1
|
Ropers D, Couté Y, Faure L, Ferré S, Labourdette D, Shabani A, Trouilh L, Vasseur P, Corre G, Ferro M, Teste MA, Geiselmann J, de Jong H. Multiomics Study of Bacterial Growth Arrest in a Synthetic Biology Application. ACS Synth Biol 2021; 10:2910-2926. [PMID: 34739215 DOI: 10.1021/acssynbio.1c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the scalability of a previously developed growth switch based on external control of RNA polymerase expression. Our results indicate that, in liter-scale bioreactors operating in fed-batch mode, growth-arrested Escherichia coli cells are able to convert glucose to glycerol at an increased yield. A multiomics quantification of the physiology of the cells shows that, apart from acetate production, few metabolic side effects occur. However, a number of specific responses to growth slow-down and growth arrest are launched at the transcriptional level. These notably include the downregulation of genes involved in growth-associated processes, such as amino acid and nucleotide metabolism and translation. Interestingly, the transcriptional responses are buffered at the proteome level, probably due to the strong decrease of the total mRNA concentration after the diminution of transcriptional activity and the absence of growth dilution of proteins. Growth arrest thus reduces the opportunities for dynamically adjusting the proteome composition, which poses constraints on the design of biotechnological production processes but may also avoid the initiation of deleterious stress responses.
Collapse
Affiliation(s)
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | | | - Sabrina Ferré
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Delphine Labourdette
- GeT-Biopuces, TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Arieta Shabani
- Université Grenoble Alpes, Inria, 38000 Grenoble, France
| | - Lidwine Trouilh
- GeT-Biopuces, TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | | | - Myriam Ferro
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Marie-Ange Teste
- GeT-Biopuces, TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Johannes Geiselmann
- Université Grenoble Alpes, Inria, 38000 Grenoble, France
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Hidde de Jong
- Université Grenoble Alpes, Inria, 38000 Grenoble, France
| |
Collapse
|
2
|
Production of Lysostaphin by Nonproprietary Method Utilizing a Promoter from Toxin–Antitoxin System. Mol Biotechnol 2019; 61:774-782. [DOI: 10.1007/s12033-019-00203-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Uncoupling Fermentative Synthesis of Molecular Hydrogen from Biomass Formation in Thermotoga maritima. Appl Environ Microbiol 2018; 84:AEM.00998-18. [PMID: 29959252 DOI: 10.1128/aem.00998-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/24/2018] [Indexed: 01/08/2023] Open
Abstract
When carbohydrates are fermented by the hyperthermophilic anaerobe Thermotoga maritima, molecular hydrogen (H2) is formed in strict proportion to substrate availability. Excretion of the organic acids acetate and lactate provide an additional sink for removal of excess reductant. However, mechanisms controlling energy management of these metabolic pathways are largely unexplored. To investigate this topic, transient gene inactivation was used to block lactate production as a strategy to produce spontaneous mutant cell lines that overproduced H2 through mutation of unpredicted genetic targets. Single-crossover homologous chromosomal recombination was used to disrupt lactate dehydrogenase (encoded by ldh) with a truncated ldh fused to a kanamycin resistance cassette expressed from a native P groESL promoter. Passage of the unstable recombinant resulted in loss of the genetic marker and recovery of evolved cell lines, including strain Tma200. Relative to the wild type, and considering the mass balance of fermentation substrate and products, Tma200 grew more slowly, produced H2 at levels above the physiologic limit, and simultaneously consumed less maltose while oxidizing it more efficiently. Whole-genome resequencing indicated that the ABC maltose transporter subunit, encoded by malK3, had undergone repeated mutation, and high-temperature anaerobic [14C]maltose transport assays demonstrated that the rate of maltose transport was reduced. Transfer of the malK3 mutation into a clean genetic background also conferred increased H2 production, confirming that the mutant allele was sufficient for increased H2 synthesis. These data indicate that a reduced rate of maltose uptake was accompanied by an increase in H2 production, changing fermentation efficiency and shifting energy management.IMPORTANCE Biorenewable energy sources are of growing interest to mitigate climate change, but like other commodities with nominal value, require innovation to maximize yields. Energetic considerations constrain production of many biofuels, such as molecular hydrogen (H2) because of the competing needs for cell mass synthesis and metabolite formation. Here we describe cell lines of the extremophile Thermotoga maritima that exceed the physiologic limits for H2 formation arising from genetic changes in fermentative metabolism. These cell lines were produced using a novel method called transient gene inactivation combined with adaptive laboratory evolution. Genome resequencing revealed unexpected changes in a maltose transport protein. Reduced rates of sugar uptake were accompanied by lower rates of growth and enhanced productivity of H2.
