1
|
Tan Y, Stein LY, Sauvageau D. The influence of self-cycling fermentation long- and short-cycle schemes on Saccharomyces cerevisiae and Escherichia coli. Sci Rep 2022; 12:13154. [PMID: 35915208 PMCID: PMC9343364 DOI: 10.1038/s41598-022-16831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Self-cycling fermentation (SCF), a cyclic process in which cells, on average, divide once per cycle, has been shown to lead to whole-culture synchronization and improvements in productivity during bioconversion. Previous studies have shown that the completion of synchronized cell replication sometimes occurs simultaneously with depletion of the limiting nutrient. However, cases in which the end of cell doubling occurred before limiting nutrient exhaustion were also observed. In order to better understand the impact of these patterns on bioprocessing, we investigated the growth of Saccharomyces cerevisiae and Escherichia coli in long- and short-cycle SCF strategies. Three characteristic events were identified during SCF cycles: (1) an optimum in control parameters, (2) the time of completion of synchronized cell division, and (3) the depletion or plateau of the limiting nutrient. Results from this study and literature led to the identification of three potential trends in SCF cycles: (A) co-occurrence of the three key events, (B) cell replication ending prior to the co-occurrence of the other two events, and (C) depletion or plateau of the limiting nutrient occurring later than the co-occurrence of the other two events. Based on these observations, microbial physiological differences were analyzed and a novel definition for SCF is proposed.
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Tan Y, Agustin RVC, Stein LY, Sauvageau D. Transcriptomic analysis of synchrony and productivity in self-cycling fermentation of engineered yeast producing shikimic acid. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00691. [PMID: 34934640 PMCID: PMC8660916 DOI: 10.1016/j.btre.2021.e00691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/25/2023]
Abstract
Industrial fermentation provides a wide variety of bioproducts, such as food, biofuels and pharmaceuticals. Self-cycling fermentation (SCF), an advanced automated semi-continuous fermentation approach, has shown significant advantages over batch reactors (BR); including cell synchrony and improved production. Here, Saccharomyces cerevisiae engineered to overproduce shikimic acid was grown under SCF operation. This led to four-fold increases in product yield and volumetric productivity compared to BR. Transcriptomic analyses were performed to understand the cellular mechanisms leading to these increases. Results indicate an up-regulation of a large number of genes related to the cell cycle and DNA replication in the early stages of SCF cycles, inferring substantial synchronization. Moreover, numerous genes related to gluconeogenesis, the citrate cycle and oxidative phosphorylation were significantly up-regulated in the late stages of SCF cycles, consistent with significant increases in shikimic acid yield and productivity.
Collapse
Key Words
- BR, Batch reactor
- CER, Carbon dioxide evolution rate
- DDT, Dithiothreitol
- DNA, Deoxyribonucleic acid
- EDTA, Ethylenediaminetetraacetic acid
- FC, Fold change
- OD600, Optical density at 600 nm
- RNA, Ribonucleic acid
- SCF, Self-cycling fermentation
- STP, Standard temperature and pressure
- Saccharomyces cerevisiae
- Self-cycling fermentation (SCF)
- Shikimic acid
- Synchrony
- Transcriptomics
- cDNA, Complementary deoxyribonucleic acid
- mRNA, Messenger ribonucleic acid
- qPCR, Quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Roman Vincent C. Agustin
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa Y. Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Weiland-Bräuer N, Fischer MA, Schramm KW, Schmitz RA. Polychlorinated Biphenyl (PCB)-Degrading Potential of Microbes Present in a Cryoconite of Jamtalferner Glacier. Front Microbiol 2017; 8:1105. [PMID: 28663747 PMCID: PMC5471330 DOI: 10.3389/fmicb.2017.01105] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Aiming to comprehensively survey the potential pollution of an alpine cryoconite (Jamtalferner glacier, Austria), and its bacterial community structure along with its biodegrading potential, first chemical analyses of persistent organic pollutants, explicitly polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) as well as polycyclic aromatic hydrocarbons (PAHs), revealed a significant contamination. In total, 18 PCB congeners were detected by high resolution gas chromatography/mass spectrometry with a mean concentration of 0.8 ng/g dry weight; 16 PAHs with an average concentration of 1,400 ng/g; and 26 out of 29 OCPs with a mean concentration of 2.4 ng/g. Second, the microbial composition was studied using 16S amplicon sequencing. The analysis revealed high abundances of Proteobacteria (66%), the majority representing α-Proteobacteria (87%); as well as Cyanobacteria (32%), however high diversity was due to 11 low abundant phyla comprising 75 genera. Biodegrading potential of cryoconite bacteria was further analyzed using enrichment cultures (microcosms) with PCB mixture Aroclor 1242. 16S rDNA analysis taxonomically classified 37 different biofilm-forming and PCB-degrading bacteria, represented by Pseudomonas, Shigella, Subtercola, Chitinophaga, and Janthinobacterium species. Overall, the combination of culture-dependent and culture-independent methods identified degrading bacteria that can be potential candidates to develop novel bioremediation strategies.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Martin A. Fischer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Karl-Werner Schramm
- Molecular EXposomics, German Research Center for Environmental Health, Helmholtz Zentrum München GmbHNeuherberg, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| |
Collapse
|
4
|
Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil. Arch Microbiol 2017; 199:701-710. [PMID: 28220203 DOI: 10.1007/s00203-017-1349-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
A novel aerobic, non-motile, halotolerant, alkalitolerant, hydrocarbon degrading, and rod shaped bacterium, designated strain R160T, was isolated from soil in South Korea. Cells were Gram-staining-negative, catalase-positive, and oxidase-negative. This strain grew up to 7% of NaCl and in the pH range of 6-11 (optimum 7.0-10.0). The isolate degraded 51.7 ± 1.3% of hydrocarbon components (C-18, C-20, and C-22) and 45.8 ± 1.4% oil components (kerosene, diesel, and gasoline). Phylogenetic analysis based on 16 S rRNA gene sequences revealed that strain R160T formed a lineage within the genus Acinetobacter, and was closely related to 'Acinetobacter oleivorans' DR1T (97.47%, sequence similarity). Other closely related members have sequence similarity between 97.47 to 96.52%. The predominant respiratory lipoquinones of strain R160T were ubiquinone 9 (Q-9) and ubiquinone 8 (Q-8). The major polar lipids were phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and phosphatidylcholine (PC). The major cellular fatty acids were 9-octadecenoic acid (C18:1 ω9c), hexadecanoic acid (C16:0), and summed feature (comprising C16:1 ω7c and/or C16:1 ω6c). The DNA G + C content of strain R160T was 44.9 mol%. On the basis of phenotypic, genotypic, chemotaxonomic, and phylogenetic characteristics, strain R160T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter halotolerans sp. nov. is proposed. The type strain is R160T (= KEMB 9005-333T = KACC 18453T = JCM 31009T).
