1
|
Dini S, Oz F, Bekhit AEDA, Carne A, Agyei D. Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13394. [PMID: 38925624 DOI: 10.1111/1541-4337.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, Erzurum, Turkey
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Aqif M, Shah MUH, Khan R, Umar M, SajjadHaider, Razak SIA, Wahit MU, Khan SUD, Sivapragasam M, Ullah S, Nawaz R. Glycolipids biosurfactants production using low-cost substrates for environmental remediation: progress, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47475-47504. [PMID: 39017873 DOI: 10.1007/s11356-024-34248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The production of renewable materials from alternative sources is becoming increasingly important to reduce the detrimental environmental effects of their non-renewable counterparts and natural resources, while making them more economical and sustainable. Chemical surfactants, which are highly toxic and non-biodegradable, are used in a wide range of industrial and environmental applications harming humans, animals, plants, and other entities. Chemical surfactants can be substituted with biosurfactants (BS), which are produced by microorganisms like bacteria, fungi, and yeast. They have excellent emulsifying, foaming, and dispersing properties, as well as excellent biodegradability, lower toxicity, and the ability to remain stable under severe conditions, making them useful for a variety of industrial and environmental applications. Despite these advantages, BS derived from conventional resources and precursors (such as edible oils and carbohydrates) are expensive, limiting large-scale production of BS. In addition, the use of unconventional substrates such as agro-industrial wastes lowers the BS productivity and drives up production costs. However, overcoming the barriers to commercial-scale production is critical to the widespread adoption of these products. Overcoming these challenges would not only promote the use of environmentally friendly surfactants but also contribute to sustainable waste management and reduce dependence on non-renewable resources. This study explores the efficient use of wastes and other low-cost substrates to produce glycolipids BS, identifies efficient substrates for commercial production, and recommends strategies to improve productivity and use BS in environmental remediation.
Collapse
Affiliation(s)
- Muhammad Aqif
- Faculty of Materials and Chemical Engineering, Department of Chemical Engineering, Ghulam Ishaq Khan Institute, Topi, Swabi, Khyber Pakhtunkhwa, 23460, Pakistan
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Rawaiz Khan
- College of Dentistry, Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, King Saud University, 11545, Riyadh, Saudi Arabia.
| | - Muhammad Umar
- Faculty of Materials and Chemical Engineering, Department of Chemical Engineering, Ghulam Ishaq Khan Institute, Topi, Swabi, Khyber Pakhtunkhwa, 23460, Pakistan
| | - SajjadHaider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, UniversitiTeknologi Malaysia (UTM), 81310, Skudai, Johor Bahru, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
| | - Salah Ud-Din Khan
- College of Engineering, Sustainable Energy Center Technologies, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Magaret Sivapragasam
- Faculty of Integrated Life Sciences, School of Integrated Sciences (SIS), School of Postgraduate Studies, Research and Internationalization, Quest International University, 30250, Ipoh, Perak, Malaysia
| | - Shafi Ullah
- Institute of Soil and Environmental Sciences, PirMehr Ali Shah Arid Agriculture University Shamsabad, Murree Rd, Rawalpindi, 46300, Pakistan
| | - Rab Nawaz
- Institute of Soil and Environmental Sciences, PirMehr Ali Shah Arid Agriculture University Shamsabad, Murree Rd, Rawalpindi, 46300, Pakistan
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Liu J, Wang K, Zhao L, Li Y, Li Z, Li C. Investigation of supplementation with a combination of fermented bean dregs and wheat bran for improving the growth performance of the sow. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:295-309. [PMID: 38628686 PMCID: PMC11016735 DOI: 10.5187/jast.2023.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 04/19/2024]
Abstract
To investigate the effect of dietary supplementation with a fermented mixture of bean dregs and wheat bran (FBW) on sow performance. FBW was given to sows during late gestation and lactation; in total, 24 sows were randomly assigned to 4 groups (control diet; 3% FBW diet; 6% FBW diet; 9% FBW diet, n = 6). The weight ratio of bean dregs (wet) to wheat bran was 4:6. Sows were fed different diets from 85 d of gestation until weaning. The results showed that supplementation with FBW increased average daily feed intake (ADFI) during lactation (p < 0.05). FBW supplementation also increased litter weight and milk yield (p < 0.05). The contents of Escherichia coli in the feces of the treatment groups were significantly reduced by FBW supplementation (p < 0.01). FBW supplementation significantly improved the fecal morphology (p < 0.05), alleviating sows' constipation. In conclusion, FBW could increase the ADFI, improve lactation and piglet litter weight in sows and reduce the pathogenic bacterial content in sow feces and constipation.
Collapse
Affiliation(s)
- Junze Liu
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Liangyu Zhao
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Yansen Li
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojian Li
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Shao Q, Zhu Z, Zhou C. Alteration in Community Dynamics of Chaetoceros curvisetus and Bacterioplankton Communities in Response to Surfactin Exposure. Microorganisms 2023; 11:2596. [PMID: 37894254 PMCID: PMC10609649 DOI: 10.3390/microorganisms11102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The use of surfactin is a promising method to mitigate algal blooms. However, little is known about surfactin toxicity to algae and bacterioplankton. Here, we treated Chaetoceros curvisetus, the dominant species of algal blooms in the East China Sea, with 0, 0.5, 1, 2, 3, and 4 mg/L of surfactin for 96 h to investigate temporal variability. Our results showed that low concentrations of surfactin (<2 mg/L) changed the cell morphology of C. curvisetus, and higher concentrations (>3 mg/L) had lethal effects. Meanwhile, we examined the community dynamics of the free-living (FL, 0.22-5 μm) and particle-attached (PA, >5 μm) bacterioplankton of C. curvisetus in response to different surfactin concentrations and cultivation periods. Both PA and FL bacterioplankton were mainly composed of Proteobacteria, Actinobacteria, and Bacteroidetes, while FL bacterioplankton were more diverse than PA bacterioplankton. The variations of FL and PA bacterioplankton were significantly constrained by the surfactin concentration. Surfactin changed the lifestyle of some bacterioplankton from FL to PA, which mainly belonged to abundant bacterioplankton. Furthermore, we identified some surfactin-sensitive species/taxa. Our study will help enhance the ability to predict marine microbial responses under the effect of surfactin, providing a research foundation for this new harmful algal bloom mitigation method.