Collapse
|
4
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018; 106:803-822. [DOI: 10.1016/j.ijbiomac.2017.08.080] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/29/2022]
|
5
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2017.08.080 10.1242/jeb.069716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Jaishankar J, Srivastava P. Molecular Basis of Stationary Phase Survival and Applications. Front Microbiol 2017; 8:2000. [PMID: 29085349 PMCID: PMC5650638 DOI: 10.3389/fmicb.2017.02000] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/28/2017] [Indexed: 12/04/2022] Open
Abstract
Stationary phase is the stage when growth ceases but cells remain metabolically active. Several physical and molecular changes take place during this stage that makes them interesting to explore. The characteristic proteins synthesized in the stationary phase are indispensable as they confer viability to the bacteria. Detailed knowledge of these proteins and the genes synthesizing them is required to understand the survival in such nutrient deprived conditions. The promoters, which drive the expression of these genes, are called stationary phase promoters. These promoters exhibit increased activity in the stationary phase and less or no activity in the exponential phase. The vectors constructed based on these promoters are ideal for large-scale protein production due to the absence of any external inducers. A number of recombinant protein production systems have been developed using these promoters. This review describes the stationary phase survival of bacteria, the promoters involved, their importance, regulation, and applications.
Collapse
Affiliation(s)
- Jananee Jaishankar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
7
|
Huber R, Roth S, Rahmen N, Büchs J. Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation. BMC Biotechnol 2011; 11:22. [PMID: 21414195 PMCID: PMC3068942 DOI: 10.1186/1472-6750-11-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 03/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments. RESULTS We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system E.coli BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the E.coli cells via a phosphate limitation. CONCLUSIONS The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant E.coli-strains.
Collapse
Affiliation(s)
- Robert Huber
- RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany.
| | | | | | | |
Collapse
|
8
|
Xu Y, Rosenkranz S, Weng CL, Scharer JM, Moo-Young M, Chou CP. Characterization of the T7 promoter system for expressing penicillin acylase in Escherichia coli. Appl Microbiol Biotechnol 2006; 72:529-36. [PMID: 16411086 DOI: 10.1007/s00253-005-0293-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/04/2005] [Accepted: 12/07/2005] [Indexed: 11/28/2022]
Abstract
The pac gene encoding penicillin acylase (PAC) was overexpressed under the regulation of the T7 promoter in Escherichia coli. PAC, with its complex formation mechanism, serves as a unique target protein for demonstration of several key strategies for enhancing recombinant protein production. The current T7 system for pac overexpression was fraught with various technical hurdles. Upon the induction with a conventional inducer of isopropyl-beta-D-thiogalactopyranoside (IPTG), the production of PAC was limited by the accumulation of PAC precursors (proPAC) as inclusion bodies and various negative cellular responses such as growth inhibition and cell lysis. The expression performance could be improved by the coexpression of degP encoding a periplasmic protein with protease and chaperone activities. In addition to IPTG, arabinose was shown to be another effective inducer. Interestingly, arabinose not only induced the current T7 promoter system for pac expression but also facilitated the posttranslational processing of proPAC for maturation, resulting in significant enhancement for the production of PAC. Glycerol appeared to have an effect similar to, but not as significant as, arabinose for enhancing the production of PAC. The study highlights the importance of developing suitable genetically engineered strains with culture conditions for enhancing recombinant protein production in E. coli.
