, acetate was produced and acetate concentrations above 2 g/L induced stress conditions. This is shown by a strong activation of promoter P2, that is recognized by the stress specific Esigma32 RNA polymerase. During this period, the total cellular RNA content was strongly diminished. Later, when acetate was partially consumed a high level of total RNA was restored, translation was efficient and a regular increase of the GAPDH-specific activity was observed. The transitions between glucose metabolism, acetate production and the end of acetate consumption, were marked by large increases in RNase and protease activities. For comparison, pulse-addition experiments were also performed with serine and alanine. A transient increase of GAPDH production associated with an increase in biomass was also found for serine that can be utilized as an energy source, whereas the addition of alanine, which is only incorporated into newly synthesized proteins, did not increase GAPDH production. The implication of these data for overproduction of recombinant proteins in E. coli is discussed.
Collapse
Affiliation(s)
- A Gschaedler
- Laboratoire des Sciences du Génie Chimique, CNRS, UPR 6811, ENSAIA, BP 172, F-54505 Vandoeuvre lès Nancy, France
| | | | | | | |
Collapse
|
12
|
Rhee JI, Schügerl K. Continuous cultivation of recombinant Escherichia coli JM109 in a two-stage cascade reactor and production of the fusion protein EcoRI::SPA. Process Biochem 1998. [DOI: 10.1016/s0032-9592(97)00097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Chou CH, Aristidou AA, Meng SY, Bennett GN, San KY. Characterization of a pH-inducible promoter system for high-level expression of recombinant proteins inEscherichia coli. Biotechnol Bioeng 1995; 47:186-92. [DOI: 10.1002/bit.260470210] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Hahm DH, Kim SH, Pan J, Rhee JS. Maximum yield of foreign lipase in Escherichia coli HB101 limited by duration of protein expression. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(95)90609-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abstract
The expression of a foreign protein(s) in a recombinant host cell or organism often utilizes a significant amount of the host cell's resources, removing those resources away from host cell metabolism and placing a metabolic load (metabolic drain, metabolic burden) on the host. As a consequence of the imposed metabolic load, the biochemistry and physiology of the host may be dramatically altered. The numerous physiological changes that may occur often lowers the amount of the target foreign protein that is produced and eventually recovered from the recombinant organism. In this review the physiological changes to host cells, the causes of the phenomenon of metabolic load, and several strategies to avoid some of the problems associated with metabolic load are elaborated and discussed.
Collapse
Affiliation(s)
- B R Glick
- Department of Biology, University of Waterloo, Ontario, Canada
| |
Collapse
|
16
|
Jin S, Ye K, Shimizu K. Efficient fuzzy control strategies for the application of pH-stat to fed-batch cultivation of genetically engineered Escherichia coli. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 1994; 61:273-281. [PMID: 7765585 DOI: 10.1002/jctb.280610316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the cultivation of genetically engineered Escherichia coli it is very important to control the substrate concentration at an appropriate level in order to avoid the accumulation of acetate, thereby elevating the expression level of plasmid-encoded protein. In this paper, a pH-stat mode of fuzzy control was considered for the overexpression of beta-galactosidase in the fed-batch cultivation of recombinant E. coli. In the simple pH-stat fuzzy control, the response of pH change in the culture broth to the feeding rate of glucose was used to estimate the glucose consumption rate. In the modified pH-stat fuzzy control, the glucose consumption rate was accurately estimated by using pH change and the change in the carbon dioxide content of the exhaust gas. With this control strategy, the cell density could be increased to 72 g DCW dm-3, which was twofold higher than that attained in the cultivation with the simple pH-stat fuzzy control. The bulk beta-galactosidase concentration was increased to 4150 U cm-3, which was threefold higher than when the simple pH-stat control was used.
Collapse
Affiliation(s)
- S Jin
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Fukuoka, Japan
| | | | | |
Collapse
|