Collapse
Affiliation(s)
- Qianwen Shao
- Ningbo Institute of Oceanography, Ningbo 315832, China;
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhujun Zhu
- Ningbo Institute of Oceanography, Ningbo 315832, China;
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China;
| |
Collapse
|
5
|
Bouassida M, Mnif I, Hammami I, Triki MA, Ghribi D. Bacillus subtilis SPB1 lipopeptide biosurfactant: antibacterial efficiency against the phytopathogenic bacteria Agrobacterium tumefaciens and compared production in submerged and solid state fermentation systems. Food Sci Biotechnol 2023; 32:1595-1609. [PMID: 37637836 PMCID: PMC10449737 DOI: 10.1007/s10068-023-01274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Bacillus subtilis SPB1 derived biosurfactants (BioS) proved its bio-control activity against Agrobacterium tumefaciens using tomato plant. Almost 83% of disease symptoms triggered by Agrobacterium tumefaciens were reduced. Aiming potential application, we studied lipopeptide cost-effective production in both fermentations systems, namely the submerged fermentation (SmF) and the solid-state fermentation (SSF) as well as the use of Aleppo pine waste and confectionery effluent as cheap substrates. Optimization studies using Box-Behnken (BB) design followed by the analysis with response surface methodology were applied. When using an effluent/sea water ratio of 1, Aleppo pine waste of 14.08 g/L and an inoculum size of 0.2, a best production yield of 17.16 ± 0.91 mg/g was obtained for the SmF. While for the SSF, the best production yield of 27.59 ± 1.63 mg/g was achieved when the value of Aleppo pine waste, moisture, and inoculum size were, respectively, equal to 25 g, 75%, and 0.2. Hence, this work demonstrated the superiority of SSF over SmF.
Collapse
Affiliation(s)
- Mouna Bouassida
- Laboratoire d’Amélioration des Plantes et Valorisation des Agro-Ressources, Ecole Nationale d’Ingénieurs de Sfax, Sfax, Tunisie
- Bioréacteur couple à un ultra filtre, Ecole Nationale D’Ingénieurs de Sfax, Sfax, Tunisie
| | - Inès Mnif
- Laboratoire de Biochimie et Génie Enzymatique des Lipases, Ecole Nationale d’Ingénieurs de Sfax, Sfax, Tunisie
- Faculté des Sciences de Gabes, Université de Gabes, Gabes, Tunisie
| | - Ines Hammami
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohamed-Ali Triki
- Institut de l’Olivier-Institution of Agricultural Research and Higher Education-Tunisia-Protection of Plants Researcher, Tunis, Tunisie
| | - Dhouha Ghribi
- Laboratoire d’Amélioration des Plantes et Valorisation des Agro-Ressources, Ecole Nationale d’Ingénieurs de Sfax, Sfax, Tunisie
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
6
|
Barale SS, Ghane SG, Sonawane KD. Purification and characterization of antibacterial surfactin isoforms produced by Bacillus velezensis SK. AMB Express 2022; 12:7. [PMID: 35084596 PMCID: PMC8795249 DOI: 10.1186/s13568-022-01348-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/10/2022] Open
Abstract
Bacillus velezensis SK having broad-spectrum antimicrobial activity has been isolated from soil. The efficient extraction of antimicrobial compounds produced in various mediums has been done using Diaion HP-20 resin. Further, characterization of an antimicrobial compound by TLC, FTIR, in-situ bioautography analysis revealed the presence of cyclic lipopeptides, which is then purified by the combination of silica gel, size exclusion, dual gradient, and RP-HPLC chromatography techniques. Growth kinetic studies showed that Bacillus velezensis SK produces a mixture of lipopeptides (1.33 gL-1). The lipopeptide exhibits good pH (2-10) and temperature stability up to 80 °C. LC-ESI-MS analysis of partially purified lipopeptide identified variant of surfactin, further analysis of purified chromatographic fractions revealed the occurrence of most abundant C15-surfactin homologues (m/z 1036.72 Da). The isolated surfactin exhibits good antimicrobial activity (1600 AU/ml) against drug-resistant food-born B. cereus and human pathogen Staphylococcus aureus. Hence, identified strain B. velezensis SK and its potent antibacterial surfactin lipopeptide could be used in various food and biomedical applications.
Collapse
|
7
|
El Sheikha AF, Ray RC. Bioprocessing of Horticultural Wastes by Solid-State Fermentation into Value-Added/Innovative Bioproducts: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2004161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, China
| | - Ramesh C. Ray
- ICAR-Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar, India
- Centre for Food Biology & Environment Studies, Bhubaneswar, India
| |
Collapse
|
8
|
Kumar A, Rabha J, Jha DK. Antagonistic activity of lipopeptide-biosurfactant producing Bacillus subtilis AKP, against Colletotrichum capsici, the causal organism of anthracnose disease of chilli. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Théatre A, Cano-Prieto C, Bartolini M, Laurin Y, Deleu M, Niehren J, Fida T, Gerbinet S, Alanjary M, Medema MH, Léonard A, Lins L, Arabolaza A, Gramajo H, Gross H, Jacques P. The Surfactin-Like Lipopeptides From Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front Bioeng Biotechnol 2021; 9:623701. [PMID: 33738277 PMCID: PMC7960918 DOI: 10.3389/fbioe.2021.623701] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Surfactin is a lipoheptapeptide produced by several Bacillus species and identified for the first time in 1969. At first, the biosynthesis of this remarkable biosurfactant was described in this review. The peptide moiety of the surfactin is synthesized using huge multienzymatic proteins called NonRibosomal Peptide Synthetases. This mechanism is responsible for the peptide biodiversity of the members of the surfactin family. In addition, on the fatty acid side, fifteen different isoforms (from C12 to C17) can be incorporated so increasing the number of the surfactin-like biomolecules. The review also highlights the last development in metabolic modeling and engineering and in synthetic biology to direct surfactin biosynthesis but also to generate novel derivatives. This large set of different biomolecules leads to a broad spectrum of physico-chemical properties and biological activities. The last parts of the review summarized the numerous studies related to the production processes optimization as well as the approaches developed to increase the surfactin productivity of Bacillus cells taking into account the different steps of its biosynthesis from gene transcription to surfactin degradation in the culture medium.
Collapse
Affiliation(s)
- Ariane Théatre
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, Gembloux, Belgium
| | - Carolina Cano-Prieto
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Marco Bartolini
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yoann Laurin
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.,Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Joachim Niehren
- Inria Lille, and BioComputing Team of CRISTAL Lab (CNRS UMR 9189), Lille, France
| | - Tarik Fida
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Saïcha Gerbinet
- Chemical Engineering, Products, Environment, and Processes, University of Liège, Liège, Belgium
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Angélique Léonard
- Chemical Engineering, Products, Environment, and Processes, University of Liège, Liège, Belgium
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Ana Arabolaza
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Philippe Jacques
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, Gembloux, Belgium
| |
Collapse
|
10
|
Kumar V, Ahluwalia V, Saran S, Kumar J, Patel AK, Singhania RR. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. BIORESOURCE TECHNOLOGY 2021; 323:124566. [PMID: 33390315 DOI: 10.1016/j.biortech.2020.124566] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Microbial secondary metabolites (SMs) are the intermediate or the product of metabolism produced during fermentation process. SMs are produced during stationary phase and play a major role in competition, antagonism and self defence mechanisms. These metabolites finds application in the pharmaceuticals, food, cosmetics etc. These are produced besides primary key metabolites (e.g., amino acids, lipids, carbohydrates etc.). Growth condition in solid-state fermentation (SSF) resembles microorganism's own native environment allowing the microorganisms to adapt best. Recent developments in bioprocessing has identified specific SSF practices that have a significant impact on SMs production. The practice of SSF, representing new opportunities to design better bioprocessing with potential genetic development goals for expanding the list of exciting SMs. Current updates cover advanced techniques on SSF to improve microbial SMs production and their ease of operation and cost-effective production strategies. Various factors affecting the SSF have been discussed with respect to sustainable development of novel SSF strategies for SMs production.