Collapse
Affiliation(s)
- Yali Xu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 Canada
| | | | | | | | | | | |
Collapse
|
9
|
Narayanan N, Xu Y, Chou CP. High-Level Gene Expression for Recombinant Penicillin Acylase Production Using thearaBPromoter System inEscherichia coli. Biotechnol Prog 2006. [DOI: 10.1002/bp060135u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Prytz I, Sandén AM, Nyström T, Farewell A, Wahlström A, Förberg C, Pragai Z, Barer M, Harwood C, Larsson G. Fed-batch production of recombinant beta-galactosidase using the universal stress promoters uspA and uspB in high cell density cultivations. Biotechnol Bioeng 2003; 83:595-603. [PMID: 12827701 DOI: 10.1002/bit.10716] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A high-level production system using the universal stress promoters uspA and uspB in a fed-batch cultivation based on minimal medium was designed. In development it was shown that a standard industrial fed-batch protocol could not be used for this purpose since it failed to induce the levels of product as compared to the basal level. Instead, a batch protocol followed by a low constant feed of glucose was shown to give full induction. The levels of the product protein, beta-galactosidase, corresponded to approximately 25% of the total protein. Higher levels were found using the uspA than uspB vectors where uspA showed considerably higher basal level. The data indicate that the sigma(70) regulated promoter, uspA, although affected by the alarmone guanosine tetraphosphate, ppGpp, worked partly in a similar manner to constitutive promoters. An industrial high cell density fed-batch cultivation on the basis of the suggested fed-batch protocol and the uspA promoter gave a final beta-galatosidase concentration of 7 g/L and a final cell concentration of 65 g/L. The heterogeneity in production of the individual cell was measured by fluorescence microscopy. The data show that there is a process time independent heterogeneity in production, which is suggested to be caused by heterogeneity in the substrate uptake rate of the individual cell.
Collapse
Affiliation(s)
- Ingela Prytz
- The Swedish Centre for Bioprocess Technology, Stockholm Centre for Physics, Astronomy and Biotechnology, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rowe DC, Summers DK. The quiescent-cell expression system for protein synthesis in Escherichia coli. Appl Environ Microbiol 1999; 65:2710-5. [PMID: 10347065 PMCID: PMC91400 DOI: 10.1128/aem.65.6.2710-2715.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The quiescent-cell expression system is a radical alternative to conventional fermentation for protein overproduction in Escherichia coli. It is dependent on the controlled overexpression of a small RNA called Rcd in hns mutant strains to generate nongrowing, quiescent cells which are not nutrient limited. Quiescent cells no longer produce biomass and have their metabolic resources channelled toward the expression of plasmid-based genes. The biosynthetic capacity of the system is demonstrated by its ability to express chloramphenicol acetyltransferase to more than 40% of total cell protein. Quiescent cells may provide an ideal environment for the expression of toxic as well as benign proteins.
Collapse
Affiliation(s)
- D C Rowe
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | |
Collapse
|
12
|
Abstract
Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- S C Makrides
- Department of Molecular Biology, T Cell Sciences, Inc., Needham, Massachusetts 02194, USA
| |
Collapse
|
13
|
Chou CH, Aristidou AA, Meng SY, Bennett GN, San KY. Characterization of a pH-inducible promoter system for high-level expression of recombinant proteins inEscherichia coli. Biotechnol Bioeng 1995; 47:186-92. [DOI: 10.1002/bit.260470210] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Bryers JD, Sanin S. Resuscitation of starved ultramicrobacteria to improve in situ bioremediation. Ann N Y Acad Sci 1994; 745:61-76. [PMID: 7832533 DOI: 10.1111/j.1749-6632.1994.tb44364.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J D Bryers
- Center for Biochemical Engineering, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
15
|
Matin A. Starvation promoters of Escherichia coli. Their function, regulation, and use in bioprocessing and bioremediation. Ann N Y Acad Sci 1994; 721:277-91. [PMID: 8010678 DOI: 10.1111/j.1749-6632.1994.tb47401.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Matin
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402
| |
Collapse
|