Collapse
|
5
|
Kasperski A, Sun K, Tian Y. New Approach to Control of the Dissolved Oxygen Concentration in a Biomass-Driven Self-Cycling Biochemical Process. CHEM ENG COMMUN 2016. [DOI: 10.1080/00986445.2014.948113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Godin FB, Cooper DG, Rey AD. Numerical methods for a population-balance model of a periodic fermentation process. AIChE J 2006. [DOI: 10.1002/aic.690450621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Tam K, Matsumoto MR, Sheppard JD. A kinetic model for suspended and attached growth of a defined mixed culture. Biotechnol Prog 2005; 21:720-7. [PMID: 15932248 DOI: 10.1021/bp0500720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetic experiments were carried out in a semicontinuous wastewater treatment process called self-cycling fermentation (SCF) using a defined mixed culture and various concentrations of synthetic brewery wastewater. The same consortium, which had been previously identified as Acinetobacter sp., Enterobacter sp., and Candida sp., were used in these experiments. The overall rate of substrate removal was attributable to both suspended microbes and the biofilm that formed during the treatment process. A rate expression was developed for the SCF system for a range of synthetic wastewaters containing glucose and various initial concentrations of ethanol and maltose. The data indicated that substrate removal by the suspended cells was directly related to the biomass concentration. However, substrate removal by the biofilm was apparently not affected by the biofilm thickness and was a function of substrate concentration only.
Collapse
Affiliation(s)
- Kawai Tam
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
8
|
Enhanced biosurfactant production byCorynebacterium alkanolyticumATCC 21511 using self-cycling fermentation. J AM OIL CHEM SOC 2002. [DOI: 10.1007/s11746-002-0507-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Leman J. Oleaginous microorganisms: an assessment of the potential. ADVANCES IN APPLIED MICROBIOLOGY 1997; 43:195-243. [PMID: 9097415 DOI: 10.1016/s0065-2164(08)70226-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J Leman
- Institute of Food Biotechnology, University of Agriculture and Technology, Olsztyn, Poland
| |
Collapse
|
10
|
|
11
|
Asc�n-Cabrera MA, Lebeault JM. Interfacial area effects of a biphasic aqueous/organic system on growth kinetic of xenobiotic-degrading microorganisms. Appl Microbiol Biotechnol 1995. [DOI: 10.1007/bf00166938] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
|
13
|
McCaffrey WC, Cooper DG. Sophorolipids production by Candida bombicola using self-cycling fermentation. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(95)94082-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Antibiotic production byStreptomyces aureofaciens using self-cycling fermentation. Biotechnol Bioeng 1994; 44:1331-6. [DOI: 10.1002/bit.260441109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Sarkis BE, Cooper DG. Biodegradation of aromatic compounds in a self-cycling fermenter (SCF). CAN J CHEM ENG 1994. [DOI: 10.1002/cjce.5450720514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
van Walsum GP, Cooper DG. Self-cycling fermentation in a stirred tank reactor. Biotechnol Bioeng 1993; 42:1175-80. [PMID: 18609666 DOI: 10.1002/bit.260421007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Self-cycling fermentations (SCFs) were conducted in a stirred tank apparatus using Bacillus subtilis and Acinetobacter calcoaceticus. The systems were very stable and the experiments lasted through many cycles. The variation of parameters such as biomass and doubling time from cycle to cycle was small. The stirred tank reactor (STR) allowed a much better control of the working volume in the fermentor from cycle to cycle, compared to the cyclone column, and it was not necessary to make periodic corrections.The production of surfactin from B. subtilis was achieved without extending the cycle time. The harvested broth at the end of each cycle was allowed to remain in a secondary vessel, at ambient temperature, before being collected. It is exhaustion of the limiting nutrient which causes an increase in dissolved oxygen (DO). At this point, the computer, which constantly monitors the DO, triggered the harvesting sequence to end the cycle. Thus, the mature culture in the secondary vessel experienced appropriate conditions for the production of the secondary metabolite. Meanwhile, the next batch of cells was being grown in the primary reactor.The response of a gas analyzer on the effluent paralleled that of the DO measurements in the fermentor. These data for oxygen and carbon dioxide exhibited less noise than the DO readings. Either would be a more reliable parameter for feedback control of the SCF because the problem of fouling of the DO probe after extended runs of many cycles would be eliminated.
Collapse
Affiliation(s)
- G P van Walsum
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|