Collapse
Affiliation(s)
- Vinod Kumar
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu-180001, India
| | - Vivek Ahluwalia
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Saurabh Saran
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu-180001, India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | | |
Collapse
|
11
|
Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M, Deleu M, Jacques P. Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:123-179. [DOI: 10.1007/10_2021_182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Shahbaz U, Yu X. Cloning, isolation, and characterization of novel chitinase-producing bacterial strain UM01 (Myxococcus fulvus). J Genet Eng Biotechnol 2020; 18:45. [PMID: 32865699 PMCID: PMC7458996 DOI: 10.1186/s43141-020-00059-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/05/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chitin is an important biopolymer next to cellulose, extracted in the present study. The exoskeleton of marine bycatch brachyuran crabs, namely Calappa lophos, Dromia dehaani, Dorippe facchino and also from stomatopod Squilla spp. were used to extract chitin through fermentation methods by employing two bacterial strains such as Pseudomonas aeruginosa, Serratia marcescens. The yield of chitin was 44.24%, 37.45%, 11.56% and 27.24% in C. lophos, D. dehaani, D. facchino and Squilla spp. respectively. FT-IR spectra of the produced chitin exhibit peaks which is more or less coherent to that of standard chitin which is further analysed by Scanning Electron Microscope. The quality of produced chitin was assessed through moisture, protein, ash and lipid content analysis ensured that chitin obtained from trash crustaceans are on par with that of standard chitin. RESULTS A total of 10 samples were collected from different areas of Jiangsu China for screening of chitinase-producing bacteria. Based on the clearance zone, two of the best samples were chosen for further study. 16S rRNA sequence analysis showed that this strain belongs to genus Myxococcus and species Myxococcus fulvus. Phylogenetic analysis was performed and it shows strain UM01 is a novel bacterial strain. UM01 isolate shows maximum chitinase production at 35 °C and 8 pH. Among all, these colloidal chitins were found to be the best for chitinase production. Three chitinase-producing genes were identified and sequenced by using degenerative plasmid. UMCda gene (chitin disaccharide deacetylase) was cloned into E. coli DH5a by using PET-28a vector, and antagonistic activity was examined against T. reesei. CONCLUSION To our knowledge, this is the earliest study report to gene cloning and identification of the chitinase gene in Myxococcus fulvus. Chitinase plays a key role in decomposition and utilization of chitin as a raw material. This research indicates that Myxococcus fulvus UM01 strain is a novel myxobacteria strain and can produce large amounts of chitinase within a short time. The UMCda gene cloned into E. coli DH5a showed a promising effect as antifungal activity. In overall findings, the specific strain UM01 has endowed properties of bioconversation of waste chitin and other biological applications.
Collapse
Affiliation(s)
- Umar Shahbaz
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
| | - Xiaobin Yu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
| |
Collapse
|
13
|
Wang X, Chen Z, Feng H, Chen X, Wei L. Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis. Microb Cell Fact 2019; 18:141. [PMID: 31426791 PMCID: PMC6699124 DOI: 10.1186/s12934-019-1176-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus subtilis 916 has been identified as an effective biocontrol agent against Rhizoctonia solani, the causal pathogen of rice sheath blight, under greenhouse and field conditions. HPLC analysis showed that surfactin, a member of the lipopeptide family produced by B. subtilis, was the major antimicrobial substance. RESULTS Previously, we obtained a mutant strain of B. subtilis 916, Bs-H74, which produced significantly more surfactin than the wild type and presented 10% stronger inhibitory activity against R. solani. To explore the molecular mechanism underlying the higher surfactin productivity in the mutant, high-throughput proteomic analysis was carried out to analyze the differential protein expression. Our results showed that several differentially expressed proteins are involved in OppA, DegU and Carbon Catabolite Repression (CCR) regulatory pathways, which could be positively or negatively associated with surfactin biosynthesis. At both transcriptional and translational levels, we suggested that OppA may play a key role in surfactin synthesis regulation. Based on the above findings, we proposed the hypothesis that a point mutation in the oppA gene may lead to changes in oligopeptides acquisition in B. subtilis, and then the changed oligopeptides may activate or suppress the global regulatory protein, CcpA in the CCR pathway, and ComA and DegU may indirectly regulate surfactin synthesis in Bs-H74. To further explore the regulatory mechanisms in Bs-H74, metabolomics analysis was performed in this study. Interestingly, only 16 metabolites showed changes in abundance in Bs-H74 compared to Bs-916. Neohesperidin, a type of natural flavanone glycosides from citrus with a range of biological activities, increased by 18 times over the wild type Bs-916. This result implied exciting findings in regulatory mechanisms by OppA protein. CONCLUSIONS In summary, this study has revealed the mechanisms underlying the improved antagonistic property with increased surfactin production in Bs-H74 at the gene, protein and metabolic levels, which may help to comprehend the map of the regulatory networks in B. subtilis. Findings from our work have provided a solid physical and theoretical basis for practically applying metabolic and genetic engineering to achieve improved and high-yielding biocontrol strains.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Feng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
14
|
Goswami M, Deka S. Biosurfactant production by a rhizosphere bacteria Bacillus altitudinis MS16 and its promising emulsification and antifungal activity. Colloids Surf B Biointerfaces 2019; 178:285-296. [DOI: 10.1016/j.colsurfb.2019.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 01/12/2023]
|
15
|
Wang J, Guo R, Wang W, Ma G, Li S. Insight into the surfactin production of Bacillus velezensis B006 through metabolomics analysis. ACTA ACUST UNITED AC 2018; 45:1033-1044. [PMID: 30203399 DOI: 10.1007/s10295-018-2076-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Abstract
Abstract
Bacillus velezensis B006 is a biocontrol agent which functions through effective colonization and surfactin production. To reveal the surfactin-producing mechanism, gas chromatography–mass spectrometry based untargeted metabolomics was performed to compare the metabolite profiles of strain B006 grown in industrial media M3 and M4. Based on the statistical and pathway topology analyses, a total of 31 metabolites with a fold change of less than − 1.0 were screened as the significantly altered metabolites, which distributed in 15 metabolic pathways. Fourteen amino acids involving in the metabolisms of alanine/aspartate/glutamate, glycine/serine/threonine, arginine/proline, glutathione/cysteine/methionine and valine/leucine/isoleucine as well as succinic acid in TCA cycle were identified to be the hub metabolites. Aminoacyl-tRNA biosynthesis, glycerolipid metabolism, and pantothenate/CoA biosynthesis also contributed to surfactin production. To the best of our knowledge, this study is the first to investigate the metabolic pathways of B. velezensis on surfactin production, and will benefit the optimization of commercial fermentation for higher surfactin yield.
Collapse
Affiliation(s)
- Junqiang Wang
- grid.464356.6 Institute of Plant Protection, Chinese Academy of Agricultural Sciences No. 2 Yuanmingyuan West Road 100193 Beijing China
- Jiangsu Frey Agrochemicals Co. Ltd 222005 Lianyungang Jiangsu China
| | - Rongjun Guo
- grid.464356.6 Institute of Plant Protection, Chinese Academy of Agricultural Sciences No. 2 Yuanmingyuan West Road 100193 Beijing China
| | - Wenchao Wang
- Shanghai ProfLeader Biotech Co. Ltd 200231 Shanghai China
| | - Guizhen Ma
- 0000 0004 1800 0658 grid.443480.f School of Chemical Engineering Huaihai Institute of Technology 222005 Lianyungang Jiangsu China
| | - Shidong Li
- grid.464356.6 Institute of Plant Protection, Chinese Academy of Agricultural Sciences No. 2 Yuanmingyuan West Road 100193 Beijing China
| |
Collapse
|
16
|
Simultaneous production of alkaline amylase and biosurfactant by Bacillus methylotrophicus DCS1: application as detergent additive. Biodegradation 2018; 30:247-258. [DOI: 10.1007/s10532-018-9847-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
|
17
|
Al-Kashef A, Shaban S, Nooman M, Rashad M. Effect of Fungal Glycolipids Produced by a Mixture of Sunflower Oil Cake and Pineapple Waste as Green Corrosion Inhibitors. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/jest.2018.119.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Ikeda A, Kim D, Hashidoko Y. Identification of diacetonamine from soybean curd residue as a sporulation-inducing factor toward Bacillus spp. AMB Express 2017; 7:101. [PMID: 28545259 PMCID: PMC5442031 DOI: 10.1186/s13568-017-0395-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 11/15/2022] Open
Abstract
Under bioassay-guided investigation, a sporulation-inducing factor (SIF) toward Bacillus spp. was searched for in methanol (MeOH) extracts of soybean curd residues, and diacetonamine (1) was identified as the active compound. SIF was first isolated as a monoacetylated derivative (2, 4.1 mg from 655 g soybean curd residues), and its chemical structure was elucidated by field desorption mass spectrometry, electron ionization mass spectrometry, and nuclear magnetic resonance (NMR) analyses. After 48-h incubation, 40 µM diacetonamine hydrochloride (1b) exhibited sporulation-inducing activity with 35% sporulation frequency toward a Bacillus amyloliquefaciens wild-type strain (AHU 2170), whereas 40 µM diacetone acrylamide (3) showed 99% sporulation induction, which was much higher than that of 1b. Although Bacillus megaterium NBRC 15308 was sporulated by the treatment with 400 µM 1b with 36 and 70% sporulation frequency after 72- and 96-h incubation respectively, 3 at the same concentration showed only 2% sporulation after 72-h incubation. Hence, diacetonamine (1) was characterized as a genuine SIF from soybean curd residues, but it was uncertain whether 1 is a natural product or an artifact. Spores of B. amyloliquefaciens induced by 1b survived after treatment with heating at 95 °C for 10 min, also suggesting that 1 is genuine SIF in soybean curd residue. As sporulation induction is likely linked to activation of antibiotic production in some spore-forming Firmicutes bacteria, compound 1 would be a possible chemical tool to develop an effective fermentation technology in Bacillus species.
Collapse
|
19
|
Enhancement of Surfactin and Fengycin Production by Bacillus mojavensis A21: Application for Diesel Biodegradation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5893123. [PMID: 29082251 PMCID: PMC5610860 DOI: 10.1155/2017/5893123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/27/2017] [Accepted: 06/08/2017] [Indexed: 12/05/2022]
Abstract
This work concerns the study of the enhancement of surfactin and fengycin production by B. mojavensis A21 and application of the produced product in diesel biodegradation. The influences of the culture medium and cells immobilization were studied. The highest lipopeptides production was achieved after 72 hours of incubation in a culture medium containing 30 g/L glucose as carbon source and a combination of yeast extract (1 g/L) and glutamic acid (5 g/L) as nitrogen sources with initial pH 7.0 at 30°C and 90% volumetric aeration. The study of primary metabolites production showed mainly the production of acetoin, with a maximum production after 24 h of strain growth. The use of immobilized cells seemed to be a promising method for improving lipopeptides productivity. In fact, the synthesis of both lipopeptides, mainly fengycin, was greatly enhanced by the immobilization of A21 cells. An increase of diesel degradation capacity of approximately 20, 27, and 40% in the presence of 0.5, 1, and 2 g/L of produced lipopeptides, respectively, was observed. Considering these properties, B. mojavensis A21 strain producing a lipopeptide mixture, containing both surfactin and fengycin, may be considered as a potential candidate for future use in bioremediation and crop protection.
Collapse
|
20
|
Zhi Y, Wu Q, Xu Y. Production of surfactin from waste distillers' grains by co-culture fermentation of two Bacillus amyloliquefaciens strains. BIORESOURCE TECHNOLOGY 2017; 235:96-103. [PMID: 28365354 DOI: 10.1016/j.biortech.2017.03.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 05/12/2023]
Abstract
Distillers' grains (DGS), the main waste by-products of Chinese liquor industry, were used as substrate for surfactin production. Bacillus amyloliquefaciens MT45 could grow with DGS as sole carbon source to produce 1.04g/l surfactin. However, low amylase activity of MT45 limited sugar supply and the subsequent surfactin production. Therefore, MT45 was co-cultured with Bacillus strains that exhibited remarkable hydrolases activities. Surfactin yield increased by 50% when MT45 was co-cultured with B. amyloliquefaciens X82 that showed no product inhibition effect and did not develop extracellular matrix. The inoculation ratio of X82 greatly influenced the sugar supply, cellular growth, and surfactin production of the co-culture fermentation. Maximum surfactin titration (3.4g/l) was obtained when MT45 and X82 were co-cultured with inoculation ratio at 1:0.5, using 200g/l DGS. This work highlights the feasibility of using industrial waste DGS as promising feedstocks to produce value-added surfactin by co-culture fermentation.
Collapse
Affiliation(s)
- Yan Zhi
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qun Wu
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
21
|
Coutte F, Lecouturier D, Dimitrov K, Guez JS, Delvigne F, Dhulster P, Jacques P. Microbial lipopeptide production and purification bioprocesses, current progress and future challenges. Biotechnol J 2017. [DOI: 10.1002/biot.201600566] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- François Coutte
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
| | - Didier Lecouturier
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
| | - Krasimir Dimitrov
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
| | - Jean-Sébastien Guez
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
- Axe GePEB, Institut Pascal, UMR 6602; Université Clermont Auvergne, CNRS, SIGMA; Clermont-Ferrand France
| | - Frank Delvigne
- Microbial Processes and Interactions, TERRA Teaching and Research Centre; Gembloux Agro-Bio Tech University of Liege; Gembloux Belgium
| | - Pascal Dhulster
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
| | - Philippe Jacques
- Institut Charles Viollette, Université Lille, INRA, ISA, Université d'Artois; Université Littoral Côte d'Opale; EA 7394-ICV Lille France
- Microbial Processes and Interactions, TERRA Teaching and Research Centre; Gembloux Agro-Bio Tech University of Liege; Gembloux Belgium
| |
Collapse
|
22
|
Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci Rep 2017; 7:40976. [PMID: 28112210 PMCID: PMC5256033 DOI: 10.1038/srep40976] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/13/2016] [Indexed: 11/23/2022] Open
Abstract
Natural Bacillus isolates generate limited amounts of surfactin (<10% of their biomass), which functions as an antibiotic or signalling molecule in inter-/intra-specific interactions. However, overproduction of surfactin in Bacillus amyloliquefaciens MT45 was observed at a titre of 2.93 g/l, which is equivalent to half of the maximum biomass. To systemically unravel this efficient biosynthetic process, the genome and transcriptome of this bacterium were compared with those of B. amyloliquefaciens type strain DSM7T. MT45 possesses a smaller genome while containing more unique transporters and resistance-associated genes. Comparative transcriptome analysis revealed notable enrichment of the surfactin synthesis pathway in MT45, including central carbon metabolism and fatty acid biosynthesis to provide sufficient quantities of building precursors. Most importantly, the modular surfactin synthase overexpressed (9 to 49-fold) in MT45 compared to DSM7T suggested efficient surfactin assembly and resulted in the overproduction of surfactin. Furthermore, based on the expression trends observed in the transcriptome, there are multiple potential regulatory genes mediating the expression of surfactin synthase. Thus, the results of the present study provide new insights regarding the synthesis and regulation of surfactin in high-producing strain and enrich the genomic and transcriptomic resources available for B. amyloliquefaciens.
Collapse
|
23
|
Motta Dos Santos LF, Coutte F, Ravallec R, Dhulster P, Tournier-Couturier L, Jacques P. An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. BIORESOURCE TECHNOLOGY 2016; 218:944-52. [PMID: 27447921 DOI: 10.1016/j.biortech.2016.07.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 05/12/2023]
Abstract
Culture medium elements were analysed by a screening DoE to identify their influence in surfactin specific production by a surfactin constitutive overproducing Bacillus subtilis strain. Statistics pointed the major enhancement caused by high glutamic acid concentrations, as well as a minor positive influence of tryptophan and glucose. Successively, a central composite design was performed in microplate bioreactors using a BioLector®, in which variations of these impressive parameters, glucose, glutamic acid and tryptophan concentrations were selected for optimization of product-biomass yield (YP/X). Results were exploited in combination with a RSM. In absolute terms, experiments attained an YP/X 3.28-fold higher than those obtained in Landy medium, a usual culture medium used for lipopeptide production by B. subtilis. Therefore, two medium compositions for enhancing biomass and surfactin specific production were proposed and tested in continuous regime in a bubbleless membrane bioreactor. An YP/X increase of 2.26-fold was observed in bioreactor scale.
Collapse
Affiliation(s)
- Luiz Fernando Motta Dos Santos
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France; L'Oréal Research & Innovation, Advanced Research, Aulnay-sous-Bois, France
| | - François Coutte
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France.
| | - Rozenn Ravallec
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France
| | - Pascal Dhulster
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France
| | | | - Philippe Jacques
- Univ-Lille, EA 7394, Research Institute for Food and Biotechnology - Charles Viollette - Team ProBioGEM, F-59000 Lille, France
| |
Collapse
|
24
|
Yao S, Zhao S, Lu Z, Gao Y, Lv F, Bie X. Control of agitation and aeration rates in the production of surfactin in foam overflowing fed-batch culture with industrial fermentation. Rev Argent Microbiol 2015; 47:344-9. [PMID: 26655454 DOI: 10.1016/j.ram.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 11/24/2022] Open
Abstract
Bacillus amyloliquefaciens fmb50 produces a high yield of surfactin, a lipopeptide-type biosurfactant that has been widely studied and has potential applications in many fields. A foam overflowing culture has been successfully used in the combined production-enrichment fermentation of surfactin. In this study, the agitation and aeration rates were found to have relationships with foam formation and surfactin enrichment. A maximum surfactin concentration of 4.7g/l of foam was obtained after 21h of culture with an agitation rate of 150rpm and an aeration rate of 1vvm in fed-batch culture. By controlling the foam overflow rate (fout) of a fed-batch culture, surfactin concentration in the foam was continuously maintained above 4g/l.
Collapse
Affiliation(s)
- Shulin Yao
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing 210095, PR China
| | - Shengming Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing 210095, PR China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing 210095, PR China
| | - Yuqi Gao
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing 210095, PR China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing 210095, PR China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, 1 Weigang, Nanjing 210095, PR China.
| |
Collapse
|
25
|
Chen WC, Juang RS, Wei YH. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.07.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Gurjar J, Sengupta B. Production of surfactin from rice mill polishing residue by submerged fermentation using Bacillus subtilis MTCC 2423. BIORESOURCE TECHNOLOGY 2015; 189:243-249. [PMID: 25898085 DOI: 10.1016/j.biortech.2015.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 05/28/2023]
Abstract
Rice mill polishing residue (RMPR), an abundant and cheap agro residue, was used as substrate for microbial growth of Bacillus subtilis MTCC 2423 by submerged fermentation process to produce surfactin. Nutrients present in the residue were sufficient to sustain the growth of the microorganism. Multi stage foam fractionation followed by acid precipitation was used to concentrate and recover the product. Recoverable yield of surfactin was 4.17 g/kg residue. Product recovered in the foamate accounted for 69% of the total yield. The residual broth containing ∼ 30% surfactin exhibited biological oxygen demand and chemical oxygen demand values of 23 and 69 mg/L respectively. The microbial growth data was correlated using three parameter sigmoid models. Surfactin synthesized had a predominance of molecular weight 1076 Da. Foam separation of copper using surfactin resulted in a maximum removal of 72.5%.
Collapse
Affiliation(s)
- Jigar Gurjar
- Chemical Engineering Department, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, India
| | - Bina Sengupta
- Chemical Engineering Department, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, India.
| |
Collapse
|
27
|
Willenbacher J, Rau JT, Rogalla J, Syldatk C, Hausmann R. Foam-free production of Surfactin via anaerobic fermentation of Bacillus subtilis DSM 10(T). AMB Express 2015; 5:21. [PMID: 25852998 PMCID: PMC4385232 DOI: 10.1186/s13568-015-0107-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/04/2015] [Indexed: 11/11/2022] Open
Abstract
Surfactin is one of the most popular biosurfactants due to its numerous potential applications. The usually aerobic production via fermentation of Bacillus subtilis is accompanied by vigorous foaming which leads to complex constructions and great expense. Therefore it is reasonable to search for alternative foam-free production processes. The current study introduces a novel approach to produce Surfactin in a foam-free process applying a strictly anaerobic bioreactor cultivation. The process was performed several times with different glucose concentrations in mineral salt medium. The fermentations were analyzed regarding specific (qSurfactin, vol. qSurfactin) and overall product yields (YP/X, YP/S) as well as substrate utilization (YX/S). Fermentations in which 2.5 g/L glucose were employed proofed to be the most effective, reaching product yields of YP/X = 0.278 g/g. Most interesting, the product yields exceeded classical aerobic fermentations, in which foam fractionation was applied. Additionally, values for specific production rate qSurfactin (0.005 g/(g∙h)) and product yield per consumed substrate (YP/S = 0.033 g/g) surpass results of comparable foam-free processes. The current study introduces an alternative to produce a biosurfactant that overcomes the challenges of severe foaming and need for additional constructions.
Collapse
|
28
|
Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV. Cost effective technologies and renewable substrates for biosurfactants' production. Front Microbiol 2014; 5:697. [PMID: 25566213 PMCID: PMC4264478 DOI: 10.3389/fmicb.2014.00697] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
Diverse types of microbial surface active amphiphilic molecules are produced by a range of microbial communities. The extraordinary properties of biosurfactant/bioemulsifier (BS/BE) as surface active products allows them to have key roles in various field of applications such as bioremediation, biodegradation, enhanced oil recovery, pharmaceutics, food processing among many others. This leads to a vast number of potential applications of these BS/BE in different industrial sectors. Despite the huge number of reports and patents describing BS and BE applications and advantages, commercialization of these compounds remain difficult, costly and to a large extent irregular. This is mainly due to the usage of chemically synthesized media for growing producing microorganism and in turn the production of preferred quality products. It is important to note that although a number of developments have taken place in the field of BS industries, large scale production remains economically challenging for many types of these products. This is mainly due to the huge monetary difference between the investment and achievable productivity from the commercial point of view. This review discusses low cost, renewable raw substrates, and fermentation technology in BS/BE production processes and their role in reducing the production cost.
Collapse
Affiliation(s)
- Ibrahim M Banat
- Faculty of Life and Health Sciences, School of Biomedical Sciences, University of Ulster Coleraine, UK
| | - Surekha K Satpute
- Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, Savitribai Phule Pune University Pune, India
| | | | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University Pune, India
| | | |
Collapse
|
29
|
Nagavalli M, Ponamgi SPD, Girijashankar V, Venkateswar Rao L. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei. Lett Appl Microbiol 2014; 60:44-51. [PMID: 25256628 DOI: 10.1111/lam.12332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/09/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED Production of Rifamycin SV from cheaper agro-industrial by-products using mutant strain of Amycolatopsis mediterranei OVA5-E7 in solid state fermentation (SSF) was optimized. Among the agro-based substrates used, ragi bran was found suitable for maximizing the yield of Rifamycin SV (1310 mg 100 g(-1) ds). The yield can be further enhanced to 19·7 g Kg(-1) of dry substrate by supplementing the substrate with deoiled cotton cake (10% w/w) using optimized fermentation parameters such as maintaining 80% moisture, pH 7·0, 30°C incubation temperature, inoculum 25% v/w and carrying the solid state fermenting for 9 days. Manipulating these seven specifications, the end product yield achieved in our experimentation was 20 g of Rifamycin SV Kg(-1) ds. Eventually, an overall 5-fold improvement in Rifamycin SV production was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY Antibiotics such as rifamycin are broad-spectrum antimicrobial drugs used in large-scale worldwide as human medicine towards controlling diseases. Amycolatopsis mediterranei strain which produces this antibiotic was earlier used in submerged fermentation yielded lower amounts of rifamycin. By employing cheaper agro-industrial by-products, we produced upto 20 g rifamycin SV per Kg dry substrate used under optimized solid state fermentation conditions. Keeping in view, the role of rifamycin in meeting the medical demands of world's increasing population; we successfully used an improved strain on cheaper substrates with optimized fermentation parameters and achieved a 5-fold improvement in rifamycin SV production.
Collapse
Affiliation(s)
- M Nagavalli
- Department of Microbiology, Osmania University, Hyderabad, India
| | | | | | | |
Collapse
|
30
|
Willenbacher J, Zwick M, Mohr T, Schmid F, Syldatk C, Hausmann R. Evaluation of different Bacillus strains in respect of their ability to produce Surfactin in a model fermentation process with integrated foam fractionation. Appl Microbiol Biotechnol 2014; 98:9623-32. [PMID: 25158834 DOI: 10.1007/s00253-014-6010-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022]
Abstract
Biosurfactants increasingly gain attention due to the manifold of possible applications and production on the basis of renewable resources. Owing to its various characteristics, Surfactin is one of the most studied biosurfactants. Since its discovery, several Surfactin producers have been identified, but their capacity to produce Surfactin has not been evaluated in a comparison. Six different Bacillus strains were analyzed regarding their ability to produce Surfactin in model fermentations with integrated foam fractionation, for in situ product enrichment and removal. Three of the investigated strains are commonly used in Surfactin production (ATCC 21332, DSM 3256, DSM 3258), whereas two Bacillus strains are described for the first time (DSM 1090, LM43a50°C) as Surfactin producers. Additionally, the Bacillus subtilis type strain DSM 10(T) was included in the evaluation. Interestingly, all strains, except DSM 3256, featured high values for Surfactin recovered from foam in comparison to other studies, ranging between 0.4 and 1.05 g. The fermentation process was characterized by calculating procedural parameters like substrate yield Y X/S, product yield Y P/X, specific growth rate μ, specific productivity q Surfactin, volumetric productivity q Surfactin, Surfactin and bacterial enrichment as well as Surfactin recovery. The strains differ most in specific and volumetric productivity; nevertheless, it is evident that it is not possible to name a Bacillus strain that is the most appropriate for the production of Surfactin under these conditions. In contrast, it becomes apparent that the choice of a specific strain should depend on the applied fermentation conditions.
Collapse
Affiliation(s)
- Judit Willenbacher
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131, Karlsruhe, Germany,
| | | | | | | | | | | |
Collapse
|
31
|
Zhang D, Wang Y, Lu Y, Zhang C, Lu Z. An efficient method for separation of surfactin from Bacillus amyloliquefaciens fmb50 broth by flocculation. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Rashad MM, Nooman MU, Ali MM, Al-kashef AS, Mahmoud AE. Production, characterization and anticancer activity of Candida bombicola sophorolipids by means of solid state fermentation of sunflower oil cake and soybean oil. GRASAS Y ACEITES 2014. [DOI: 10.3989/gya.098413] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Ohike T, Makuni K, Okanami M, Ano T. Screening of endophytic bacteria against fungal plant pathogens. J Environ Sci (China) 2013; 25 Suppl 1:S122-S126. [PMID: 25078813 DOI: 10.1016/s1001-0742(14)60640-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bacterial endophytes were found from 6 plant leaves among 35 plant leaves screened. Two of the isolated bacteria showed antagonistic activity against fungal plant pathogens. An isolate named KL1 showed the clear inihibition against plant pathogens, Fusarium oxysporum and Rhizoctonia solani, on PDA as well as TSA plate. Supernatant of the bacterial culture also showed the clear inhibition against the fungal growth on the plate and the antibiotic substance was identified as iturin A by HPLC analysis. KL1 was identified as Bacillus sp. from the 16S rRNA gene analysis. Very thin hyphae of R. solani was miccroscopically observed when the fungus was co-cultivated with KL1.
Collapse
Affiliation(s)
- Tatsuya Ohike
- Graduate School of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan.
| | - Kohei Makuni
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Masahiro Okanami
- Graduate School of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan; Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Takashi Ano
- Graduate School of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan; Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| |
Collapse
|
34
|
Vosloo JA, Stander MA, Leussa ANN, Spathelf BM, Rautenbach M. Manipulation of the tyrothricin production profile of Bacillus aneurinolyticus. Microbiology (Reading) 2013; 159:2200-2211. [DOI: 10.1099/mic.0.068734-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Johan Arnold Vosloo
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marietjie A. Stander
- Department of Biochemistry and LCMS-Central Analytical Facility, Science Faculty, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Adrienne N.-N. Leussa
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | - Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
35
|
Zhu Z, Zhang F, Wei Z, Ran W, Shen Q. The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 127:96-102. [PMID: 23685270 DOI: 10.1016/j.jenvman.2013.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/27/2013] [Accepted: 04/06/2013] [Indexed: 05/12/2023]
Abstract
Agro-industrial byproducts, especially rice straw, are potential resources. This work was aimed to utilize raw materials to produce value-added biosurfactant in solid-state fermentation (SSF). Rice straw and soybean flour were found efficient and selected as major substrates for surfactin production. The results of Plackett-Burman design indicated that glycerol, water content, inoculum size and temperature were the significant variables identified in the screen of nine total variables. The optimum values for the four significant variables were determined by the Box-Behnken design. The optimal surfactin production was obtained when the medium contained 5 g soybean flour, 4 g rice straw, 2% (w/w) maltose and 2.65% (w/w) glycerol, pH 7.0. The ideal growth conditions for surfactin production consisted of a moisture content of 62.8% (v/w) and growth supplemented with 15.96% inoculum size in 250 mL flasks at 26.9 °C for 48 h. Under optimal conditions, a surfactin yield of 15.03 mg/gds was attained in 1000-fold scale-up fermentation in a 50 L fermenter, thereby validating the accuracy of this approach. This study proposed an eco-friendly and economical way to convert agro-industrial byproducts into biosurfactant.
Collapse
Affiliation(s)
- Zhen Zhu
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | |
Collapse
|
36
|
Campos JM, Montenegro Stamford TL, Sarubbo LA, de Luna JM, Rufino RD, Banat IM. Microbial biosurfactants as additives for food industries. Biotechnol Prog 2013; 29:1097-108. [DOI: 10.1002/btpr.1796] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/06/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jenyffer Medeiros Campos
- Dept. de Nutrição; Universidade Federal de Pernambuco, Programa de Pós-graduação em Nutrição, Av. Prof. Moraes Rego, 1235, Cidade Universitária; Recife CEP: 50670-901 PE Brazil
| | - Tânia Lúcia Montenegro Stamford
- Dept. de Nutrição; Universidade Federal de Pernambuco, Programa de Pós-graduação em Nutrição, Av. Prof. Moraes Rego, 1235, Cidade Universitária; Recife CEP: 50670-901 PE Brazil
| | - Leonie Asfora Sarubbo
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526; Boa Vista, Recife CEP: 50050-900 PE Brazil
| | - Juliana Moura de Luna
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526; Boa Vista, Recife CEP: 50050-900 PE Brazil
| | - Raquel Diniz Rufino
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526; Boa Vista, Recife CEP: 50050-900 PE Brazil
| | - Ibrahim M. Banat
- School of Biomedical Sciences; Faculty of Life and Health Sciences; University of Ulster; BT52 1SA Northern Ireland U.K
| |
Collapse
|
37
|
Slivinski CT, Mallmann E, de Araújo JM, Mitchell DA, Krieger N. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.06.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J Biomed Biotechnol 2012; 2012:373682. [PMID: 22536017 PMCID: PMC3321739 DOI: 10.1155/2012/373682] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 12/20/2011] [Indexed: 11/17/2022] Open
Abstract
During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.
Collapse
|
39
|
Khan AW, Zohora US, Rahman MS, Okanami M, Ano T. Production of iturin A through glass column reactor (GCR) from soybean curd residue (okara) by <i>Bacillus subtilis</i> RB14-CS under solid state fermentation (SSF). ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.32021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Khan AW, Rahman MS, Zohora US, Okanami M, Ano T. Production of surfactin using pentose carbohydrate by Bacillus subtilis. J Environ Sci (China) 2011; 23 Suppl:S63-S65. [PMID: 25084596 DOI: 10.1016/s1001-0742(11)61079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Interest in microbial surfactants has been steadily increasing in recent years due to their diversity, mass production possibility, selectivity, performance under extreme conditions and potential applications in environmental protection. In this study two pentose sugars (xylose and arabinose) were investigated for the submerged fermentation (SmF) of Bacillus subtilis in surfactant production medium for bio-surfactant surfactin production. An excellent vegetative growth of B. subtilis (× 10(10) CFU/mL) was observed for xylose and arabinose containing medium which were comparable to glucose supplemented medium. Low growth (× 10(8) CFU/mL) was found when medium was not supplemented with any of the sugars. Surfactin production in xylose, arabinose and glucose containing medium was 2700, 2600 and 2000 mg/L, respectively, whereas, medium without any sugar showed low surfactin (700 mg/L) production. These results clearly indicate the effect of pentose sugars on production of surfactin. Gradual depletion of the xylose and arabinose were confirmed by HPLC analysis during the growth phase of the strain that ultimately produced the surfactin.
Collapse
Affiliation(s)
- Abdul Wahab Khan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; Institute of Biological Resources, Anise Corporation, N605 Building #C, 1-12 Minamiwatarida-cho, Kawasaki-ku, Kawasaki-shi 210-0855, Japan
| | - Mohammad Shahedur Rahman
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; Institute of Biological Resources, Anise Corporation, N605 Building #C, 1-12 Minamiwatarida-cho, Kawasaki-ku, Kawasaki-shi 210-0855, Japan
| | - Umme Salma Zohora
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; Institute of Biological Resources, Anise Corporation, N605 Building #C, 1-12 Minamiwatarida-cho, Kawasaki-ku, Kawasaki-shi 210-0855, Japan
| | - Masahiro Okanami
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa-city, Wakayama, 649-6493, Japan
| | - Takashi Ano
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa-city, Wakayama, 649-6493, Japan
| |
Collapse
|
41
|
Makkar RS, Cameotra SS, Banat IM. Advances in utilization of renewable substrates for biosurfactant production. AMB Express 2011; 1:5. [PMID: 21906330 PMCID: PMC3159906 DOI: 10.1186/2191-0855-1-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/28/2011] [Indexed: 11/10/2022] Open
Abstract
Biosurfactants are amphiphilic molecules that have both hydrophilic and hydrophobic moieties which partition preferentially at the interfaces such as liquid/liquid, gas/liquid or solid/liquid interfaces. Such characteristics enable emulsifying, foaming, detergency and dispersing properties. Their low toxicity and environmental friendly nature and the wide range of potential industrial applications in bioremediation, health care, oil and food processing industries makes them a highly sought after group of chemical compounds. Interest in them has also been encouraged because of the potential advantages they offer over their synthetic counterparts in many fields spanning environmental, food, biomedical, petrochemical and other industrial applications. Their large scale production and application however are currently restricted by the high cost of production and by the limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and latest advances in the search for cost effective renewable agro industrial alternative substrates for their production.
Collapse
Affiliation(s)
| | - Swaranjit S Cameotra
- Scientist F, Fellow AMI, FNABS, NESA Environmentalist, Member WFCC Task Groups, Institute of Microbial Technology, Sector 39A, Chandigarh-160036, India
| | - Ibrahim M Banat
- Professor Ibrahim M. Banat BSc PhD CBiol FIBiol, School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
42
|
|
43
|
Shih IL, Lin CY, Wu JY, Hsieh C. Production of antifungal lipopeptide from Bacillus subtilis in submerged fermentation using shake flask and fermentor. KOREAN J CHEM ENG 2010. [DOI: 10.1007/s11814-009-0237-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Krieger N, Neto DC, Mitchell DA. Production of Microbial Biosurfactants by Solid-State Cultivation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 672:203-10. [DOI: 10.1007/978-1-4419-5979-9_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Surfactin: biosynthesis, genetics and potential applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 672:316-23. [PMID: 20545293 DOI: 10.1007/978-1-4419-5979-9_24] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even after forty years of its discovery by Arima et al, surfactin, a potent lipopeptide biosurfactant, still attracts attention and fancy of the applied microbiologists and biotechnologists worldwide, mainly due to its versatile bioactive properties and potential industrial implications. Starting from its first invented characteristic as an inhibitor of fibrin clot formation coupled with its significant ability to reduce surface tension of water, it has been credited with antifungal, antiviral, antitumor, insecticidal and antimycoplasma activities. These properties of therapeutic and commercial importance and its recent use as an enhanced oil recovery and a bioremediation agent make it a truly versatile biomolecule, the commercial potential of which could not be fully realized, particularly as a therapeutic agent, mainly because of its hemolytic property. This chapter thus addresses the issues related to the versatile nature of the most studied microbial surfactant, surfactin and its potential commercial and health-care applications.
Collapse
|
46
|
Biosurfactant's role in bioremediation of NAPL and fermentative production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 672:222-35. [PMID: 20545286 DOI: 10.1007/978-1-4419-5979-9_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surfactants and biosurfactants are amphipathic molecules with both hydrophilic and hydrophobic moieties that partition preferentially at the interface between fluid phases that have different degrees of polarity and hydrogen bonding which confers excellent detergency, emulsifying, foaming and dispersing traits, making them most versatile process chemicals. One of the major applications of (bio)surfactants is in environmental bioremediation field. Most synthetic organic compounds present in contaminated soils are only weakly soluble or completely insoluble in water, so they exist in the subsurface as separate liquid phase, often referred as a non-aqueous phase liquids (NAPL), which poses as threat to environment. Several studies have revealed the use of surfactants for remediation; however, several factors limit the use of surfactants in environmental remediation, mainly persistence of surfactants or their metabolites and thus potentially pose an environmental concern. Biosurfactants may provide a more cost-effective approach for subsurface remediation when used alone or in combination with synthetic surfactants. There are several advantages of biosurfactants when compared to chemical surfactants, mainly biodegradability, low toxicity, biocompatibility and ability to be synthesized from renewable feedstock. Despite having many commercially attractive properties and clear advantages compared with their synthetic counterparts, biosurfactants have not yet been employed extensively in industry because of their low yields and relatively high production and recovery costs. However, the use of mutants and recombinant hyperproducing microorganisms along with the use of cheaper raw materials and optimal growth and production conditions and more efficient recovery processes, the production of biosurfactant can be made economically feasible. Therefore, future research aiming for high-level production of biosurfactants must be focused towards the development of appropriate combinations of hyperproducing microbial strains, optimized cheaper production media and optimized process conditions, which will lead to economical commercial level biosurfactant production.
Collapse
|
47
|
Satpute SK, Bhuyan SS, Pardesi KR, Mujumdar SS, Dhakephalkar PK, Shete AM, Chopade BA. Molecular Genetics of Biosurfactant Synthesis in Microorganisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 672:14-41. [DOI: 10.1007/978-1-4419-5979-9_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3634-3640. [PMID: 18722001 DOI: 10.1016/j.scitotenv.2008.07.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
Biodegradation is one of the primary mechanisms for elimination of petroleum and other hydrocarbon pollutants from the environment. It is considered an environmentally acceptable way of eliminating oils and fuel because the majority of hydrocarbons in crude oils and refined products are biodegradable. Petroleum hydrocarbon compounds bind to soil components and are difficult to remove and degrade. Bioemulsifiers can emulsify hydrocarbons enhancing their water solubility and increasing the displacement of oily substances from soil particles. For these reasons, inclusion of bioemulsifiers in a bioremediation treatment of a hydrocarbon polluted environment could be really advantageous. There is a useful diversity of bioemulsifiers due to the wide variety of producer microorganisms. Also their chemical compositions and functional properties can be strongly influenced by environmental conditions. The effectiveness of the bioemulsifiers as biostimulating agent in oil bioremediation processes has been demonstrated by several authors in different experimental assays. For example, they have shown to be really efficient in combination with other products frequently used in oil bioremediation such as they are inorganic fertilizer (NPK) and oleophilic fertilizer (i.e. S200C). On the other hand, the bioemulsifiers have shown to be more efficient in the treatment of soil with high percentage of clay. Finally, it has been proved their efficacy in other biotechnological processes such as in situ treatment and biopiles. This paper reviews literature concerning the application of bioemulsifiers in the bioremediation of soil polluted with hydrocarbons, and summarizes aspects of the current knowledge about their industrial application in bioremediation processes.
Collapse
Affiliation(s)
- C Calvo
- Environmental Microbiological Research Group, Department of Microbiology, Institute of Water Research, University of Granada, C/ Ramón y Cajal no. 4. 18071, Granada, Spain.
| | | | | | | | | |
Collapse
|
49
|
Kaar W, Hartmann B, Fan Y, Zeng B, Lua L, Dexter A, Falconer R, Middelberg A. Microbial bio-production of a recombinant stimuli-responsive biosurfactant. Biotechnol Bioeng 2009; 102:176-87. [DOI: 10.1002/bit.22037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Shih IL, Kuo CY, Hsieh FC, Kao SS, Hsieh C. Use of surface response methodology to optimize culture conditions for iturin A production by Bacillus subtilis in solid-state fermentation. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.jcice.2008.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|